

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f316-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7.	Comparators	
	Figure 7.1. Comparator0 Functional Block Diagram	69
	Figure 7.2. Comparator1 Functional Block Diagram	70
	Figure 7.3. Comparator Hysteresis Plot	71
8.	CIP-51 Microcontroller	
	Figure 8.1. CIP-51 Block Diagram	
	Figure 8.2. Memory Map	85
9.	Reset Sources	
	Figure 9.1. Reset Sources	
	Figure 9.2. Power-On and V _{DD} Monitor Reset Timing	106
10	Flash Memory	
	Figure 10.1. Flash Program Memory Map	113
	External RAM	
12	Oscillators	404
	Figure 12.1. Oscillator Diagram	
40	Figure 12.2. 32.768 kHz External Crystal Example	120
13	. Port Input/Output	120
	Figure 13.1. Port I/O Functional Block Diagram	
	Figure 13.2. Port I/O Cell Block Diagram Figure 13.3. Crossbar Priority Decoder with No Pins Skipped	
	Figure 13.4. Crossbar Priority Decoder with Crystal Pins Skipped	
14	SMBus	152
	Figure 14.1. SMBus Block Diagram	145
	Figure 14.2. Typical SMBus Configuration	146
	Figure 14.3. SMBus Transaction	147
	Figure 14.4. Typical SMBus SCL Generation	
	Figure 14.5. Typical Master Transmitter Sequence	
	Figure 14.6. Typical Master Receiver Sequence	
	Figure 14.7. Typical Slave Receiver Sequence	
	Figure 14.8. Typical Slave Transmitter Sequence	
15	.UĂRTO	
	Figure 15.1. UART0 Block Diagram	163
	Figure 15.2. UARTO Baud Rate Logic	164
	Figure 15.3. UART Interconnect Diagram	
	Figure 15.4. 8-Bit UART Timing Diagram	
	Figure 15.5. 9-Bit UART Timing Diagram	166
	Figure 15.6. UART Multi-Processor Mode Interconnect Diagram	167
16	Enhanced Serial Peripheral Interface (SPI0)	
	Figure 16.1. SPI Block Diagram	
	Figure 16.2. Multiple-Master Mode Connection Diagram	
	Figure 16.3. 3-Wire Single Master and Slave Mode Connection Diagram	
	Figure 16.4. 4-Wire Single Master and Slave Mode Connection Diagram	
	Figure 16.5. Master Mode Data/Clock Timing	
	Figure 16.6. Slave Mode Data/Clock Timing (CKPHA = 0)	
	Figure 16.7. Slave Mode Data/Clock Timing (CKPHA = 1)	179

