

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	24MHz
Connectivity	EBI/EMI, I ² C, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/nuvoton-technology-corporation-america/n79e352ralg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

11.	RESE	T CONDITIONS	69
	11.1	Sources of reset	69
	11.2	Reset State	69
12.	PROC	GRAMMABLE TIMERS/COUNTERS	71
	12.1	Timer/Counters 0 & 1	71
	12.2	Time-base Selection	71
	12.3	Timer/Counter 2	74
13.	NVM	MEMORY	78
	13.1	Operation	78
14.	WAT	CHDOG TIMER	80
15.	UART	SERIAL PORT	82
	15.1	Mode 0	
	15.2	Mode 1	83
	15.3	Mode 2	84
	15.4	Mode 3	87
	15.5	Framing Error Detection	88
	15.6	Multiprocessor Communications	88
16.	I2C S	ERIAL PORT	90
	16.1	I2C Bus	90
	16.2	The I2C Control Registers:	91
	16.3	Modes of Operation	93
	16.4	Data Transfer Flow in Five Operating Modes	94
17.	TIME	D ACCESS PROTECTION	. 100
18.	INTEF	RRUPTS	. 102
	18.1	Interrupt Sources	. 102
	18.2	Priority Level Structure	. 103
	18.3	Interrupt Response Time	. 105
	18.4	Interrupt Inputs	. 105
19.	KEYB	OARD FUNCTION	. 106
20.	INPU	T CAPTURE	. 108
21.	PULS	E WIDTH MODULATED OUTPUTS (PWM)	. 110
22.	I/O P0	DRT	. 111
	22.1	Quasi-Bidirectional Output Configuration	
	22.2	Open Drain Output Configuration	. 112
	22.3	Push-Pull Output Configuration	. 113
	22.4	Input Only Mode	. 113

nuvoTon

	SMOD	SMOD0	BOF	-	GF1	GF0	PD	IDL			
Mnem	Inemonic: PCON Address: 87h										
BIT	NAME	FUNCTION									
7	SMOD	1: This bit	1: This bit doubles the serial port baud rate in mode 1, 2, and 3.								
6	SMODO		ng Error De ard 8052 fun		able. SCO	N.7 (SM0/F	E) bit is i	used as SM0			
0	SMOD0	1: Framing Error Detection Enable. SCON.7 (SM0/FE) bit is used to reflect Frame Error (FE) status flag.						d to reflect as			
		0: Cleared	by software	Э.		~(1)	0				
5	BOF	1: Set aut power		hen a brow	nout reset	or interrupt h	as occurre	ed. Also set at			
4	-	Reserved					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- Ca			
3	GF1	General p	urpose user	flags.			N	502			
2	GF0	General p	urpose user	flags.				YON CO			
1	PD		PU goes into d and progra				mode, all	the clocks are			
0	IDL	stoppe	d, so progra	m executior	n is frozen.		k to the se	ks CPU clock erial, timer and ting.			

TIMER CONTROL

Bit:	7	6	5	4	3	2	1	0
	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
Mnem	onic: TCON						A	ddress: 88h

BIT	NAME	FUNCTION
7	TF1	Timer 1 Overflow Flag. This bit is set when Timer 1 overflows. It is cleared automatically when the program does a timer 1 interrupt service routine. Software can also set or clear this bit.
6	TR1	Timer 1 Run Control. This bit is set or cleared by software to turn timer/counter on or off.
5	TF0	Timer 0 Overflow Flag. This bit is set when Timer 0 overflows. It is cleared automatically when the program does a timer 0 interrupt service routine. Software can also set or clear this bit.
4	TR0	Timer 0 Run Control. This bit is set or cleared by software to turn timer/counter on or off.
3	IE1	Interrupt 1 Edge Detect Flag: Set by hardware when an edge/level is detected on $\overline{INT1}$. This bit is cleared by hardware when the service routine is vectored to only if the interrupt was edge triggered. Otherwise it follows the inverse of the pin.
2	IT1	Interrupt 1 Type Control. Set/cleared by software to specify falling edge/ low level triggered external inputs.
1	IE0	Interrupt 0 Edge Detect Flag. Set by hardware when an edge/level is detected on

