

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I²C), SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f317-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C8051F310/1/2/3/4/5/6/7

8.3.4. Interrupt Latency	95
8.3.5. Interrupt Register Descriptions	
8.4. Power Management Modes	
8.4.1. Idle Mode	
8.4.2. Stop Mode	
9. Reset Sources	
9.1. Power-On Reset	106
9.2. Power-Fail Reset / V _{DD} Monitor	106
9.3. External Reset	
9.4. Missing Clock Detector Reset	108
9.5. Comparator0 Reset	108
9.6. PCA Watchdog Timer Reset	108
9.7. Flash Error Reset	108
9.8. Software Reset	108
10. Flash Memory	
10.1.Programming The Flash Memory	
10.1.1.Flash Lock and Key Functions	
10.1.2.Flash Erase Procedure	
10.1.3.Flash Write Procedure	
10.2.Non-volatile Data Storage	
10.3.Security Options	113
10.4.Flash Write and Erase Guidelines	115
10.4.1.V _{DD} Maintenance and the V _{DD} Monitor	115
10.4.2.PSWE Maintenance	
10.4.3.System Clock	
11. External RAM 12. Oscillators	
12.1.Programmable Internal Oscillator	
12.2.External Oscillator Drive Circuit	121
12.3.System Clock Selection	
12.4.External Crystal Example	
12.5.External RC Example	
12.6.External Capacitor Example	
13. Port Input/Output	
13.1.Priority Crossbar Decoder	
13.2.Port I/O Initialization	
13.3.General Purpose Port I/O	
14. SMBus	
14.1.Supporting Documents	
14.2.SMBus Configuration	
14.3.SMBus Operation	
14.3.1.Arbitration	
14.3.2.Clock Low Extension	148
14.3.3.SCL Low Timeout	
14.3.4.SCL High (SMBus Free) Timeout	148

Ordering Part Number	MIPS (Peak)	Flash Memory	RAM	Calibrated Internal 24.5 MHz Oscillator	SMBus/I2C	Enhanced SPI	UART	Timers (16-bit)	Programmable Counter Array	Digital Port I/Os	10-bit 200 ksps ADC	Temperature Sensor	Analog Comparators	Lead-free (RoHS Compliant)	Package
C8051F310	25	16	1280	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	29	\checkmark	\checkmark	2	-	LQFP-32
C8051F310-GQ	25	16	1280	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	29	\checkmark	\checkmark	2	\checkmark	LQFP-32
C8051F311	25	16	1280	\checkmark	\checkmark	\checkmark	~	\checkmark	\checkmark	25	\checkmark	\checkmark	2	-	QFN-28
C8051F311-GM	25	16	1280	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	25	\checkmark	\checkmark	2	\checkmark	QFN-28
C8051F312	25	8	1280	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	29	~	\checkmark	2	-	LQFP-32
C8051F312-GQ	25	8	1280	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	29	\checkmark	\checkmark	2	\checkmark	LQFP-32
C8051F313	25	8	1280	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	25	\checkmark	\checkmark	2	-	QFN-28
C8051F313-GM	25	8	1280	\checkmark	\checkmark	\checkmark	~	\checkmark	\checkmark	25	\checkmark	\checkmark	2	\checkmark	QFN-28
C8051F314	25	8	1280	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	29	-	-	2	-	LQFP-32
C8051F314-GQ	25	8	1280	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	29	-	-	2	\checkmark	LQFP-32
C8051F315	25	8	1280	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	25	-	-	2	-	QFN-28
C8051F315-GM	25	8	1280	\checkmark	\checkmark	\checkmark	~	\checkmark	\checkmark	25	-	-	2	\checkmark	QFN-28
C8051F316-GM	25	16	1280	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	21	\checkmark	\checkmark	2	\checkmark	QFN-24
C8051F317-GM	25	16	1280	\checkmark	\checkmark	\checkmark	~	\checkmark	\checkmark	21	-	-	2	\checkmark	QFN-24

 Table 1.1. Product Selection Guide

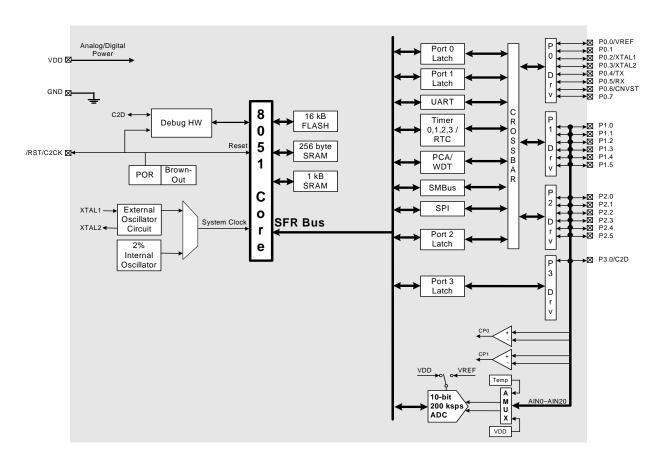


Figure 1.7. C8051F316 Block Diagram

1.8. Comparators

C8051F31x devices include two on-chip voltage comparators that are enabled/disabled and configured via user software. Port I/O pins may be configured as comparator inputs via a selection mux. Two comparator outputs may be routed to a Port pin if desired: a latched output and/or an unlatched (asynchronous) output. Comparator response time is programmable, allowing the user to select between high-speed and low-power modes. Positive and negative hysteresis are also configurable.