C8051F310/1/2/3/4/5/6/7

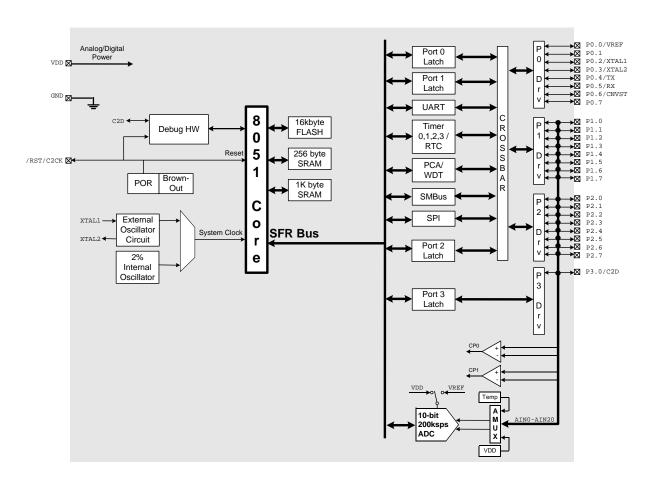


Figure 1.2. C8051F311 Block Diagram

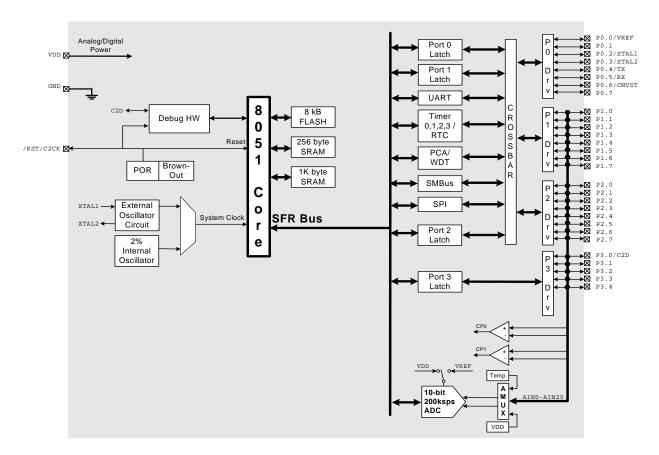


Figure 1.3. C8051F312 Block Diagram

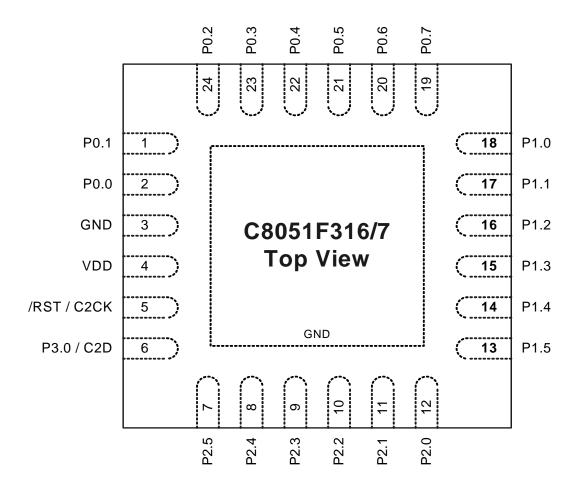


Figure 4.7. QFN-24 Pinout Diagram (Top View)

SFR Definition 5.1. AMX0P: AMUX0 Positive Channel Select

R	R	R	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	-	AMX0P4	AMX0P3	AMX0P2	AMX0P1	AMX0P0	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Addres
								0xBB
	UNUSED. Re AMX0P4–0: /							
0154-0.			osilive input	Selection				
	AMX0P4	-0	ADC	0 Positive	Input			
	00000			P1.0	•			
	00001			P1.1				
	00010)		P1.2				
	00011			P1.3				
	00100			P1.4				
	00101			P1.5				
	00110			P1.6 ⁽¹⁾				
	00111			P1.7 ⁽¹⁾				
	01000)		P2.0				
	01001			P2.1				
	01010			P2.2				
	01011			P2.3				
	01100			P2.4				
	01101			P2.5				
	01110			P2.6 ⁽¹⁾				
	01111			P2.7 ⁽¹⁾				
	10000			P3.0				
	10001 ⁽⁾	2)		P3.1 ⁽²⁾				
	10010 ⁽⁾	2)		P3.2 ⁽²⁾				
	10011 ⁽²	2)		P3.3 ⁽²⁾				
	10100 ⁽⁾			P3.4 ⁽²⁾				
	10101–11			RESERVED)			
	11110			Temp Senso	or			
	11111			V _{DD}				
	Notes:							
	1. Only a		8051F310/1/2		tion			
			28051F316/7					
		pplies to C F311/3/6/7	8051F310/2; : devices	selection RE	SERVED ON			
	00001							

5.4.2. Window Detector In Differential Mode

Figure 5.8 shows two example window comparisons for right-justified, differential data, with ADC0LTH:ADC0LTL = 0x0040 (+64d) and ADC0GTH:ADC0GTH = 0xFFFF (-1d). In differential mode, the measurable voltage between the input pins is between -VREF and VREF*(511/512). Output codes are represented as 10-bit 2's complement signed integers. In the left example, an AD0WINT interrupt will be generated if the ADC0 conversion word (ADC0H:ADC0L) is within the range defined by ADC0GTH:ADC0GTL and ADC0LTH:ADC0LTL (if 0xFFFF (-1d) < ADC0H:ADC0L < 0x0040 (64d)). In the right example, an AD0WINT interrupt will be generated if the ADC0 conversion word is outside of the range defined by the ADC0GT and ADC0LT registers (if ADC0H:ADC0L < 0xFFFF (-1d) or ADC0H:ADC0L > 0x0040 (+64d)). Figure 5.9 shows an example using left-justified data with the same comparison values.