nuvoTon

	NAME	FUNCTIC	DN		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			
7-0	TL0.[7:0]	Timer 0 L	_SB.		- AR			
TIME	R 1 LSB							
Bit:	7	6	5	4	3	2	1	0
	TL1.7	TL1.6	TL1.5	TL1.4	TL1.3	TL1.2	TL1.1	TL1.0
Mnem	onic: TL1							Address: 8B
BIT	NAME	FUNCTIC	N			Top.	20	
7-0	TL1.[7:0]	Timer 1 L	_SB.			277	A	
TIME	R 0 MSB							
Bit:	7	6	5	4	3	2	3/1	0
	TH0.7	TH0.6	TH0.5	TH0.4	4 TH0.3	TH0.2	TH0.1	TH0.0
Mnem	onic: TH0							Address: 8
BIT	NAME	FUNCTIO	ON					2020
7-0	TH0.[7:0]	Timer 0	MSB.					CO.
TIMEF	R 1 MSB							0
Bit:	7	6	5	4	3	2	1	0
	TH1.7	TH1.6	TH1.5	TH1.4	4 TH1.3	TH1.2	TH1.1	TH1.0
Mnem	onic: TH1							Address: 8D
Mnem BIT	onic: TH1	FUNCTIO	DN					Address: 8D
		FUNCTIC						Address: 8D
BIT 7-0	NAME TH1.[7:0]	Timer 1 I						Address: 8D
BIT 7-0	NAME	Timer 1 I		4	3	2	1	Address: 8D
BIT 7-0 CLOC	NAME TH1.[7:0]	Timer 1 I	MSB.	4 T1M	3 TOM	2 MD2	1 MD1	
BIT 7-0 CLOC Bit:	NAME TH1.[7:0] K CONTRO 7	Timer 1 I 6 WD0	MSB. 5					0
BIT 7-0 CLOC Bit:	NAME TH1.[7:0] K CONTRO 7 WD1	Timer 1 I 6 WD0	MSB. 5 T2M					0 MD0
BIT 7-0 CLOC Bit: Mnem	NAME TH1.[7:0] K CONTRO 7 WD1 onic: CKCOI	Timer 1 I 6 WD0 N FUNCTIO Watchdo the wato	MSB. 5 T2M DN Dg timer mo	T1M		MD2 bits determ	MD1	0 MD0 Address: 8E
BIT 7-0 CLOC Bit: Mnem	NAME TH1.[7:0] K CONTRO 7 WD1 onic: CKCOI	Timer 1 I 6 WD0 N FUNCTIO Watchdo the wato	MSB. 5 T2M DN Dg timer mo	T1M	T0M ct bits: These our time-out op	MD2 bits determ bitons the r	MD1	0 MD0 Address: 8E
BIT 7-0 CLOC Bit: Mnem	NAME TH1.[7:0] K CONTRO 7 WD1 onic: CKCOI	Timer 1 I 6 WD0 N FUNCTIO Watchdo the wato	MSB. 5 T2M DN Dg timer mo chdog timer an the interr	T1M ode sele : In all fo	T0M ct bits: These our time-out op -out period.	MD2 bits determ otions the re e-out Re	MD1 nine the time eset time-out	0 MD0 Address: 8E
BIT 7-0 CLOC Bit: Mnem BIT	NAME TH1.[7:0] K CONTRO 7 WD1 onic: CKCOI NAME	Timer 1 I 6 WD0 N FUNCTIO Watchdo the wato	MSB. 5 T2M DN Dg timer mo chdog timer an the interr WD1	Dde sele c. In all fo upt time WD0	T0M ct bits: These our time-out op -out period. Interrupt time	MD2 bits determ ptions the m e-out Re	MD1 nine the time eset time-out set time-out	0 MD0 Address: 8E
BIT 7-0 CLOC Bit: Mnem BIT	NAME TH1.[7:0] K CONTRO 7 WD1 onic: CKCOI NAME	Timer 1 I 6 WD0 N FUNCTIO Watchdo the wato	MSB. 5 T2M DN Dg timer mo chdog timer an the interr WD1 0	Dde sele . In all fo upt time WD0 0	T0M ct bits: These our time-out op -out period. Interrupt time 2 ⁶	MD2 bits determ ptions the r	MD1 hine the time eset time-out set time-out $2^{6} + 512$	0 MD0 Address: 8E

	-	NVMADD R.6	NVMADD R.5	NVMADD R.4	NVMADD R.3	NVMADD R.2	NVMADD R.1	NVMADD R.0
Mnem	onic: NVMA	DDR			No.		Ad	ddress: C6h
BIT	NAME FUNCTION							
7	-	Re	served		CO.	Sec. 1		
6~0	NVMADDF	R.[6:0] Th	e NVM addre	ess:	N/	NY.		
		The register indicates NVM data memory address on On- memory space.				Chip code		
ТІМЕГ	D ACCESS					-m	5	
Bit:	7	6	5	4	3	2	1. 0	0
	TA.7	TA.6	TA.5	TA.4	TA.3	TA.2	TA.1	TA.0
Mnem	ionic: TA						Ad	ddress: C7h
BIT	NAME	FUNCTIO	N				0	20
		The Timed Access register: The Timed Access register controls the access to protected bits. To access protected bits, the user must first write AAH to the TA. This must be immediately followed by a write of 55H to TA. Now a window is opened in the protected bits for three machine cycles, during which the user can write to these bits.						
7-0	TA.[7:0]	The Time protected followed	ed Access r bits, the use by a write of	er must first 55H to TA.	write AAH to Now a wino	o the TA. Th dow is opene	is must be in ed in the pro	mmediately otected bits
	TA.[7:0]	The Time protected followed for three	ed Access r bits, the use by a write of	er must first 55H to TA.	write AAH to Now a wino	o the TA. Th dow is opene	is must be in ed in the pro	mmediately otected bits
		The Time protected followed for three	ed Access r bits, the use by a write of	er must first 55H to TA.	write AAH to Now a wino	o the TA. Th dow is opene	is must be in ed in the pro	mmediately otected bits
TIMEF	R 2 CONTRO	The Time protected followed for three	ed Access r bits, the use by a write of machine cyc	er must first 55H to TA. les, during w	write AAH to Now a wind hich the use	o the TA. Th dow is open er can write t	is must be in ed in the pro o these bits.	mmediately otected bits
TIMEF Bit:	7 7	The Timprotected followed for three DL 6 EXF2	ed Access r bits, the use by a write of machine cyc	er must first 55H to TA. les, during w 4	write AAH to Now a wino hich the use	o the TA. Th dow is opene er can write t	is must be in ed in the pro- o these bits. 1 $C / \overline{T2}$	nmediately ptected bits

		Топетной				
		Timer 2 overflow flag:				
7	TF2	Timer 2 overflow flag: This bit is set when Timer 2 overflows. It is also set when the count is equal to the capture register in down count mode. It can be set only if RCLK and TCLK are both 0. It is cleared only by software. Software can also set or clear this bit.				
6	EXF2	Timer 2 External Flag: A negative transition on the T2EX pin (P1.1) or timer 2 overflow will cause this flag to set based on the CP/ $\overline{RL2}$, EXEN2 and DCEN bits. If set by a negative transition, this flag must be cleared by software. Setting this bit in software or detection of a negative transition on T2EX pin will force a timer interrupt if enabled.				
	and 4	Receive Clock Flag: This bit determines the serial port time-base when receiving				
5	RCLK	data in serial modes 1 or 3. If it is 0, then timer 1 overflow is used for baud rate generation, otherwise timer 2 overflow is used. Setting this bit forces timer 2 in baud rate generator mode.				
		- 40 -				
	No.	7 TF2 6 EXF2				

