E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	EBI/EMI, I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	50
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 28x12b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/sim3c136-b-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	4.6.5. I2C (I2C0, I2C1)	43
	4.6.6. I2S (I2S0)	44
	4.7. Analog	45
	4.7.1. 12-Bit Analog-to-Digital Converters (SARADC0, SARADC1)	45
	4.7.2. Sample Sync Generator (SSG0)	45
	4.7.3. 10-Bit Digital-to-Analog Converter (IDAC0, IDAC1)	
	4.7.4. 16-Channel Capacitance-to-Digital Converter (CAPSENSE0)	46
	4.7.5. Low Current Comparators (CMP0, CMP1)	46
	4.7.6. Current-to-Voltage Converter (IVC0)	46
	4.8. Reset Sources	47
	4.9. Security	48
	4.10.On-Chip Debugging	48
5.	Ordering Information	49
6.	Pin Definitions and Packaging Information	51
	6.1. SiM3C1x7 Pin Definitions	51
	6.2. SiM3C1x6 Pin Definitions	59
	6.3. SiM3C1x4 Pin Definitions	66
	6.4. LGA-92 Package Specifications	70
	6.4.1. LGA-92 Solder Mask Design	72
	6.4.2. LGA-92 Stencil Design	72
	6.4.3. LGA-92 Card Assembly	72
	6.5. TQFP-80 Package Specifications	73
	6.5.1. TQFP-80 Solder Mask Design	76
	6.5.2. TQFP-80 Stencil Design	76
	6.5.3. TQFP-80 Card Assembly	76
	6.6. QFN-64 Package Specifications	77
	6.6.1. QFN-64 Solder Mask Design	79
	6.6.2. QFN-64 Stencil Design	79
	6.6.3. QFN-64 Card Assembly	79
	6.7. TQFP-64 Package Specifications	80
	6.7.1. TQFP-64 Solder Mask Design	83
	6.7.2. TQFP-64 Stencil Design	83
	6.7.3. TQFP-64 Card Assembly	83
	6.8. QFN-40 Package Specifications	84
	6.8.1. QFN-40 Solder Mask Design	86
	6.8.2. QFN-40 Stencil Design	86
	6.8.3. QFN-40 Card Assembly	86
7.	Revision Specific Behavior	87
	7.1. Revision Identification	87
	7.2. Comparator Rising/Falling Edge Flags in Debug Mode (CMP0, CMP1)	88
	7.2.1. Problem	88
	7.2.2. Impacts	88
	7.2.3. Workaround	88
-	7.2.4. Resolution	88
Do	cument Change List	89
Co	ntact Information	90

1. Related Documents and Conventions

1.1. Related Documents

This data sheet accompanies several documents to provide the complete description of the SiM3C1xx device family.

1.1.1. SiM3U1xx/SiM3C1xx Reference Manual

The Silicon Laboratories SiM3U1xx/SiM3C1xx Reference Manual provides detailed functional descriptions for the SiM3C1xx devices.

1.1.2. Hardware Access Layer (HAL) API Description

The Silicon Laboratories Hardware Access Layer (HAL) API provides C-language functions to modify and read each bit in the SiM3C1xx devices. This description can be found in the SiM3xxxx HAL API Reference Manual.

1.1.3. ARM Cortex-M3 Reference Manual

The ARM-specific features like the Nested Vector Interrupt Controller are described in the ARM Cortex-M3 reference documentation. The online reference manual can be found here: http://infocenter.arm.com/help/topic/com.arm.doc.subset.cortexm.m3/index.html#cortexm3.