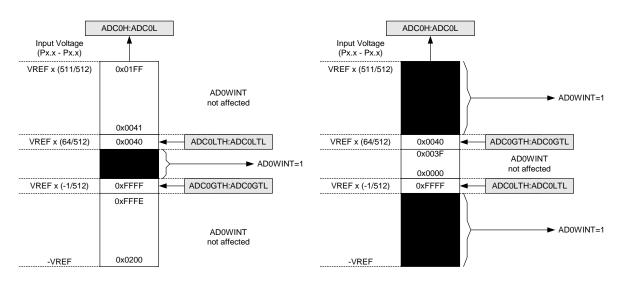


Figure 5.8. ADC Window Compare Example: Right-Justified Differential Data

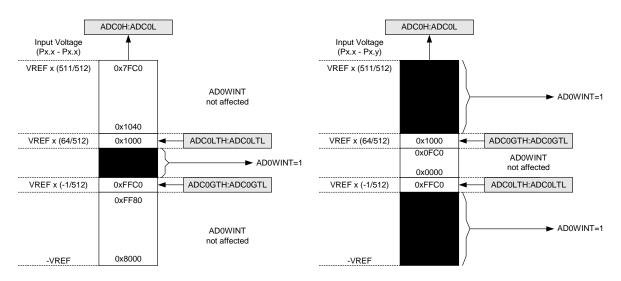


Figure 5.9. ADC Window Compare Example: Left-Justified Differential Data

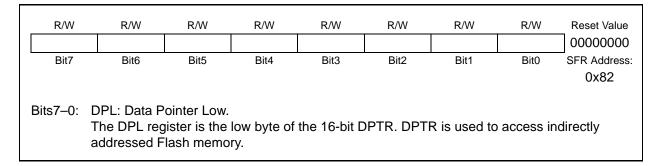

Register	Address	Description	Page
TMR2L	0xCC	Timer/Counter 2 Low	198
TMR2RLH	0xCB	Timer/Counter 2 Reload High	198
TMR2RLL	0xCA	Timer/Counter 2 Reload Low	198
TMR3CN	0x91	Timer/Counter 3Control	201
TMR3H	0x95	Timer/Counter 3 High	202
TMR3L	0x94	Timer/Counter 3Low	202
TMR3RLH	0x93	Timer/Counter 3 Reload High	202
TMR3RLL	0x92	Timer/Counter 3 Reload Low	202
VDM0CN	0xFF	V _{DD} Monitor Control	107
XBR1	0xE2	Port I/O Crossbar Control 1	135
XBR0	0xE1	Port I/O Crossbar Control 0	134
0x84-0x86, 0x	x96-0x97,		
0xAB-0xAF, 0)xB4, 0xB9,		
0xBF, 0xC7, 0	0xC9, 0xCE,	Reserved	
0xCF, 0xD2, 0			
0xDF, 0xE3, 0	0xE5, 0xF5		

Table 8.3. Special Function Registers (Continued)

8.2.7. Register Descriptions

Following are descriptions of SFRs related to the operation of the CIP-51 System Controller. Reserved bits should not be set to logic 1. Future product versions may use these bits to implement new features in which case the reset value of the bit will be logic 0, selecting the feature's default state. Detailed descriptions of the remaining SFRs are included in the sections of the data sheet associated with their corresponding system function.

SFR Definition 8.1. DPL: Data Pointer Low Byte

any other reset source. For example, if the V_{DD} monitor is enabled and a software reset is performed, the V_{DD} monitor will still be enabled after the reset.

Important Note: The V_{DD} monitor must be enabled before it is selected as a reset source. Selecting the V_{DD} monitor as a reset source before it is enabled and stabilized may cause a system reset. The procedure for configuring the V_{DD} monitor as a reset source is shown below:

- Step 1. Enable the V_{DD} monitor (VDMEN bit in VDM0CN = '1').
- Step 2. Wait for the V_{DD} monitor to stabilize (see Table 9.1 for the V_{DD} Monitor turn-on time). Note: This delay should be omitted if software contains routines that erase or write Flash memory.
- Step 3. Select the V_{DD} monitor as a reset source (PORSF bit in RSTSRC = '1').

See Figure 9.2 for V_{DD} monitor timing; note that the reset delay is not incurred after a V_{DD} monitor reset. See Table 9.1 for complete electrical characteristics of the V_{DD} monitor.