Bit:	7	6	5	4	3	2	1	0
	CCH0.7	CCH0.6	CCH0.5	CCH0.4	CCH0.3	CCH0.2	CCH0.1	CCH0.0
Mnem	nonic: CCH0)			april 1			Address: E
BIT	NAME	FUNCT	ION		-	N.		
7-0	CCH0	Capture	e 0 high byte	э.	6	CAX.	26	
IINTE			GISTER 1			Val.	225	
Bit:	7	6	5	4	3	2	10	0
	ECPTF	EBO	-	EWDI	-	- 0	EKB	El2
Mnem	nonic: EIE					<u></u>	R X	Address: E
BIT	NAME	FUNCT	ION				- 493	0.0
7	ECPTF	0: Disa	ble capture	interrupt.			-4	0
1	ECPIF	1: Enal	ble capture	interrupt.				
		Enable	brownout in	nterrupt.				SS)
6	EBO	0: Disa	ble brownou	ut interrupt.				
		1: Enal	ble brownou	it interrupt.				1.2
5	-	Reserv	/ed.					
4	EWDI	0: Disa	ble Watchd	log Timer Int	errupt.			
4		1: Enal	ble Watchdo	og Timer Inte	errupt.			
3~2	-	Reserv	ed.					
1	EKB	0: Disa	ble Keypad	Interrupt.				
	END	1: Enal	ble Keypad	Interrupt.				
0	EI2	0: Disal	ble I2C Inter	rrupt.				
0		1: Enat	ole I2C Inter	rupt.				
KEYE	BOARD LE	VEL						
Bit:		6	5	4	3	2	1	0
	KBL.7	KBL.6	KBL.5	6 KBL.4	KBL.3	KBL.2	KBL.1	KBL.0
Mnem	nonic: KBL							Address: E
BIT	NAME	FUNCT	ION					
1	22.0	Keyboa	rd trigger lev	vel.				
7~0	KBL.7~0	0: Low	level trigger.	.x pin.				
1~0	NDL.7~0	1: High	level trigger	r on KBI.x pi	n.			
		[x = 0-7	Ra					
PORT	ГS SHMITT	REGISTE	RUN					
Bit:	7	6	5	4	3	2	1	0

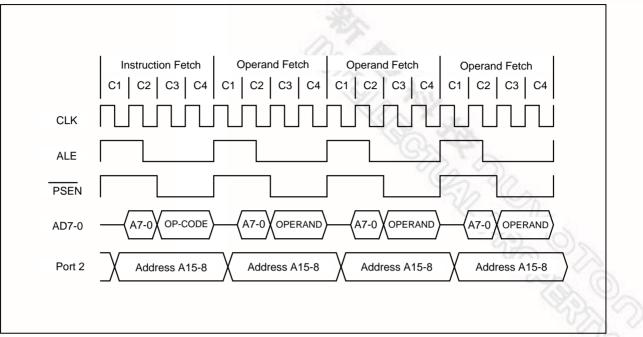


Figure 9-4: Four Cycle Instruction Timing

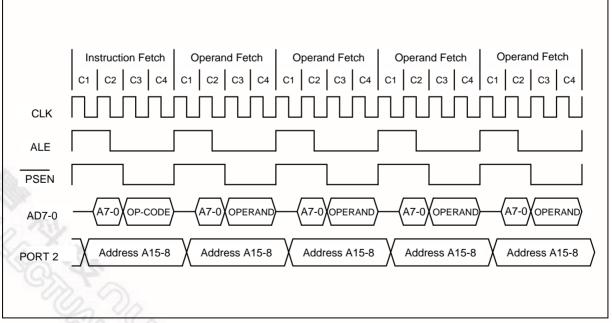


Figure 9-5: Five Cycle Instruction Timing

nuvoTon

Reset does not affect the on-chip RAM, however, so RAM is preserved as long as VDD remains above approximately 2V, the minimum operating voltage for the RAM. If VDD falls below 2V, the RAM contents are also lost. In either case, the stack pointer is always reset, so the stack contents are lost.

The WDCON SFR bits are set/cleared in reset condition depending on the source of the reset.

	External reset	Watchdog reset	Power on reset
WDCON	0xxx0x00b	0xxx0100b	01xx0000b

The POR bit WDCON.6 is set only by the power on reset. WTRF bit WDCON.2 is set when the Watchdog timer causes a reset. A power on reset will also clear this bit. The EWRST bit WDCON.1 is cleared by all reset. This disables the Watchdog timer resets.

All the bits in this SFR have unrestricted read access. WDRUN, POR, EWRST, WDIF and WDCLR require Timed Access procedure to write. The remaining bits have unrestricted write accesses.

12. PROGRAMMABLE TIMERS/COUNTERS

The N79E352(R) has three 16-bit programmable timer/counters and one programmable Watchdog timer. The Watchdog timer is operationally quite different from the other two timers.

12.1 Timer/Counters 0 & 1

Each of these Timer/Counters has two 8 bit registers which form the 16 bit counting register. For Timer/Counter 0 they are TH0, the upper 8 bits register, and TL0, the lower 8 bit register. Similarly Timer/Counter 1 has two 8 bit registers, TH1 and TL1. The two can be configured to operate either as timers, counting machine cycles or as counters counting external inputs.

When configured as a "Timer", the timer counts clock cycles. The timer clock can be programmed to be thought of as 1/12 of the system clock or 1/4 of the system clock. In the "Counter" mode, the register is incremented on the falling edge of the external input pin, T0 in case of Timer 0, and T1 for Timer 1. The T0 and T1 inputs are sampled in every machine cycle at C4. If the sampled value is high in one machine cycle and low in the next, then a valid high to low transition on the pin is recognized and the count register is incremented. Since it takes two machine cycles to recognize a negative transition on the pin, the maximum rate at which counting will take place is 1/24 of the master clock frequency. In either the "Timer" or "Counter" mode, the count register will be updated at C3. Therefore, in the "Timer" mode, the recognized negative transition on pin T0 and T1 can cause the count register value to be updated only in the machine cycle following the one in which the negative edge was detected.