Comparator interrupts may be generated on rising, falling, or both edges. When in IDLE mode, these interrupts may be used as a "wake-up" source. Comparator0 may also be configured as a reset source. Figure 1.16 shows he Comparator0 block diagram.

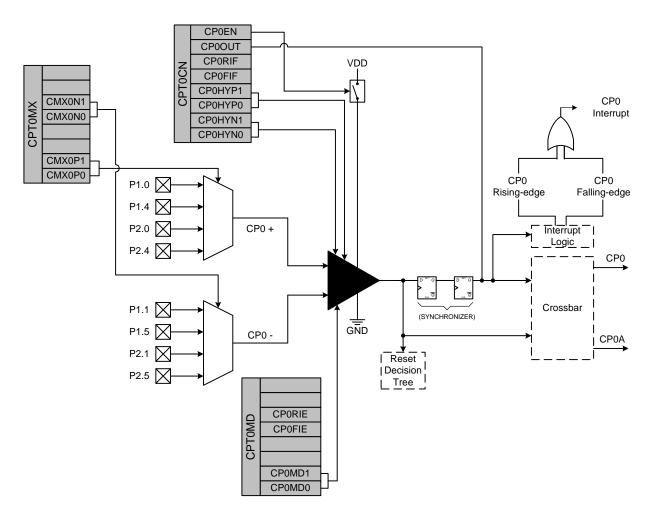


Figure 1.16. Comparator0 Block Diagram

Table 3.1. Global DC Electrical Characteristics (Continued)

-40°C to +85°C, 25 MHz System Clock unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Digital Supply Current—CPU Inac	ctive (Idle Mode, not fetching instru	uctions	from Fla	ish)	
I _{DD} (Note 3)	V_{DD} = 3.0 V, F = 25 MHz		3.8	4.3	mA
	V _{DD} = 3.0 V, F = 1 MHz	—	0.20	—	mA
	V _{DD} = 3.0 V, F = 80 kHz	—	16	—	μA
	V _{DD} = 3.6 V, F = 25 MHz	instructions from Flash) — 3.8 4.3 — 0.20 — — 16 — — 16 — — 4.8 5.3 — 44 — 25 °C — 0.21 — r 25 °C — 0.15 — r 25 °C — 0.28 — r	mA		
I _{DD} Supply Sensitivity (Note 3,	F = 25 MHz	—	44	_	%/V
Note 4)	F = 1 MHz	_	56	_	%/V
I _{DD} Frequency Sensitivity (Note 3,	V_{DD} = 3.0 V, F \leq 1 MHz, T = 25 °C		0.21		mA/MHz
Note 6)	V _{DD} = 3.0 V, F > 1 MHz, T = 25 °C	—	0.15	_	mA/MHz
	V _{DD} = 3.6 V, F <u><</u> 1 MHz, T = 25 °C	—	0.28		mA/MHz
	V _{DD} = 3.6 V, F > 1 MHz, T = 25 °C	_	0.19	_	mA/MHz
Digital Supply Current (Stop Mode, shutdown)	Oscillator not running, V _{DD} Monitor Disabled	_	< 0.1	_	μA

Notes:

- 1. Given in Table 9.1 on page 110.
- 2. SYSCLK must be at least 32 kHz to enable debugging.
- 3. Based on device characterization data, not production tested.
- 4. Active and Inactive I_{DD} at voltages and frequencies other than those specified can be calculated using the I_{DD} Supply Sensitivity. For example, if the V_{DD} is 3.3 V instead of 3.0 V at 25 MHz: I_{DD} = 7.8 mA typical at 3.0 V and f = 25 MHz. From this, I_{DD} = 7.8 mA + 0.67 x (3.3 V 3.0 V) = 8 mA at 3.3 V and f = 25 MHz.
- 5. I_{DD} can be estimated for frequencies ≤ 15 MHz by multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbers to estimate I_{DD} for > 15 MHz, the estimate should be the current at 25 MHz minus the difference in current indicated by the frequency sensitivity number. For example:

 V_{DD} = 3.0 V; F = 20 MHz, I_{DD} = 7.8 mA – (25 MHz – 20 MHz) x 0.21 mA/MHz = 6.75 mA.

Idle I_{DD} can be estimated for frequencies ≤ 1 MHz by multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbers to estimate Idle I_{DD} for > 1 MHz, the estimate should be the current at 25 MHz minus the difference in current indicated by the frequency sensitivity number. For example:

 V_{DD} = 3.0 V; F = 5 MHz, Idle I_{DD} = 4.8 mA – (25 MHz – 5 MHz) x 0.15 mA/MHz = 1.8 mA.