SFR Definition 9.1. VDM0CN:	V _{DD} Monitor Control
-----------------------------	---------------------------------

R/W	R	R	R	R	R	R	R	Reset Value
				Reserved				Variable
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	J vanabio
Diti	SFR Address: 0xFF							
Bit7:								
Bit6:	0: V_{DD} Monit 1: V_{DD} Monit V_{DD} STAT: V This bit indic 0: V_{DD} is at o 1: V_{DD} is abo	tor Disabled for Enabled f _{DD} Status. ates the cu for below the pove the V _{DD}	I. rrent power V _{DD} monit monitor th	supply stat tor threshold reshold.	us (V _{DD} Mo d.	onitor outpu	t).	
Bits5–0:	Reserved. R	ead = Varia	ble. Write =	don't care				

9.3. External Reset

The external RST pin provides a means for external circuitry to force the device into a reset state. Asserting an active-low signal on the RST pin generates a reset; an external pullup and/or decoupling of the RST pin may be necessary to avoid erroneous noise-induced resets. See Table 9.1 for complete RST pin specifications. The PINRSF flag (RSTSRC.0) is set on exit from an external reset.

SFR Definition 9.2. RSTSRC: Reset Source

R	R	R/W	R/W	R	R/W	R/W	R	Reset Valu
-	FERROR	CORSEF	SWRSF	WDTRSF	MCDRSF	PORSF	PINRSF	Variable
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address	:0xEF
Bit7:	UNUSED. R	$aad = 0 M_{\rm H}$	rito - don't	ooro				
Bit6:	FERROR: FI			care.				
	0: Source of			lash read/w	rite/erase er	ror		
	1: Source of							
Bit5:	CORSEF: Co							
	0: Read: Sou	•			-	: Compara	tor0 is not a	reset
	source.							
	1: Read: Sou	urce of last	reset was (Comparator	0. Write: Co	omparator0	is a reset s	ource
	(active-low).							
Bit4:	SWRSF: Sof							
	0: Read: Sou							
Bit3:	1: Read: Sou WDTRSF: W				KOF DIL WI	ite: Forces	a system re	eset.
ກເວ.	0: Source of	-		-				
	1: Source of				•			
Bit2:	MCDRSF: M							
	0: Read: Sou	-		-	g Clock Det	ector timed	out. Write: N	lissing
	Clock Detect				0			0
	1: Read: Sou	urce of last	reset was a	a Missing C	lock Detecto	or timeout.	Write: Miss	ing Clock
	Detector ena			-	clock condit	ion is dete	cted.	
Bit1:	PORSF: Pov			•				
	This bit is se							
	monitor as a			-		_		is enable
	and stabilize							
	0: Read: Las	st reset was	not a pow	er-on or V _{DI}	_C monitor re	set. Write:	V _{DD} monito	or is not a
	reset source							
	1: Read: Las				nitor reset; a	all other res	set flags inde	eterminate
	Write: V _{DD} r			ce.				
BitO:	PINRSF: HW		· ·	_				
	0: Source of							
	1: Source of	last reset w	/as RST pii	า.				
Note:	For bits that a read-modify-							

10.1.3. Flash Write Procedure

Flash bytes are programmed by software with the following sequence:

- Step 1. Disable interrupts (recommended).
- Step 2. Erase the 512-byte Flash page containing the target location, as described in **Section 10.1.2**.
- Step 3. Set the PSWE bit (register PSCTL).
- Step 4. Clear the PSEE bit (register PSCTL).
- Step 5. Write the first key code to FLKEY: 0xA5.
- Step 6. Write the second key code to FLKEY: 0xF1.
- Step 7. Using the MOVX instruction, write a single data byte to the desired location within the 512 byte sector.

Steps 5–7 must be repeated for each byte to be written. After Flash writes are complete, PSWE should be cleared so that MOVX instructions do not target program memory.

Table 10.1. Flash Electrical Characteristics

Parameter	Conditions	Min	Тур	Max	Units
Flash Size	C8051F310/1/6/7	16384*	_		bytes
	C8051F312/3/4/5	8192	_		Dytes
Endurance		20 k	100 k		Erase/Write
Erase Cycle Time	25 MHz System Clock	10	15	20	ms
Write Cycle Time	25 MHz System Clock	40	55	70	μs
Note: 512 bytes at location	ons 0x3E00 (C8051F310/1) are rese	rved.			•

 $V_{DD} = 2.7$ to 3.6 V; -40 to +85 °C unless otherwise specified.