The "Timer" or "Counter" function is selected by the " C/\overline{T} " bit in the TMOD Special Function Register. Each Timer/Counter has one selection bit for its own; bit 2 of TMOD selects the function for Timer/Counter 0 and bit 6 of TMOD selects the function for Timer/Counter 1. In addition each Timer/Counter can be set to operate in any one of four possible modes. The mode selection is done by bits M0 and M1 in the TMOD SFR.

12.2 Time-base Selection

The N79E352(R) gives the user two modes of operation for the timer. The timers can be programmed to operate like the standard 8051 family, counting at the rate of 1/12 of the clock speed. This will ensure that timing loops on the N79E352(R) and the standard 8051 can be matched. This is the default mode of operation of the N79E352(R) timers. The user also has the option to count in the turbo mode, where the timers will increment at the rate of 1/4 clock speed. This will straight-away increase the counting speed three times. This selection is done by the TOM and T1M bits in CKCON SFR. A reset sets these bits to 0, and the timers then operate in the standard 8051 mode. The user should set these bits to 1 if the timers are to operate in turbo mode.

12.2.1 Mode 0

In Mode 0, the timer/counters act as a 8 bit counter with a 5 bit, divide by 32 pre-scale. In this mode we have a 13 bit timer/counter. The 13 bit counter consists of 8 bits of THx and 5 lower bits of TLx. The upper 3 bits of TLx are ignored.

The negative edge of the clock increments the count in the TLx register. When the fifth bit in TLx moves from 1 to 0, then the count in the THx register is incremented. When the count in THx moves from FFh to 00h, then the overflow flag TFx in TCON SFR is set. The counted input is enabled only if TRx is set and either GATE = 0 or \overline{INTx} = 1. When C/T is set to 0, then it will count clock cycles, and

if C/\overline{T} is set to 1, then it will count 1 to 0 transitions on T0 (P3.4) for timer 0 and T1 (P3.5) for timer 1. When the 13 bit count reaches 1FFFh the next count will cause it to roll-over to 0000h. The timer overflow flag TFx of the relevant timer is set and if enabled an interrupts will occur. Note that when used as a timer, the time-base may be either clock cycles/12 or clock cycles/4 as selected by the bits TxM of the CKCON SFR.

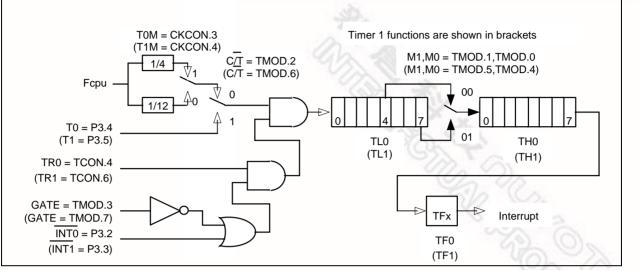


Figure 12-1: Timer/Counter Mode 0 & Mode 1

12.2.2 Mode 1

Mode 1 is similar to Mode 0 except that the counting register forms a 16 bit counter, rather than a 13 bit counter. This means that all the bits of THx and TLx are used. Roll-over occurs when the timer moves from a count of FFFFh to 0000h. The timer overflow flag TFx of the relevant timer is set and if enabled an interrupt will occur. The selection of the time-base in the timer mode is similar to that in Mode 0. The gate function operates similarly to that in Mode 0.

12.2.3 Mode 2

In Mode 2, the timer/counter is in the Auto Reload Mode. In this mode, TLx acts as a 8 bit count register, while THx holds the reload value. When the TLx register overflows from FFh to 00h, the TFx bit in TCON is set and TLx is reloaded with the contents of THx, and the counting process continues from here. The reload operation leaves the contents of the THx register unchanged. Counting is enabled by the TRx bit and proper setting of GATE and INTx pins. As in the other two modes 0 and 1 mode 2 allows counting of either clock cycles (clock/12 or clock/4) or pulses on pin Tn.

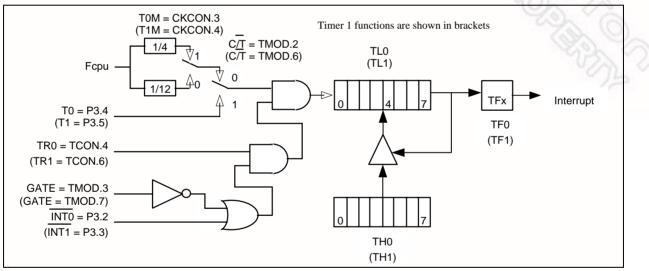


Figure 12-2: Timer/Counter Mode 2

12.2.4 Mode 3

Mode 3 has different operating methods for the two timer/counters. For timer/counter 1, mode 3 simply freezes the counter. Timer/Counter 0, however, configures TL0 and TH0 as two separate 8 bit count registers in this mode. The logic for this mode is shown in the figure. TL0 uses the Timer/Counter 0 control bits C/\overline{T} , GATE, TR0, INT0 and TF0. The TL0 can be used to count clock cycles (clock/12 or clock/4) or 1-to-0 transitions on pin T0 as determined by C/T (TMOD.2). TH0 is forced as a clock cycle counter (clock/12 or clock/4) and takes over the use of TR1 and TF1 from Timer/Counter 1. Mode 3 is used in cases where an extra 8 bit timer is needed. With Timer 0 in Mode 3, Timer 1 can still be used in Modes 0, 1 and 2., but its flexibility is somewhat limited. While its basic functionality is maintained, it no longer has control over its overflow flag TF1 and the enable bit TR1. Timer 1 can still be used as a timer/counter and retains the use of GATE and INT1 pin. In this condition it can be turned on and off by switching it out of and into its own Mode 3. It can also be used as a baud rate generator for the serial port.