1.2. Conventions

The block diagrams in this document use the following formatting conventions:

Figure 1.1. Block Diagram Conventions

	Table 3.2.	Power	Consum	ption ((Continued)
--	------------	-------	--------	---------	-------------

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Analog Peripheral Supply Current	is		L	· · · · ·		
Voltage Regulator (VREG0)	I _{VREGIN}	Normal Mode, $T_A = 25 \text{ °C}$ BGDIS = 0, SUSEN = 0		300	_	μA
		Normal Mode, $T_A = 85 \text{ °C}$ BGDIS = 0, SUSEN = 0	_	_	650	μA
		Suspend Mode, T _A = 25 °C BGDIS = 0, SUSEN = 1	_	75	—	μA
		Suspend Mode, T _A = 85 °C BGDIS = 0, SUSEN = 1	_	_	115	μA
		Sleep Mode, T _A = 25 °C BGDIS = 1, SUSEN = X	_	90	_	nA
		Sleep Mode, T _A = 85 °C BGDIS = 1, SUSEN = X			500	nA
Voltage Regulator (VREG0) Sense	I _{VRSENSE}	SENSEEN = 1		3		μA
External Regulator (EXTVREG0)	I _{EXTVREG}	Regulator		215	250	μA
		Current Sensor		7		μA
PLL0 Oscillator (PLL0OSC)	I _{PLLOSC}	Operating at 80 MHz		1.75	1.86	mA
Low-Power Oscillator (LPOSC0)	I _{LPOSC}	Operating at 20 MHz	—	190		μA
		Operating at 2.5 MHz	<u> </u>	40		μA
Low-Frequency Oscillator (LFOSC0)	I _{LFOSC}	Operating at 16.4 kHz, T _A = 25 °C		215		nA
		Operating at 16.4 kHz, T _A = 85 °C	_	_	500	nA

Notes:

1. Perhipheral currents drop to zero when peripheral clock and peripheral are disabled, unless otherwise noted.

 Currents are additive. For example, where I_{DD} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

3. Includes all peripherals that cannot have clocks gated in the Clock Control module.

4. Includes supply current from internal regulator and PLL0OSC (>20 MHz) or LPOSC0 (<=20 MHz).

5. Flash execution numbers use 2 wait states for 80 MHz and 0 wait states at 20 MHz or less.

6. RAM execution numbers use 0 wait states for all frequencies.

7. IDAC output current and IVC input current not included.

8. Bias current only. Does not include dynamic current from oscillator running at speed.

Table 3.2. Power Consumption (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Flash Current on VDD						
Write Operation	I _{FLASH-W}		_		8	mA
Erase Operation	I _{FLASH-E}		_	_	15	mA
Netes						

Notes:

- 1. Perhipheral currents drop to zero when peripheral clock and peripheral are disabled, unless otherwise noted.
- Currents are additive. For example, where I_{DD} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.
- 3. Includes all peripherals that cannot have clocks gated in the Clock Control module.
- 4. Includes supply current from internal regulator and PLL0OSC (>20 MHz) or LPOSC0 (<=20 MHz).
- 5. Flash execution numbers use 2 wait states for 80 MHz and 0 wait states at 20 MHz or less.
- 6. RAM execution numbers use 0 wait states for all frequencies.
- 7. IDAC output current and IVC input current not included.
- 8. Bias current only. Does not include dynamic current from oscillator running at speed.

Table 3.3. Power Mode Wake Up Times

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Power Mode 2 Wake Time	t _{PM2}		4	—	5	clocks
Power Mode 3 Fast Wake Time	t _{PM3FW}		—	425	—	μs
Power Mode 9 Wake Time	t _{PM9}		—	12		μs