10.2. Non-volatile Data Storage

The Flash memory can be used for non-volatile data storage as well as program code. This allows data such as calibration coefficients to be calculated and stored at run time. Data is written using the MOVX write instruction and read using the MOVC instruction. Note: MOVX read instructions always target XRAM.

12. Oscillators

C8051F31x devices include a programmable internal oscillator and an external oscillator drive circuit. The internal oscillator can be enabled/disabled and calibrated using the OSCICN and OSCICL registers, as shown in Figure 12.1. The system clock can be sourced by the external oscillator circuit, the internal oscillator, or a scaled version of the internal oscillator. The internal oscillator's electrical specifications are given in Table 12.1 on page 123.

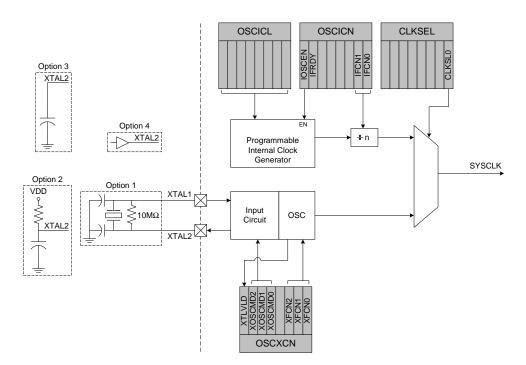


Figure 12.1. Oscillator Diagram

12.1. Programmable Internal Oscillator

All C8051F31x devices include a programmable internal oscillator that defaults as the system clock after a system reset. The internal oscillator period can be programmed via the OSCICL register as defined by SFR Definition 12.1 OSCICL is factor calibrated to obtain a 24.5 MHz frequency.

Electrical specifications for the precision internal oscillator are given in Table 12.1 on page 123. Note that the system clock may be derived from the programmed internal oscillator divided by 1, 2, 4, or 8, as defined by the IFCN bits in register OSCICN. The divide value defaults to 8 following a reset.

SFR Definition 13.5. P0MDOUT: Port0 Output Mode

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value 00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xA4
Bits7–0:	Output Confi ter P0MDIN 0: Correspor 1: Correspor	is logic 0. Inding P0.n	Output is op	pen-drain.	ectively): igr	nored if corr	espondinę	g bit in regis-
Note:	When SDA an P0MDOUT.	d SCL appe	ar on any of	the Port I/O,	each are ope	en-drain rega	rdless of th	ne value of

SFR Definition 13.6. P0SKIP: Port0 Skip

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xD4
	These bits se log inputs (fo							

14.3.2. Clock Low Extension

SMBus provides a clock synchronization mechanism, similar to I2C, which allows devices with different speed capabilities to coexist on the bus. A clock-low extension is used during a transfer in order to allow slower slave devices to communicate with faster masters. The slave may temporarily hold the SCL line LOW to extend the clock low period, effectively decreasing the serial clock frequency.

14.3.3. SCL Low Timeout

If the SCL line is held low by a slave device on the bus, no further communication is possible. Furthermore, the master cannot force the SCL line high to correct the error condition. To solve this problem, the SMBus protocol specifies that devices participating in a transfer must detect any clock cycle held low longer than 25 ms as a "timeout" condition. Devices that have detected the timeout condition must reset the communication no later than 10 ms after detecting the timeout condition.

When the SMBTOE bit in SMB0CF is set, Timer 3 is used to detect SCL low timeouts. Timer 3 is forced to reload when SCL is high, and allowed to count when SCL is low. With Timer 3 enabled and configured to overflow after 25 ms (and SMBTOE set), the Timer 3 interrupt service routine can be used to reset (disable and re-enable) the SMBus in the event of an SCL low timeout.

14.3.4. SCL High (SMBus Free) Timeout

The SMBus specification stipulates that if the SCL and SDA lines remain high for more that 50 μ s, the bus is designated as free. When the SMBFTE bit in SMB0CF is set, the bus will be considered free if SCL and SDA remain high for more than 10 SMBus clock source periods. If the SMBus is waiting to generate a Master START, the START will be generated following this timeout. Note that a clock source is required for free timeout detection, even in a slave-only implementation.