16.2 The I2C Control Registers:

The I2C has 1 control register (I2CON) to control the transmit/receive flow, 1 data register (I2DAT) to buffer the Tx/Rx data, 1 status register (I2STATUS) to catch the state of Tx/Rx, recognizable slave address register for slave mode use and 1 clock rate control block for master mode to generate the variable baud rate.

16.2.1 The Address Registers, I2ADDR

I2C port is equipped with one slave address register. The contents of the register are irrelevant when I2C is in master mode. In the slave mode, the seven most significant bits must be loaded with the MCU's own slave address. The I2C hardware will react if the contents of I2ADDR are matched with the received slave address.

The I2C ports support the "General Call" function. If the GC bit is set the I2C port1 hardware will respond to General Call address (00H). Clear GC bit to disable general call function.

When GC bit is set, the I2C is in Slave mode, it can be received the general call address by 00H after Master send general call address to I2C bus, then it will follow status of GC mode. If it is in Master mode, the AA bit must be cleared when it will send general call address of 00H to I2C bus.

16.2.2 The Data Register, I2DAT

This register contains a byte of serial data to be transmitted or a byte which has just been received. The CPU can read from or write to this 8-bit directly addressable SFR while it is not in the process of shifting a byte. This occurs when the bus is in a defined state and the serial interrupt flag (SI) is set. Data in I2DAT remains stable as long as SI bit is set. While data is being shifted out, data on the bus is simultaneously being shifted in; I2DAT always contains the last data byte present on the bus. Thus, in the event of arbitration lost, the transition from master transmitter to slave receiver is made with the correct data in I2DAT.

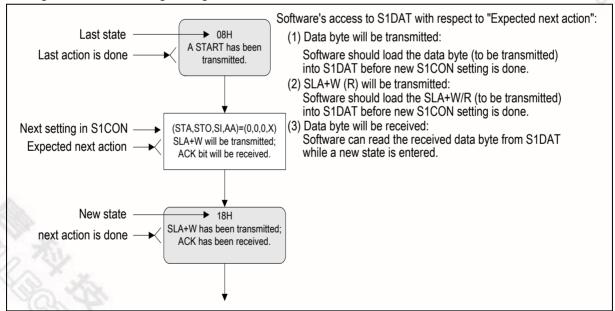
I2DAT and the acknowledge bit form a 9-bit shift register, the acknowledge bit is controlled by the hardware and cannot be accessed by the CPU. Serial data is shifted through the acknowledge bit into I2DAT on the rising edges of serial clock pulses on the SCL line. When a byte has been shifted into I2DAT, the serial data is available in I2DAT, and the acknowledge bit (ACK or NACK) is returned by the control logic during the ninth clock pulse. Serial data is shifted out from I2DAT on the falling edges of SCL clock pulses, and is shifted into I2DAT on the rising edges of SCL clock pulses.

Str.	I2DAT.7 I2DAT.6 I2DAT.	5 I2DAT.4 I2DA ⁻	T.3 I2DAT.2	I2DAT.1 I2DAT.0	
2.3	◀───	shifting direction	on 🚽	•	
Ch S	15				

ηυνοτοη

16.3.3 Slave Receiver Mode

Serial data and the serial clock are received through SDA and SCL. After each byte is received, an acknowledge bit is transmitted. START and STOP conditions are recognized as the beginning and end of a serial transfer. Address recognition is performed by hardware after reception of the slave address and direction bit.


16.3.4 Slave Transmitter Mode

The first byte is received and handled as in the slave receiver mode. However, in this mode, the direction bit will indicate that the transfer direction is reversed. Serial data is transmitted via SDA while the serial clock is input through SCL. START and STOP conditions are recognized as the beginning and end of a serial transfer.

16.4 Data Transfer Flow in Five Operating Modes

The five operating modes are: Master/Transmitter, Master/Receiver, Slave/Transmitter, Slave/Receiver and GC Call. Bits STA, STO and AA in I2CON register will determine the next state of the I2C hardware after SI flag is cleared. Upon complexion of the new action, a new status code will be updated and the SI flag will be set. If the I2C interrupt control bits (EA and EI2) are enable, appropriate action or software branch of the new status code can be performed in the Interrupt service routine.

Data transfers in each mode are shown in the following figures.

*** Legend for the following five figures:

Figure 16-3: Legen for the following four figures

- 94 -

18. INTERRUPTS

N79E352(R) has four priority level interrupts structure with 11 interrupt sources. Each of the interrupt sources has an individual priority bit, flag, interrupt vector and enable bit. In addition, the interrupts can be globally enabled or disabled.

18.1 Interrupt Sources

The External Interrupts INT0 and INT1 can be either edge triggered or level triggered, programmable through bits IT0 and IT1 (SFR TCON). The bits IE0 and IE1 in TCON register are the flags which are checked to generate the interrupt. In the edge triggered mode, the INTx inputs are sampled in every machine cycle. If the sample is high in one cycle and low in the next, then a high to low transition is detected and the interrupts request flag IEx in TCON is set. The flag bit requests the interrupt. Since the external interrupts are sampled every machine cycle, they have to be held high or low for at least one complete machine cycle. The IEx flag is automatically cleared when the service routine is called. If the level triggered mode is selected, then the requesting source has to hold the pin low till the interrupt is serviced. The IEx flag will not be cleared by the hardware on entering the service routine. If the interrupt continues to be held low even after the service routine is completed, then the processor may acknowledge another interrupt request from the same source.

The Timer 0 and 1 Interrupts are generated by the TF0 and TF1 flags. These flags are set by the overflow in the Timer 0 and Timer 1. The TF0 and TF1 flags are automatically cleared by the hardware when the timer interrupt is serviced. The Watchdog timer can be used as a system monitor or a simple timer. In either case, when the time-out count is reached, the Watchdog Timer interrupt flag WDIF (WDCON.3) is set. If the interrupt is enabled by the enable bit EIE.4, then an interrupt will occur.