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit					
3.3 V Regulator Characteristics (VREG0, Supplied from VREGIN Pin)											
Output Voltage (at VDD pin)	V _{DDOUT}	$4 \le V_{\text{REGIN}} \le 5.5$ BGDIS = 0, SUSEN = 0	3.15	3.3	3.4	V					
		$4 \le V_{REGIN} \le 5.5$ BGDIS = 0, SUSEN = 1	3.15	3.3	3.4	V					
		$\begin{array}{l} 4 \leq V_{REGIN} \leq 5.5 \\ BGDIS = 1, SUSEN = X \\ I_{DDOUT} = 500 \; \mu A \end{array}$	2.3	2.8	3.6	V					
		$4 \le V_{REGIN} \le 5.5$ BGDIS = 1, SUSEN = X I _{DDOUT} = 5 mA	2.1	2.65	3.3	V					
Output Current (at VDD pin)*	IDDOUT	$4 \le V_{\text{REGIN}} \le 5.5$ BGDIS = 0, SUSEN = X	_		150	mA					
		$4 \le V_{\text{REGIN}} \le 5.5$ BGDIS = 1, SUSEN = X	_		5	mA					
Output Load Regulation	V _{DDLR}	BGDIS = 0	_	0.1	1	mV/mA					
Output Capacitance	C _{VDD}		1		10	μF					
*Note: Total current VREG0 is capable of providing. Any current consumed by the SiM3C1xx reduces the current available to external devices powered from VDD.											

Table 3.5. On-Chip Regulators

Table 3.7. Flash Memory

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Write Time ¹	t _{WRITE}	One 16-bit Half Word	20	21	22	μs
Erase Time ¹	t _{ERASE}	One Page	20	21	22	ms
	t _{ERALL}	Full Device	20	21	22	ms
V _{DD} Voltage During Programming	V _{PROG}		1.8		3.6	V
Endurance (Write/Erase Cycles)	N _{WE}		20k	100k	—	Cycles
Retention ²	t _{RET}	T _A = 25 °C, 1k Cycles	10	100	—	Years

Notes:

1. Does not include sequencing time before and after the write/erase operation, which may take up to 35 µs. During a sequential write operation, this extra time is only taken prior to the first write and after the last write.

2. Additional Data Retention Information is published in the Quarterly Quality and Reliability Report.

Table 3.8. Internal Oscillators

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Phase-Locked Loop (PLL0OSC)						
Calibrated Output Frequency*	f _{PLL0OSC}	Full Temperature and Supply Range	77	79	80	MHz
Power Supply Sensitivity*	PSS _{PLL0OSC}	T _A = 25 °C, Fout = 79 MHz	_	430	_	ppm/V
Temperature Sensitivity*	TS _{PLL0OSC}	V _{DD} = 3.3 V, Fout = 79 MHz	_	95	_	ppm/°C
Adjustable Output Frequency Range	f _{PLL0OSC}		23	_	80	MHz
Lock Time	t _{PLLOLOCK}	f _{REF} = 20 MHz, f _{PLL0OSC} = 80 MHz, M=24, N=99, LOCKTH = 0	_	1.7		μs
		f _{REF} = 32 kHz, f _{PLL0OSC} = 80 MHz, M=0, N=2440, LOCKTH = 0	_	91	_	μs
*Note: PLL0OSC in free-running oscill	ator mode.			1		1

Table 3.14. Voltage Reference Electrical Characteristics

 V_{DD} = 1.8 to 3.6 V, -40 to +85 °C unless otherwise specified.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Internal Fast Settling Refere	nce					
Output Voltage	V _{REFFS}	-40 to +85 °C, V _{DD} = 1.8-3.6 V	1.62	1.65	1.68	V
Temperature Coefficient	TC _{REFFS}			50	—	ppm/°C
Turn-on Time	t _{REFFS}		—	_	1.5	μs
Power Supply Rejection	PSRR _{REFFS}		_	400	—	ppm/V
On-Chip Precision Referenc	e (VREF0)					
Valid Supply Range	V _{DD}	VREF2X = 0	1.8	_	3.6	V
		VREF2X = 1	2.7		3.6	V
Output Voltage	V _{REFP}	25 °C ambient, VREF2X = 0	1.195	1.2	1.205	V
		25 °C ambient, VREF2X = 1	2.39	2.4	2.41	V
Short-Circuit Current	I _{SC}		—		10	mA
Temperature Coefficient	TC _{VREFP}		—	25	—	ppm/°C
Load Regulation	LR _{VREFP}	Load = 0 to 200 µA to VREFGND		4.5	_	ppm/µA
Load Capacitor	C _{VREFP}	Load = 0 to 200 µA to VREFGND	0.1	_	—	μF
Turn-on Time	t _{VREFPON}	4.7 μF tantalum, 0.1 μF ceramic bypass		3.8		ms
		0.1 µF ceramic bypass		200	—	μs
Power Supply Rejection	PSRR _{VREFP}	VREF2X = 0	—	320	—	ppm/V
		VREF2X = 1		560	—	ppm/V
External Reference	•					
Input Current	I _{EXTREF}	Sample Rate = 250 ksps; VREF = 3.0 V	—	5.25	—	μA