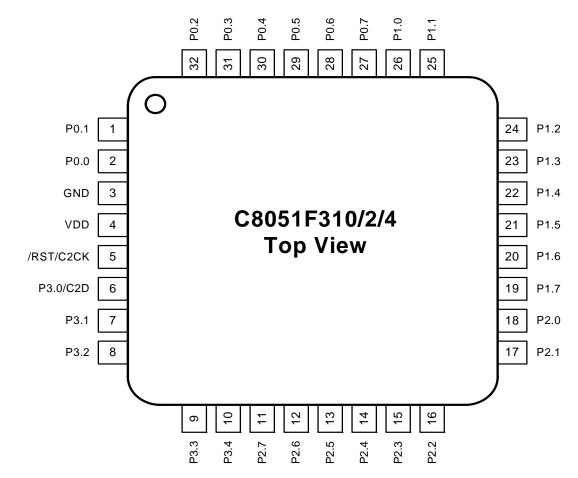


Figure 4.1. LQFP-32 Pinout Diagram (Top View)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value					
AD0EN	AD0TM	AD0INT	AD0BUSY	AD0WINT	AD0CM2	AD0CM1	AD0CM0	0000000					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Addres					
						(bi	t addressable)	0xE8					
Bit7:	AD0EN: AD0	^0 Enable I	⊇it										
JI(7.	0: ADC0 Dis			ower shutd	own								
	1: ADC0 End					ersions.							
Bit6:	ADOTM: AD												
	0: Normal Tr	ack Mode:	When ADC0) is enabled,	tracking is	continuous	unless a co	nversion is					
	in progress.				-								
	1: Low-powe) bits (see b	elow).						
Bit5:	AD0INT: AD												
	0: ADC0 has	•			since the las	st time AD0	NT was clea	ared.					
5:44	1: ADC0 has			ersion.									
Bit4:	AD0BUSY: A Read:	ADC0 Busy	Bit.										
	0: ADC0 con	warsion is c	omplete or		n is not curr	ently in proc		JT is sat to					
	logic 1 on the		•					11 13 361 10					
	•	U .											
	1: ADC0 conversion is in progress. Write:												
	0: No Effect.												
	1: Initiates A	DC0 Conve	ersion if AD0	CM2-0 = 00	0b								
Bit3:	ADOWINT: A		•	•	-								
	0: ADC0 Wir					d since this	flag was las	t cleared.					
	1: ADC0 Wir	•											
Bits2–0:	AD0CM2-0:		t of Convers	ion Mode S	elect.								
	When AD0T 000: ADC0 c		nitiated on a	work write c	f '1' to A DO								
	000. ADC0 0 001: ADC0 0					0031.							
	010: ADC0 conversion initiated on overflow of Timer 2. 011: ADC0 conversion initiated on overflow of Timer 1.												
	100: ADC0 c					NVSTR.							
	101: ADC0 c	conversion i	nitiated on c	overflow of T	ïmer 3.								
	11x: Reserve												
	When AD0T												
	000: Trackin	g initiated o	on write of '1	' to AD0BUS	SY and lasts	s 3 SAR clo	cks, followe	d by con-					
	version.	a initiated a	n avarflavi a	f Timer O er	d looto 2 C	AD alaaka f	allowed by						
	001: Trackin 010: Trackin												
	011: Tracking												
	100: ADC0 t												
	edge.			int input io i	ogio ion, co			9 0 0					
	101: Trackin	a initiated o	on overflow o	of Timer 3 ar	2 S atech h	AR clocks. f	ollowed by a	conversion					
		g millatoa o			10 10313 5 01		••	00110013101					

R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
CP0EN	CP0OUT	CP0RIF	CP0FIF	CP0HYP1	CP0HYP0	CP0HYN1	CP0HYN0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0x9B
Bit7:	CP0EN: Cor	nparator0 E	nable Bit.					
	0: Comparat	or0 Disable	d.					
	1: Comparat							
Bit6:	CP0OUT: Co			ate Flag.				
	0: Voltage or							
	1: Voltage or							
Bit5:	CPORIF: Co							
	0: No Comp		0 0			ice this flag	was last c	leared.
DitA	1: Comparat	-	-	•				
Bit4:	CP0FIF: Co					a a a thia flag		
	0: No Comparat					nce this hag	was last c	cieareo.
Bits3-2:	CP0HYP1-0					-		
Dit35-2.	00: Positive			errysteresis		5.		
	01: Positive							
	10: Positive							
	11: Positive							
Bits1–0:	CP0HYN1-0			ve Hvsteres	is Control Bi	its.		
	00: Negative	•	-	•				
	01: Negative							
	10: Negative	e Hysteresis	= 10 mV.					
	11: Negative	Hysteresis	= 20 mV.					