			Freq	uency: 22.1184	MHz		Frequency: 22.1184 MHz								
	Target Baud Rate (bps)	Baud Rate % Error	Oscilla- tor Divide Factor	Timer Clock Source	SCA1-SCA0 (pre-scale select)*	T1M*	Timer 1 Reload Value (hex)								
	230400	0.00%	96	SYSCLK	XX	1	0xD0								
	115200	0.00%	192	SYSCLK	XX	1	0xA0								
	57600	0.00%	384	SYSCLK	XX	1	0x40								
С С.	28800	0.00%	768	SYSCLK / 12	00	0	0xE0								
(from Osc.	14400	0.00%	1536	SYSCLK / 12	00	0	0xC0								
2Lk nal	9600	0.00%	2304	SYSCLK / 12	00	0	0xA0								
'SC ter	2400	0.00%	9216	SYSCLK / 48	10	0	0xA0								
SYSCLK External	1200	0.00%	18432	SYSCLK / 48	10	0	0x40								
	230400	0.00%	96	EXTCLK / 8	11	0	0xFA								
E	115200	0.00%	192	EXTCLK / 8	11	0	0xF4								
froiOsc.	57600	0.00%	384	EXTCLK / 8	11	0	0xE8								
<u> </u>	28800	0.00%	768	EXTCLK / 8	11	0	0xD0								
SYSCL Internal	14400	0.00%	1536	EXTCLK / 8	11	0	0xA0								
SY Inte	9600	0.00%	2304	EXTCLK / 8	11	0	0x70								

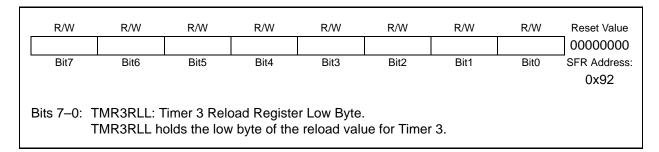
Table 15.3. Timer Settings for Standard Baud RatesUsing an External 22.1184 MHz Oscillator

X = Don't care

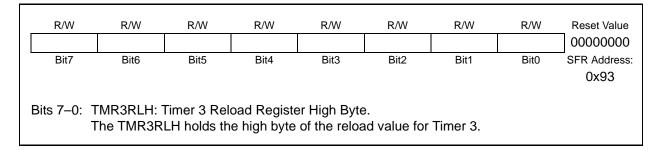
*Note: SCA1–SCA0 and T1M bit definitions can be found in Section 17.1.

Table 15.4. Timer Settings for Standard Baud Rates
Using an External 18.432 MHz Oscillator

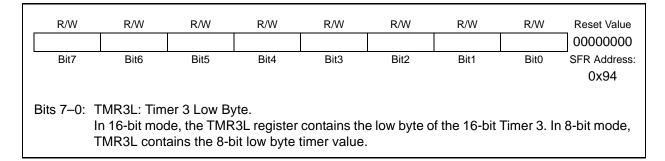
	Frequency: 18.432 MHz						
	Target Baud Rate (bps)	Baud Rate % Error	Oscilla- tor Divide Factor	Timer Clock Source	SCA1-SCA0 (pre-scale select)*	T1M*	Timer 1 Reload Value (hex)
	230400	0.00%	80	SYSCLK	XX	1	0xD8
SYSCLK from External Osc.	115200	0.00%	160	SYSCLK	XX	1	0xB0
	57600	0.00%	320	SYSCLK	XX	1	0x60
	28800	0.00%	640	SYSCLK / 4	01	0	0xB0
	14400	0.00%	1280	SYSCLK / 4	01	0	0x60
	9600	0.00%	1920	SYSCLK / 12	00	0	0xB0
	2400	0.00%	7680	SYSCLK / 48	10	0	0xB0
Ϋ́́	1200	0.00%	15360	SYSCLK / 48	10	0	0x60
SYSCLK from Internal Osc.	230400	0.00%	80	EXTCLK / 8	11	0	0xFB
	115200	0.00%	160	EXTCLK / 8	11	0	0xF6
	57600	0.00%	320	EXTCLK / 8	11	0	0xEC
	28800	0.00%	640	EXTCLK / 8	11	0	0xD8
	14400	0.00%	1280	EXTCLK / 8	11	0	0xB0
SY Int	9600	0.00%	1920	EXTCLK / 8	11	0	0x88

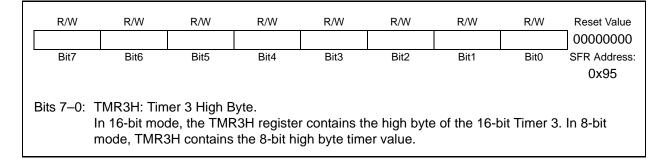

X = Don't care

*Note: SCA1–SCA0 and T1M bit definitions can be found in Section 17.1.