3.2. Thermal Conditions

Table 3.18. Thermal Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit				
Thermal Resistance*	θ_{JA}	LGA-92 Packages		35		°C/W				
		TQFP-80 Packages		40		°C/W				
		QFN-64 Packages		25		°C/W				
		TQFP-64 Packages		30		°C/W				
		QFN-40 Packages		30		°C/W				
*Note: Thermal resistance assumes a	*Note: Thermal resistance assumes a multi-layer PCB with any exposed pad soldered to a PCB pad.									

3.3. Absolute Maximum Ratings

Stresses above those listed under Table 3.19 may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 3.19. Absolute Maximum Ratings

Parameter	Symbol	Test Condition	Min	Max	Unit
Ambient Temperature Under Bias	T _{BIAS}		-55	125	°C
Storage Temperature	T _{STG}		-65	150	°C
Voltage on VDD	V _{DD}		V _{SS} –0.3	4.2	V
Voltage on VREGIN	V _{REGIN}	EXTVREG0 Not Used	V _{SS} –0.3	6.0	V
		EXTVREG0 Used	V _{SS} –0.3	3.6	V
Voltage on VIO	V _{IO}		V _{SS} –0.3	4.2	V
Voltage on VIOHD	V _{IOHD}		V _{SS} –0.3	6.5	V
Voltage on I/O pins,	V _{IN}	RESET, V _{IO} ≥ 3.3 V	V _{SS} –0.3	5.8	V
		RESET, V _{IO} < 3.3 V	V _{SS} –0.3	V _{IO} +2.5	V
		Port Bank 0, 1, and 2 I/O	V _{SS} -0.3	V _{IO} +0.3	V
		Port Bank 4 I/O	V _{SSHD} -0.3	V _{IOHD} +0.3	V
	4	·			·

*Note: VSS and VSSHD provide separate return current paths for device supplies, but are not isolated. They must always be connected to the same potential on board.

4. Precision32[™] SiM3C1xx System Overview

The SiM3C1xx Precision32[™] devices are fully integrated, mixed-signal system-on-a-chip MCUs. Highlighted features are listed below. Refer to Table 5.1 for specific product feature selection and part ordering numbers.

- Core:
 - 32-bit ARM Cortex-M3 CPU.
 - 80 MHz maximum operating frequency.
 - Branch target cache and prefetch buffers to minimize wait states.
- Memory: 32–256 kB Flash; in-system programmable, 8–32 kB SRAM (including 4 kB retention SRAM, which preserves state in PM9 mode).
- Power:
 - Low drop-out (LDO) regulator for CPU core voltage.
 - Power-on reset circuit and brownout detectors.
 - 3.3 V output LDO for direct power from 5 V supplies.
 - External transistor regulator.
 - Power Management Unit (PMU).
- I/O: Up to 65 total multifunction I/O pins:
 - Up to six programmable high-power capable (5–300 mA with programmable current limiting, 1.8–5 V).
 - Up to twelve 5 V tolerant general purpose pins.
 - Two flexible peripheral crossbars for peripheral routing.
- Clock Sources:
 - Internal oscillator with PLL: 23–80 MHz with ± 1.5% accuracy in free-running mode.
 - Low-power internal oscillator: 20 MHz and 2.5 MHz modes.
 - Low-frequency internal oscillator: 16.4 kHz.
 - External RTC crystal oscillator: 32.768 kHz.
 - External oscillator: Crystal, RC, C, CMOS clock modes.
 - Programmable clock divider allows any oscillator source to be divided by binary factor from 1-128.
- Data Peripherals:
 - 16-Channel DMA Controller.
 - 128/192/256-bit Hardware AES Encryption.
 - 16/32-bit CRC.