The timer 2 interrupt is generated through TF2 (timer 2 overflow/compare match). The hardware does not clear these flags when a timer 2 interrupt is executed.

The uart serial block can generate interrupt on reception or transmission. There are two interrupt sources from the uart block, which are obtained by the RI and TI bits in the SCON SFR. These bits are not automatically cleared by the hardware, and the user will have to clear these bits using software.

This device also provide an independent I2C serial port. When new I2C state is present in I2STATUS, the SI flag is set by hardware, and if EA and EI2 bits are both set, the I2C interrupt is requested. SI must be cleared by software.

Keyboard interrupt is generated when any of the keypad connected to P0 pins is pressed. Each keypad interrupt can be individually enabled or disabled. User will have to software clear the flag bit.

The input capture 0 interrupt is generated through CPTF0 flag. CPTF0 flag is set by input capture events. The hardware does not clear this flag when the capture interrupt is executed. Software has to clear the flag.

Brownout detect can cause brownout flag, BOF, to be asserted if power voltage drop below brownout voltage level. Interrupt will occur if BOI (AUXR1.5), EBO (EIE.6) and global interrupt enable are set.

Source	Vector Address	Source	Vector Address
External Interrupt 0	0003H	Timer 0 Overflow	000BH
External Interrupt 1	0013H	Timer 1 Overflow	001BH
Serial Port	0023H	Brownout Interrupt	002BH
I2C Interrupt	0033H	KBI Interrupt	003BH
Timer 2 Overflow	0043H	-	004BH
Watchdog Timer	0053H	-	005BH

	0063H	Input Capture 0 Interrupt	006BH		

Table 18- 1: N79E352(R) interrupt vector table

18.2 Priority Level Structure

There are four priority levels for the interrupts, highest, high, low and lowest. The interrupt sources can be individually set to either high or low levels. Naturally, a higher priority interrupt cannot be interrupted by a lower priority interrupt. However there exists a pre-defined hierarchy amongst the interrupts themselves. This hierarchy comes into play when the interrupt controller has to resolve simultaneous requests having the same priority level. This hierarchy is defined as shown on Table 18- 2: Four-level interrupts priority.

The interrupt flags are sampled every machine cycle. In the same machine cycle, the sampled interrupts are polled and their priority is resolved. If certain conditions are met then the hardware will execute an internally generated LCALL instruction which will vector the process to the appropriate interrupt vector address. The conditions for generating the LCALL are;

1. An interrupt of equal or higher priority is not currently being serviced.

2. The current polling cycle is the last machine cycle of the instruction currently being execute.

3. The current instruction does not involve a write to IE, EIE, IPO, IPOH, IP1 or IPH1 registers and is not a RETI.

If any of these conditions are not met, then the LCALL will not be generated. The polling cycle is repeated every machine cycle, with the interrupts sampled in the same machine cycle. If an interrupt flag is active in one cycle but not responded to, and is not active when the above conditions are met, the denied interrupt will not be serviced. This means that active interrupts are not remembered; every polling cycle is new.

The processor responds to a valid interrupt by executing an LCALL instruction to the appropriate service routine. This may or may not clear the flag which caused the interrupt. In case of Timer interrupts, the TF0 or TF1 flags are cleared by hardware whenever the processor vectors to the appropriate timer service routine. In case of external interrupt, /INT0 and /INT1, the flags are cleared only if they are edge triggered. In case of Serial interrupts, the flags are not cleared by hardware. In the case of Timer 2 interrupt, the flags are not cleared by hardware. The Watchdog timer interrupt flag WDIF has to be cleared by software. The hardware LCALL behaves exactly like the software LCALL instruction. This instruction saves the Program Counter contents onto the Stack, but does not save the Program Status Word PSW. The PC is reloaded with the vector address of that interrupt which caused the LCALL. These address of vector for the different sources are as shown on Table 18- 3: Summary of interrupt sources. The vector table is not evenly spaced; this is to accommodate future expansions to the device family.

Execution continues from the vectored address till an RETI instruction is executed. On execution of the RETI instruction the processor pops the Stack and loads the PC with the contents at the top of the stack. The user must take care that the status of the stack is restored to what it was after the hardware LCALL, if the execution is to return to the interrupted program. The processor does not notice anything if the stack contents are modified and will proceed with execution from the address put back into PC. Note that a RET instruction would perform exactly the same process as a RETI instruction, but it would not inform the Interrupt Controller that the interrupt service routine is completed, and would leave the controller still thinking that the service routine is underway.

N79E352(R) uses a four priority level interrupt structure. This allows great flexibility in controlling the handling of the interrupt sources.

PRIOR	ITY BITS	INTERRUPT PRIORITY LEVEL
IPXH	IPX	INTERROFT PRIORITT LEVEL
0	0	Level 0 (lowest priority)
0	1	Level 1
1	0	Level 2
1	1	Level 3 (highest priority)

Table 18- 2: Four-level interrupts priority

Each interrupt source can be individually enabled or disabled by setting or clearing a bit in registers IE or EIE. The IE register also contains a global disable bit, EA, which disables all interrupts at once.

Each interrupt source can be individually programmed to one of four priority levels by setting or clearing bits in the IPO, IPOH, IP1, and IP1H registers. An interrupt service routine in progress can be interrupted by a higher priority interrupt, but not by another interrupt of the same or lower priority. The highest priority interrupt service cannot be interrupted by any other interrupt source. So, if two requests of different priority levels are received simultaneously, the request of higher priority level is serviced.

If requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. This is called the arbitration ranking. Note that the arbitration ranking is only used to resolve simultaneous requests of the same priority level.

Table below summarizes the interrupt sources,	, flag bits, vector address, enable bits, priority bits,
arbitration ranking, and whether each interrupt ma	ay wake up the CPU from Power Down mode.