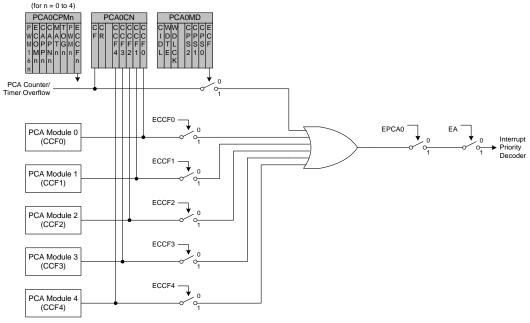
C8051F310/1/2/3/4/5/6/7


SFR Definition 17.14. TMR3RLL: Timer 3 Reload Register Low Byte


SFR Definition 17.15. TMR3RLH: Timer 3 Reload Register High Byte

SFR Definition 17.16. TMR3L: Timer 3 Low Byte

SFR Definition 17.17. TMR3H Timer 3 High Byte


18.2. Capture/Compare Modules

Each module can be configured to operate independently in one of six operation modes: Edge-triggered Capture, Software Timer, High Speed Output, Frequency Output, 8-Bit Pulse Width Modulator, or 16-Bit Pulse Width Modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP-51 system controller. These registers are used to exchange data with a module and configure the module's mode of operation.

Table 18.2 summarizes the bit settings in the PCA0CPMn registers used to select the PCA capture/compare module's operating modes. Setting the ECCFn bit in a PCA0CPMn register enables the module's CCFn interrupt. Note: PCA0 interrupts must be globally enabled before individual CCFn interrupts are recognized. PCA0 interrupts are globally enabled by setting the EA bit and the EPCA0 bit to logic 1. See Figure 18.3 for details on the PCA interrupt configuration.

PWM16	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	Operation Mode
Х	Х	1	0	0	0	0	Х	Capture triggered by positive edge on CEXn
Х	Х	0	1	0	0	0	Х	Capture triggered by negative edge on CEXn
Х	Х	1	1	0	0	0	Х	Capture triggered by transition on CEXn
Х	1	0	0	1	0	0	Х	Software Timer
Х	1	0	0	1	1	0	Х	High Speed Output
Х	1	0	0	Х	1	1	Х	Frequency Output
0	1	0	0	Х	0	1	Х	8-Bit Pulse Width Modulator
1	1	0	0	Х	0	1	Х	16-Bit Pulse Width Modulator
X = Don'	t Care							

Table 18.2. PCA0CPM Register Settings for PCA Capture/Compare Modules

18.2.3. High-Speed Output Mode

In High Speed Output mode, a module's associated CEXn pin is toggled each time a match occurs between the PCA Counter and the module's 16-bit capture/compare register (PCA0CPHn and PCA0CPLn) Setting the TOGn, MATn, and ECOMn bits in the PCA0CPMn register enables the High-Speed Output mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/ Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