SFR Definition 7.1. CPT0CN: Comparator0 Control

8.3.2. External Interrupts

The /INT0 and /INT1 external interrupt sources are configurable as active high or low, edge or level sensitive. The IN0PL (/INT0 Polarity) and IN1PL (/INT1 Polarity) bits in the IT01CF register select active high or active low; the IT0 and IT1 bits in TCON (**Section "17.1. Timer 0 and Timer 1" on page 187**) select level or edge sensitive. The table below lists the possible configurations.

IT0	IN0PL	/INT0 Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

IT1	IN1PL	/INT1 Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

/INT0 and /INT1 are assigned to Port pins as defined in the IT01CF register (see SFR Definition 8.11). Note that /INT0 and /INT0 Port pin assignments are independent of any Crossbar assignments. /INT0 and /INT1 will monitor their assigned Port pins without disturbing the peripheral that was assigned the Port pin via the Crossbar. To assign a Port pin only to /INT0 and/or /INT1, configure the Crossbar to skip the selected pin(s). This is accomplished by setting the associated bit in register XBR0 (see **Section** "13.1. Priority Crossbar Decoder" on page 131 for complete details on configuring the Crossbar).

IE0 (TCON.1) and IE1 (TCON.3) serve as the interrupt-pending flags for the /INT0 and /INT1 external interrupts, respectively. If an /INT0 or /INT1 external interrupt is configured as edge-sensitive, the corresponding interrupt-pending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When configured as level sensitive, the interrupt-pending flag remains logic 1 while the input is active as defined by the corresponding polarity bit (IN0PL or IN1PL); the flag remains logic 0 while the input is inactive. The external interrupt source must hold the input active until the interrupt request is recognized. It must then deactivate the interrupt request before execution of the ISR completes or another interrupt request will be generated.

8.3.3. Interrupt Priorities

Each interrupt source can be individually programmed to one of two priority levels: low or high. A low priority interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt cannot be preempted. Each interrupt has an associated interrupt priority bit in an SFR (IP or EIP1) used to configure its priority level. Low priority is the default. If two interrupts are recognized simultaneously, the interrupt with the higher priority is serviced first. If both interrupts have the same priority level, a fixed priority order is used to arbitrate, given in Table 8.4.

8.3.4. Interrupt Latency

Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are sampled and priority decoded each system clock cycle. Therefore, the fastest possible response time is 5 system clock cycles: 1 clock cycle to detect the interrupt and 4 clock cycles to complete the LCALL to the ISR. If an interrupt is pending when a RETI is executed, a single instruction is executed before an LCALL is made to service the pending interrupt. Therefore, the maximum response time for an interrupt (when no other interrupt is currently being serviced or the new interrupt is of greater priority) occurs when the CPU is performing an RETI instruction followed by a DIV as the next instruction. In this case, the response time is 18 system clock cycles: 1 clock cycle to detect the interrupt, 5 clock cycles to execute the RETI, 8 clock cycles to complete the DIV instruction and 4 clock cycles to execute the LCALL to the ISR. If the CPU is executing an ISR for an interrupt with equal or higher priority, the new interrupt will not be serviced until the current ISR completes, including the RETI and following instruction.

Interrupt Source Interrupt Priority Vector Order Pending Flag		Bit addressable?	Cleared by HW?	Enable Flag	Priority Control		
Reset	0x0000	Тор	None	N/A	N/A	Always Enabled	Always Highest
External Interrupt 0 (/INT0)	0x0003	0	IE0 (TCON.1)	Y	Y	EX0 (IE.0)	PX0 (IP.0)
Timer 0 Overflow	0x000B	1	TF0 (TCON.5)	Y	Y	ET0 (IE.1)	PT0 (IP.1)
External Interrupt 1 (/INT1)	0x0013	2	IE1 (TCON.3)	Y	Y	EX1 (IE.2)	PX1 (IP.2)
Timer 1 Overflow	0x001B	3	TF1 (TCON.7)	Y	Y	ET1 (IE.3)	PT1 (IP.3)
UART0	0x0023	4	RI0 (SCON0.0) TI0 (SCON0.1)	Y	Ν	ES0 (IE.4)	PS0 (IP.4)
Timer 2 Overflow	0x002B	5	TF2H (TMR2CN.7) TF2L (TMR2CN.6)	Y	Ν	ET2 (IE.5)	PT2 (IP.5)
SPI0	0x0033	6	SPIF (SPI0CN.7) WCOL (SPI0CN.6) MODF (SPI0CN.5) RXOVRN (SPI0CN.4)	Y	N	ESPI0 (IE.6)	PSPI0 (IP.6)
SMB0	0x003B	7	SI (SMB0CN.0)	Y	Ν	ESMB0 (EIE1.0)	PSMB0 (EIP1.0)
RESERVED	0x0043	8	N/A	N/A	N/A	N/A	N/A
ADC0 Window Compare	0x004B	9	ADOWINT (ADC0CN.3)	Y	Ν	EWADC0 (EIE1.2)	PWADC0 (EIP1.2)
ADC0 Conversion Complete	0x0053	10	AD0INT (ADC0CN.5)	Y	Ν	EADC0 (EIE1.3)	PADC0 (EIP1.3)
Programmable Counter Array	0x005B	11	CF (PCA0CN.7) CCFn (PCA0CN.n)	Y	Ν	EPCA0 (EIE1.4)	PPCA0 (EIP1.4)
Comparator0	0x0063	12	CP0FIF (CPT0CN.4) CP0RIF (CPT0CN.5)	N	N	ECP0 (EIE1.5)	PCP0 (EIP1.5)
Comparator1	0x006B	13	CP1FIF (CPT1CN.4) CP1RIF (CPT1CN.5)	N	Ν	ECP1 (EIE1.6)	PCP1 (EIP1.6)
Timer 3 Overflow	0x0073	14	TF3H (TMR3CN.7) TF3L (TMR3CN.6)	Ν	Ν	ET3 (EIE1.7)	PT3 (EIP1.7)