Source	Flag	Vector address	Enable bit	Flag cleared by	Priority bit	Arbitration ranking	Power- down wakeup
External Interrupt 0	IE0	0003H	EX0 (IE.0)	Hardware, Software	IP0H.0, IP0.0	1(highest)	Yes
Brownout Detect	BOF	002BH	EBO (EIE.6)	Hardware	IP1H.6, IP1.6	2	Yes
Watchdog Timer	WDIF	0053H	EWDI (EIE.4)	Software	IP1H.4, IP1.4	3	Yes
Timer 0 Overflow	TF0	000BH	ET0 (IE.1)	Hardware, Software	IP0H.1, IP0.1	4	No
I2C Interrupt	SI + TIF	0033h	El2 (EIE.0)	Software	IP1H.0, IP1.0	5	No
External Interrupt 1	IE1	0013H	EX1 (IE.2)	Hardware, Software	IP0H.2, IP0.2	6	Yes
КВІ	KBF	003BH	EKB (EIE.1)	Software	IP1H.1, IP1.1	7	Yes
Timer 1 Overflow	TF1	001BH	ET1 (IE.3)	Hardware, Software	IP0H.3, IP0.3	8	No
UART	RI + TI	0023H	ES (IE.4)	Software	IP0H.4, IP0.4	9	No

The default port output configuration for standard N79E352(R) I/O ports is the guasi-bidirectional output that is common on the 80C51 and most of its derivatives. This output type can be used as both an input and output without the need to reconfigure the port. This is possible because when the port outputs a logic high, it is weakly driven, allowing an external device to pull the pin low. When the pin is pulled low, it is driven strongly and able to sink a fairly large current. These features are somewhat similar to an open drain output except that there are three pull-up transistors in the quasi-bidirectional output that serve different purposes. One of these pull-ups, called the "very weak" pull-up, is turned on whenever the port latch for the pin contains a logic 1. The very weak pull-up sources a very small current that will pull the pin high if it is left floating.

A second pull-up, called the "weak" pull-up, is turned on when the port latch for the pin contains a logic 1 and the pin itself is also at a logic 1 level. This pull-up provides the primary source current for a quasi-bidirectional pin that is outputting a 1. If a pin that has a logic 1 on it is pulled low by an external device, the weak pull-up turns off, and only the very weak pull-up remains on. In order to pull the pin low under these conditions, the external device has to sink enough current to overpower the weak pullup and take the voltage on the port pin below its input threshold.

The third pull-up is referred to as the "strong" pull-up. This pull-up is used to speed up low-to-high transitions on a quasi-bidirectional port pin when the port latch changes from a logic 0 to a logic 1. When this occurs, the strong pull-up turns on for a brief time, two CPU clocks, in order to pull the port pin high quickly. Then it turns off again. The quasi-bidirectional port configuration is shown as below.

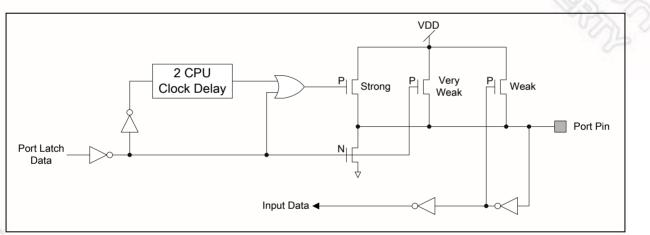


Figure 22-1: Quasi-Bidirectional Output

22.2 Open Drain Output Configuration

The open drain output configuration turns off all pull-ups and only drives the pull-down transistor of the port driver when the port latch contains a logic 0. To be used as a logic output, a port configured in this manner must have an external pull-up, typically a resistor tied to VDD. The pull-down for this mode is The second second the same as for the quasi-bidirectional mode. The open drain port configuration is shown as below.

27.2 D.C. Characteristics

(TA = -40~85°C, unless otherwise specified.)
--

DADAMETER	OVM		SPECIFI	CATION	5	TEST CONDITIONS
PARAMETER	SYM.	MIN.	MIN. TYP. MAX		UNIT	TEST CONDITIONS
Operating Voltage	V _{DD}	2.4		5.5	V	V _{DD} =4.5V ~ 5.5V @ 24MHz
				X	N.	V _{DD} =2.7V [~] 5.5V @ 12MHz
				13	nº	V _{DD} =2.4V ~ 5.5V @ 4MHz
Operating Current	I _{DD1}			5	mA	No load, RST = V _{DD} , V _{DD} = 3.0V @ 11.0592MHz
	I _{DD2}			15	mA	No load, RST = V_{DD} , V_{DD} = 5.0V @ 22.1184MHz
Idle Current	I _{IDLE}			4	mA	No load, V _{DD} = 3.0V @ 11.0592MHz
Power Down Current	I _{PWDN}		1	5	μΑ	No load, V _{DD} = 5.5V @ Disable BOV function
			1	5	uA	No load, V _{DD} = 3.0V @ Disable BOV function
Input / Output						P
Input Current P0, P1, P2, P3, P4, P5	I _{IN1}	-50	-	+10	μA	$V_{DD} = 5.5V, V_{IN} = 0V \text{ or } V_{IN} = V_{DD}$
Input Current P1.5(RST pin) ^[1]	I _{IN2}	-48	-32	-24	μΑ	$V_{DD} = 5.5V, V_{IN} = 0.45V$
Input Leakage Current P0, P1, P2, P3, P5 (Open Drain)	I _{LK}	-10	-	+10	μA	$V_{DD} = 5.5V, 0 < V_{IN} < V_{DD}$
Logic 1 to 0 Transition Current	I _{TL} ^[*3]	-450	-	-246	μΑ	$V_{DD} = 5.5 V, V_{IN} < 2.0 V$
P0, P1, P2, P3, P4, P5		-93	-	-56		V _{DD} =2.4 Vin = 1.3v
		0	-	1.0		$V_{DD} = 4.5 V$
Input Low Voltage P0, P1, P2, P3, P4, P5 (TTL input)	V _{IL1}	0	-	0.6 1.0	V	$V_{DD} = 2.4 V$
Input High Voltage P0, P1, P2,	V	2.0	-	V _{DD} +0.2	v	$V_{DD} = 5.5V$
P3, P4, P5 (TTL input)	V _{IH1}	1.5	-	V _{DD} +0.2	V	$V_{DD} = 2.4 V$
Input Low Voltage XTAL1 ^[*2]	Maria	0	-	0.8	v	$V_{DD} = 4.5 V$
Sto The	V _{IL3}	0	-	0.4	V	$V_{DD} = 3.0 V$
Input High Voltage XTAL1 ^[*2]	V _{IH3}	3.5	-	V _{DD} +0.2	v	$V_{DD} = 5.5V$
Input high voltage ATALT	V IH3	2.4	-	V _{DD} +0.2	v	$V_{DD} = 3.0V$
Negative going threshold (Schmitt input)	V _{ILS}	-0.5	-	$0.3V_{DD}$	V	
Positive going threshold (Schmitt input)	VIHS	0.7V _{DD}	-	V _{DD} +0.5	V	
Hysteresis voltage	V _{HY}		$0.2V_{DD}$		V	
Input Low Voltage RST [*1]	V IL21	X: -	1.0	1.6	V	V _{DD} =4.5V