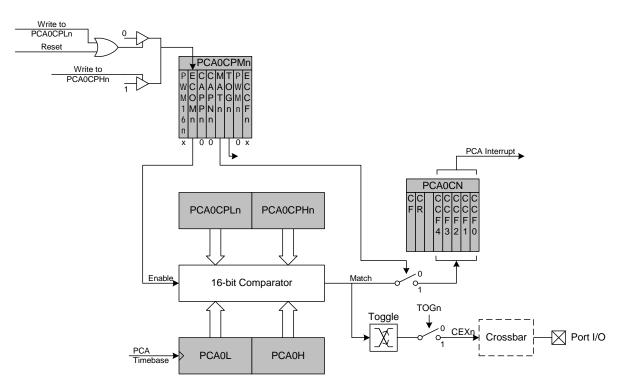


Figure 18.6. PCA High Speed Output Mode Diagram

18.2.5. 8-Bit Pulse Width Modulator Mode

Each module can be used independently to generate a pulse width modulated (PWM) output on its associated CEXn pin. The frequency of the output is dependent on the timebase for the PCA counter/timer. The duty cycle of the PWM output signal is varied using the module's PCA0CPLn capture/compare register. When the value in the low byte of the PCA counter/timer (PCA0L) is equal to the value in PCA0CPLn, the output on the CEXn pin will be set. When the count value in PCA0L overflows, the CEXn output will be reset (see Figure 18.8). Also, when the counter/timer low byte (PCA0L) overflows from 0xFF to 0x00, PCA0CPLn is reloaded automatically with the value stored in the module's capture/compare high byte (PCA0CPHn) without software intervention. Setting the ECOMn and PWMn bits in the PCA0CPMn register enables 8-Bit Pulse Width Modulator mode. The duty cycle for 8-Bit PWM Mode is given by Equation 18.2.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/ Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

Equation 18.2. 8-Bit PWM Duty Cycle

 $DutyCycle = \frac{(256 - PCA0CPHn)}{256}$

Using Equation 18.2, the largest duty cycle is 100% (PCA0CPHn = 0), and the smallest duty cycle is 0.39% (PCA0CPHn = 0xFF). A 0% duty cycle may be generated by clearing the ECOMn bit to '0'.

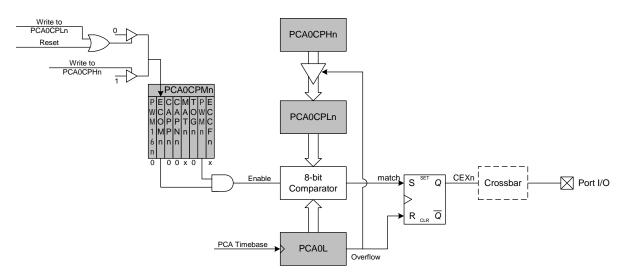


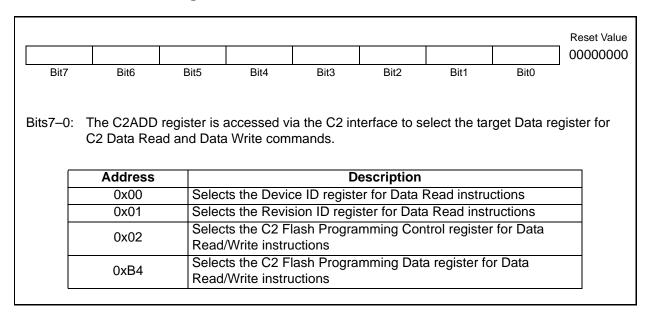
Figure 18.8. PCA 8-Bit PWM Mode Diagram

System Clock (Hz)	PCA0CPL4	Timeout Interval (ms)
24,500,000	255	32.1
24,500,000	128	16.2
24,500,000	32	4.1
18,432,000	255	42.7
18,432,000	128	21.5
18,432,000	32	5.5
11,059,200	255	71.1
11,059,200	128	35.8
11,059,200	32	9.2
3,062,500 ²	255	257
3,062,500 ²	128	129.5
3,062,500 ²	32	33.1
32,000	255	24576
32,000	128	12384
32,000	32	3168

Table 18.3. Watchdog Timer Timeout Intervals¹

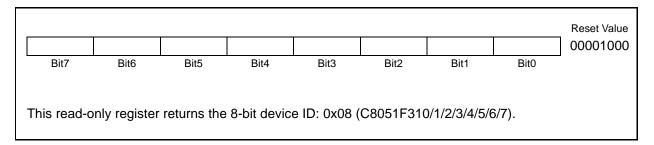
value of 0x00 at the update time.

2. Internal oscillator reset frequency.



20. C2 Interface

C8051F31x devices include an on-chip Silicon Labs 2-Wire (C2) debug interface to allow Flash programming and in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information between the device and a host system. See the C2 Interface Specification for details on the C2 protocol.


20.1. C2 Interface Registers

The following describes the C2 registers necessary to perform Flash programming through the C2 interface. All C2 registers are accessed through the C2 interface as described in the C2 Interface Specification.

C2 Register Definition 20.1. C2ADD: C2 Address

C2 Register Definition 20.2. DEVICEID: C2 Device ID