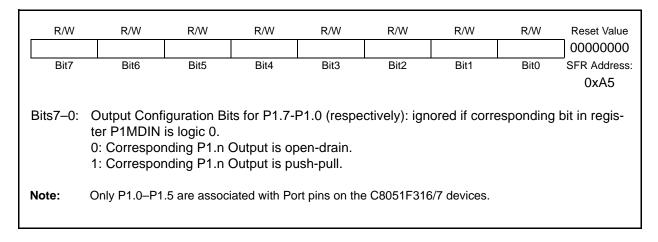
Table 8.4. Interrupt Summary

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
PT3	PCP1	PCP0	PCP0	PADC0	PWADC0	Reserved	PSMB0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xF6
Bit7:	PT3: Timer 3	8 Interrupt F	Priority Con	trol				
Bitti	This bit sets				ot.			
	0: Timer 3 in				•••			
	1: Timer 3 in							
Bit6:	PCP1: Com	•	• •		ontrol.			
	This bit sets	· ·	, ·					
	0: CP1 interi							
	1: CP1 inter							
Bit5:	PCP0: Com				ontrol.			
	This bit sets	the priority	of the CP0	interrupt.				
	0: CP0 interi	upt set to lo	ow priority I	evel.				
	1: CP0 inter	upt set to h	igh priority	level.				
Bit4:	PPCA0: Pro	grammable	Counter A	rray (PCA0) Interrupt P	riority Contro	ol.	
	This bit sets							
	0: PCA0 inte							
	1: PCA0 inte		• •					
Bit3:	PADC0 ADC							
	This bit sets							
	0: ADC0 Co		•					
DVA	1: ADC0 Co		•		• •			
Bit2:	PWADC0: A		•			ontrol.		
	This bit sets							
	0: ADC0 Wir							
D:14.	1: ADC0 Wir				evel.			
Bit1:	RESERVED				trol			
Bit0:	PSMB0: SM This bit sets	•	, ·					
	0: SMB0 inte							
	1: SMB0 inte							
		mupt set to	nigh phòn	iy level.				

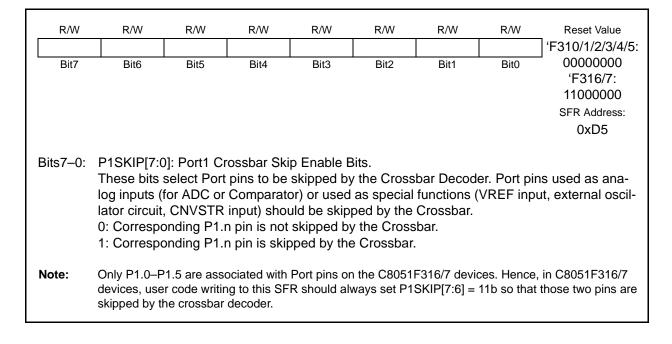
SFR Definition 8.10. EIP1: Extended Interrupt Priority 1