27.3.1 External Clock Characteristics

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS	NOTES
Clock High Time	t _{CHCX}	22.6	1-1		nS	
Clock Low Time	t _{CLCX}	22.6	N/AN	P	nS	
Clock Rise Time	t _{CLCH}	-	<u>_</u>	10	nS	
Clock Fall Time	t _{CHCL}	-	- 3	10	nS	

27.3.2 AC Specification

PARAMETER	SYMBOL	VARIABLE CLOCK MIN.	VARIABLE CLOCK MAX.	UNITS
Oscillator Frequency	$1/t_{CLCL}$	0	24	MHz

27.3.3 External clock Characteristics

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Clock High Time	t _{CHCX}	12.5			ns	22.0
Clock Low Time	t _{CLCX}	12.5			ns	3
Clock Rise Time	t _{CLCH}			10	ns	
Clock Fall Time	t _{CLCL}			10	ns	

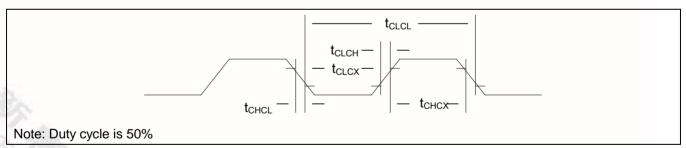
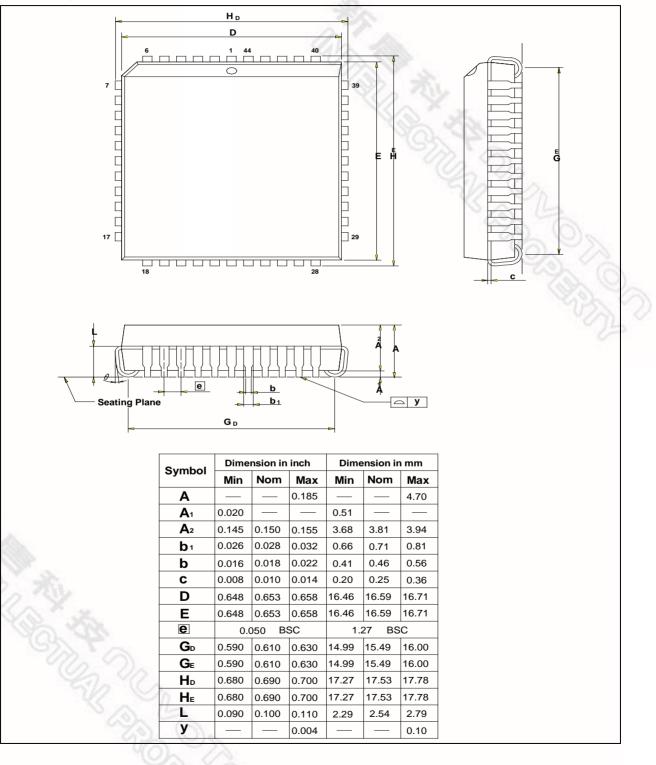



Figure 26-1 External clock characteristics

27.3.4 Serial Port Mode 0 Timing Characteristics

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Serial Port Clock Cycle Time	t _{XLXL}				ns	
SM2=0 12 clocks per cycle			12 t _{CLCL}			
SM2=1 4 clocks per cycle			4 t _{CLCL}			
Output Data Setup to Clock Rising Edge	t _{QVXH}				ns	
SM2=0 12 clocks per cycle			10 t _{CLCL}			
SM2=1 4 clocks per cycle			3 t _{CLCL}			

28.2 44-pin PLCC

29. REVISION HISTORY

VERSION	DATE	PAGE	DESCRIPTION
A01	Aug, 14, 2008	-	Initial Issued
A02	Aug, 21, 2008	7,8	Update pin configurations.
A03	Feb, 2, 2009	-	Add access external memory diagram
		-	Modify the part no. with each package
			1. 40DIP: N79E352ADG, N79E352RADG
A04	Feb, 9, 2009		2. 44PLCC: N79E352APG, N79E352RAPG
			3. 44PQFP: N79E352AFG, N79E352RAFG
			4. 48LQFP: N79E352ALG, N79E352RALG
		-	1. Correct typo errors.
		108~109	2. Release input capture 0 function in Section 20.
A05	Apr, 22, 2009		3. Re-arrange section sequency after Section 20.
		124~125	2. Update D.C specification.
		115	3. Renew Figure 0-1: Oscillator
A06	Jul, 29, 2009	119	1. Add ICP description.

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice. All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.