SFR Definition 9.2. RSTSRC: Reset Source

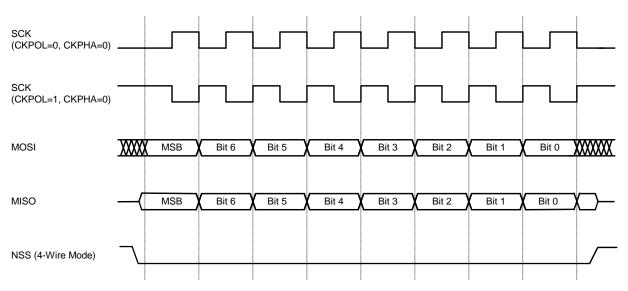
R	R	R/W	R/W	R	R/W	R/W	R	Reset Valu
-	FERROR	CORSEF	SWRSF	WDTRSF	MCDRSF	PORSF	PINRSF	Variable
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							SFR Address	:0xEF
Bit7:	UNUSED. R	$aad = 0 M_{\rm H}$	rito - don't	ooro				
Bit6:	FERROR: FI			care.				
	0: Source of			lash read/w	rite/erase er	ror		
	1: Source of							
Bit5:	CORSEF: Co							
	0: Read: Sou	•			-	: Compara	tor0 is not a	reset
	source.							
	1: Read: Sou	urce of last	reset was (Comparator	0. Write: Co	omparator0	is a reset s	ource
	(active-low).							
Bit4:	SWRSF: Sof							
	0: Read: Sou							
Bit3:	1: Read: Sou WDTRSF: W				KOF DIL WI	ite: Forces	a system re	eset.
ກເວ.	0: Source of	-		-				
	1: Source of				•			
Bit2:	MCDRSF: M							
	0: Read: Sou	-		-	g Clock Det	ector timed	out. Write: N	lissing
	Clock Detect				0			0
	1: Read: Sou	urce of last	reset was a	a Missing C	lock Detecto	or timeout.	Write: Miss	ing Clock
	Detector ena			-	clock condit	ion is dete	cted.	
Bit1:	PORSF: Pov			•				
	This bit is se							
	monitor as a			-		_		is enable
	and stabilize							
	0: Read: Las	st reset was	not a pow	er-on or V _{DI}	_C monitor re	set. Write:	V _{DD} monito	or is not a
	reset source							
	1: Read: Las				nitor reset; a	all other res	set flags inde	eterminate
	Write: V _{DD} r			ce.				
BitO:	PINRSF: HW		· ·	_				
	0: Source of							
	1: Source of	last reset w	/as RST pii	า.				
Note:	For bits that a read-modify-							



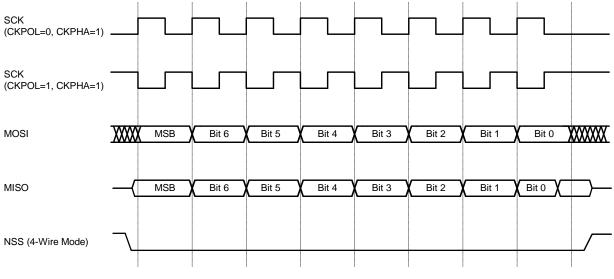
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
CP1AE	-	CP0AE	CP0E	SYSCKE	SMB0E	SPI0E	URTOE	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
Ditt	Bito	Dito	DILT	Dito	DILZ	BRI	Dito	0xE1			
Bit7:	CP1AE: Cor	nparator1 A	synchrono	us Output F	nable						
		•									
	0: Asynchronous CP1 unavailable at Port pin. 1: Asynchronous CP1 routed to Port pin.										
Bit6:	CP1E: Com										
	0: CP1 unav		•								
	1: CP1 route										
Bit5:	CP0AE: Cor	nparator0 [.] A	synchrono	us Output E	nable						
	0: Asynchro	nous CP0 u	navailable	at Port pin.							
	1: Asynchronous CP0 routed to Port pin.										
Bit4:	CP0E: Comparator0 Output Enable										
	0: CP0 unavailable at Port pin.										
	1: CP0 route	ed to Port pi	n.								
Bit3:	SYSCKE: /SYSCLK Output Enable										
	0: /SYSCLK unavailable at Port pin.										
	1: /SYSCLK			oin.							
Bit2:	SMB0E: SMBus I/O Enable										
	0: SMBus I/O unavailable at Port pins.										
	1: SMBus I/0		Port pins.								
Bit1:	SPI0E: SPI I										
	0: SPI I/O ur		•								
	1: SPI I/O ro										
Bit0:	URT0E: UA										
	0: UART I/O										
	1: UART TX	0, RX0 rout	ed to Port p	oins P0.4 an	d P0.5.						


SFR Definition 13.1. XBR0: Port I/O Crossbar Register 0

SFR Definition 13.9. P1MDOUT: Port1 Output Mode



SFR Definition 13.10. P1SKIP: Port1 Skip



C8051F310/1/2/3/4/5/6/7

16.6. SPI Special Function Registers

SPI0 is accessed and controlled through four special function registers in the system controller: SPI0CN Control Register, SPI0DAT Data Register, SPI0CFG Configuration Register, and SPI0CKR Clock Rate Register. The four special function registers related to the operation of the SPI0 Bus are described in the following register definitions.

R	R/W	R/W	R/W	R	R	R	R	Reset Value			
SPIBSY	MSTEN	CKPHA	CKPOL	SLVSEL	NSSIN	SRMT	RXBMT	00000111			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
							SFR Address	s: 0xA1			
D-											
	SPIBSY: SP		• /					,			
	This bit is se			transfer is	in progress	(Master or	slave Mode	e).			
	MSTEN: Master Mode Enable.										
	0: Disable m				e.						
	1: Enable ma		•	s a master.							
	CKPHA: SPI										
	This bit cont										
	0: Data cent										
	1: Data centered on second edge of SCK period.*										
	CKPOL: SPI0 Clock Polarity.										
	This bit controls the SPI0 clock polarity.										
	0: SCK line low in idle state.										
	1: SCK line high in idle state.										
	SLVSEL: Sla										
	This bit is set to logic 1 whenever the NSS pin is low indicating SPI0 is the selected slave. It										
	is cleared to logic 0 when NSS is high (slave not selected). This bit does not indicate the										
	instantaneou					ed version of	of the pin in	put.			
	NSSIN: NSS Instantaneous Pin Input (read only).										
	This bit mimics the instantaneous value that is present on the NSS port pin at the time that										
	the register is read. This input is not de-glitched.										
	SRMT: Shift										
	This bit will be set to logic 1 when all data has been transferred in/out of the shift register,										
	and there is no new information available to read from the transmit buffer or write to the										
	receive buffer. It returns to logic 0 when a data byte is transferred to the shift register from										
	the transmit buffer or by a transition on SCK.										
	NOTE: SRMT = 1 when in Master Mode.										
Bit 0:	RXBMT: Red	ceive Buffer	Empty (Va	lid in Slave	Mode, read	only).					
	This bit will be set to logic 1 when the receive buffer has been read and contains no new										
	information. If there is new information available in the receive buffer that has not been read,										
	this bit will return to logic 0.										
	NOTE: RXB	MT = 1 whe	en in Maste	r Mode.							
								ata on MISO is			
	sampled one				bit, to provide	e maximum :	settling time	for the slave			
	device. See T	able 16.1 10	uming parar	neters.							

SFR Definition 16.1. SPI0CFG: SPI0 Configuration

SFR Definition 16.2. SPI0CN: SPI0 Control

R/W SPIF	R/W WCOL	R/W MODF	R/W RXOVRN	R/W NSSMD1	R/W	R TXBMT	R/W SPIEN	Reset Value 00000110		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit		
							SFR Addres	Addressable s: 0xF8		
Bit 7:	SPIF: SPI0 I This bit is se setting this b automatically	t to logic 1 it causes th	by hardwar ne CPU to v	ector to the	SPI0 interru	upt service				
Bit 6:	automatically cleared by hardware. It must be cleared by software. WCOL: Write Collision Flag. This bit is set to logic 1 by hardware (and generates a SPI0 interrupt) to indicate a write to the SPI0 data register was attempted while a data transfer was in progress. It must be cleared by software.									
Bit 5:	MODF: Mode Fault Flag. This bit is set to logic 1 by hardware (and generates a SPI0 interrupt) when a master mode collision is detected (NSS is low, MSTEN = 1, and NSSMD[1:0] = 01). This bit is not automatically cleared by hardware. It must be cleared by software.									
Bit 4:	RXOVRN: Receive Overrun Flag (Slave Mode only). This bit is set to logic 1 by hardware (and generates a SPI0 interrupt) when the receive buf- fer still holds unread data from a previous transfer and the last bit of the current transfer is shifted into the SPI0 shift register. This bit is not automatically cleared by hardware. It must be cleared by software.									
Bits 3–2:	NSSMD1–N Selects betw (See Section Slave Mode 00: 3-Wire S 01: 4-Wire S 1x: 4-Wire S assume the	SSMD0: SI reen the fol n "16.2. SP Operation lave or 3-w lave or Mul ingle-Maste	lowing NSS PIO Master I " on page ire Master I ti-Master M er Mode. NS	operation (Mode Oper 177). Mode. NSS ode (Defau	ation" on pa signal is not lt). NSS is a	t routed to a lways an ir	a port pin. put to the o	device.		
Bit 1:	TXBMT: Tran This bit will b data in the tr indicating that	e set to log ansmit buff	gic 0 when r er is transfe	erred to the	SPI shift reg	jister, this b				
Bit 0:	SPIEN: SPIC This bit enab 0: SPI disabl 1: SPI enabl	les/disable ed.	s the SPI.							

SFR Definition 17.3. CKCON: Clock Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
ТЗМН	T3ML	T2MH	T2ML	T1M	TOM	SCA1	SCA0	0000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Addres			
								0x8E			
D:47.											
Bit7:	T3MH: Time				2 high hyte	if Timor 2	ia configur	od in onlit Q			
	This bit selects the clock supplied to the Timer 3 high byte if Timer 3 is configured in split 8 bit timer mode. T3MH is ignored if Timer 3 is in any other mode.										
	0: Timer 3 high byte uses the clock defined by the T3XCLK bit in TMR3CN.										
	1: Timer 3 high byte uses the system clock.										
Bit6:	T3ML: Timer 3 Low Byte Clock Select.										
	This bit selects the clock supplied to Timer 3. If Timer 3 is configured in split 8-bit timer										
	mode, this bit selects the clock supplied to the lower 8-bit timer.										
	0: Timer 3 low byte uses the clock defined by the T3XCLK bit in TMR3CN.										
Bit5:	1: Timer 3 low byte uses the system clock.										
DIIJ.	T2MH: Timer 2 High Byte Clock Select. This hit selects the clock supplied to the Timer 2 high byte if Timer 2 is configured in split 8-										
	This bit selects the clock supplied to the Timer 2 high byte if Timer 2 is configured in split 8- bit timer mode. T2MH is ignored if Timer 2 is in any other mode.										
	0: Timer 2 high byte uses the clock defined by the T2XCLK bit in TMR2CN.										
	1: Timer 2 high byte uses the system clock.										
Bit4:	T2ML: Timer 2 Low Byte Clock Select.										
	This bit selects the clock supplied to Timer 2. If Timer 2 is configured in split 8-bit timer										
	mode, this bit selects the clock supplied to the lower 8-bit timer.										
	0: Timer 2 low byte uses the clock defined by the T2XCLK bit in TMR2CN.1: Timer 2 low byte uses the system clock.										
Bit3:				TI CIOCK.							
Dito.	T1M: Timer 1 Clock Select. This select the clock source supplied to Timer 1. T1M is ignored when C/T1 is set to logic 1										
	0: Timer 1 uses the clock defined by the prescale bits, SCA1-SCA0.										
	1: Timer 1 uses the system clock.										
Bit2:	T0M: Timer 0 Clock Select.										
	This bit selects the clock source supplied to Timer 0. TOM is ignored when C/T0 is set to										
	0: Counter/Timer 0 uses the clock defined by the prescale bits, SCA1-SCA0.1: Counter/Timer 0 uses the system clock.										
Bits1–0:	SCA1-SCA0: Timer 0/1 Prescale Bits.										
Ditor 0.	These bits control the division of the clock supplied to Timer 0 and/or Timer 1 if configured										
	to use prescaled clock inputs.										
	0044				Duccos						
	SCA1		A0			led Clock	. 10				
	0		D 1			k divided by					
	0					ck divided b k divided b					
	1		1			ck divided b					
	· ·	ا الحاجة مام الم	<u>'</u>								
			י פי א עמ הסה	whether	with the sys	tom clock or	nd the extern	hal			

17.2. Timer 2

Timer 2 is a 16-bit timer formed by two 8-bit SFRs: TMR2L (low byte) and TMR2H (high byte). Timer 2 may operate in 16-bit auto-reload mode or (split) 8-bit auto-reload mode. The T2SPLIT bit (TMR2CN.3) defines the Timer 2 operation mode.

Timer 2 may be clocked by the system clock, the system clock divided by 12, or the external oscillator source divided by 8. The external clock mode is ideal for real-time clock (RTC) functionality, where the internal oscillator drives the system clock while Timer 2 (and/or the PCA) is clocked by an external precision oscillator. Note that the external oscillator source divided by 8 is synchronized with the system clock.

17.2.1. 16-bit Timer with Auto-Reload

When T2SPLIT (TMR2CN.3) is zero, Timer 2 operates as a 16-bit timer with auto-reload. Timer 2 can be clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 2 reload registers (TMR2RLH and TMR2RLL) is loaded into the Timer 2 register as shown in Figure 17.4, and the Timer 2 High Byte Overflow Flag (TMR2CN.7) is set. If Timer 2 interrupts are enabled (if IE.5 is set), an interrupt will be generated on each Timer 2 overflow. Additionally, if Timer 2 interrupts are enabled and the TF2LEN bit is set (TMR2CN.5), an interrupt will be generated each time the lower 8 bits (TMR2L) overflow from 0xFF to 0x00.

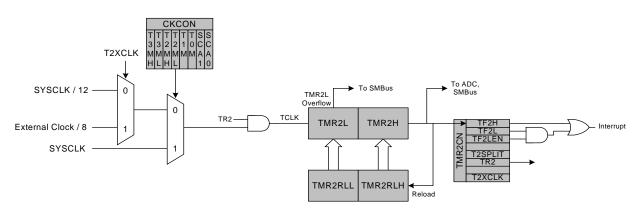


Figure 17.4. Timer 2 16-Bit Mode Block Diagram

19.3. PCA Counter

On "REV A" devices, if the main PCA counter (PCA0H : PCA0L) overflows during the execution phase of a read-modify-write instruction (bit-wise SETB or CLR, ANL, ORL, XRL) that targets the PCA0CN register, the CF (Counter Overflow) bit will not be set. An example software work-around is as follows:

- Step 1. Disable global interrupts (EA = 0).
- Step 2. Read PCA0L. This will latch the value of PCA0H.
- Step 3. Read PCA0H, saving the value.
- Step 4. Execute the bit-wise operation on CCFn (for example, CLR CCF0, or CCF0 = 0;).
- Step 5. Read PCA0L.
- Step 6. Read PCA0H, saving the value.
- Step 7. If the value of PCA0H read in Step 3 is 0xFF and the value for PCA0H read in Step 6 is 0x00, then manually set the CF bit in software (for example, SETB CF, or CF = 1;).
- Step 8. Re-enable interrupts (EA = 1).

This behavior is not present on "REV B" and later devices. Software written for "REV A" devices will run on "REV B" and later devices without modification.