Timers/Counters and PWM:

- 6-channel Enhanced Programmable Counter Array (EPCAn) supporting advanced PWM and capture/compare.
- 2 x 2-channel Standard Programmable Counter Array (PCAn) supporting PWM and capture/compare.
- 2 x 32-bit Timers can be split into 4 x 16-bit Timers, support PWM and capture/compare.
- Real Time Clock (RTCn).
- Low Power Timer.
- Watchdog Timer.
- Communications Peripherals:
 - External Memory Interface.
 - 2 x USARTs and 2 x UARTs with IrDA and ISO7816 SmartCard support.
 - 3 x SPIs.
 - 2 x I2C.
 - I²S (receive and transmit).
- Analog:
 - 2 x 12-Bit Analog-to-Digital Converters (SARADC).
 - 2 x 10-Bit Digital-to-Analog Converter (IDAC).
 - 16-Channel Capacitance-to-Digital Converter (CAPSENSE).
 - 2 x Low-Current Comparators (CMP).
 - 1 x Current-to-Voltage Converter (IVC) module with two channels.

On-Chip Debugging

With on-chip power-on reset, voltage supply monitor, watchdog timer, and clock oscillator, the SiM3C1xx devices are truly standalone system-on-a-chip solutions. The Flash memory is reprogrammable in-circuit, providing non-

4.1.5. Device Power Modes

The SiM3C1xx devices feature four low power modes in addition to normal operating mode. Several peripherals provide wake up sources for these low power modes, including the Low-Power Timer (LPT0), RTC0 (alarms and oscillator failure notification), Comparator 0, and PMU Pin Wake.

In addition, all peripherals can have their clocks disabled to reduce power consumption whenever a peripheral is not being used using the clock control (CLKCTRL) registers.

4.1.5.1. Normal Mode (Power Mode 0)

Normal Mode is the default mode of the device. The core and peripherals are fully operational, and instructions are executed from flash memory.

4.1.5.2. Power Mode 1

In Power Mode 1 the core and peripherals are fully operational, with instructions executing from RAM. Compared with Normal Mode, the active power consumption of the device in PM1 is reduced. Additionally, at higher speeds in PM1, the core throughput can also be increased because RAM does not require additional wait states that reduce the instruction fetch speed.

4.1.5.3. Power Mode 2

In Power Mode 2 the core halts and any enabled peripherals continue to run at the selected clock speed. The power consumption in PM2 corresponds to the AHB and APB clocks left enabled, thus the power can be tuned to the optimal level for the needs of the application. To place the device in PM2, the core should execute a wait-for-interrupt (WFI) or wait-for-event (WFE) instruction. If the WFI instruction is called from an interrupt service routine, the interrupt that wakes the device from PM2 must be of a sufficient priority to be recognized by the core. It is recommended to perform both a DSB (Data Synchronization Barrier) and an ISB (Instruction Syncronization Barrier) operation prior to the WFI to ensure all bus accesses complete. When operating from the LFOSC0 with the DMACTRL0 AHB clock disabled, PM2 can achieve similar power consumption to PM3, but with the ability to wake on APB-clocked interrupts. For example, enabling only the APB clock to the Ports will allow the firmware to wake on a PMATCH0, PBEXT0 or PBEXT1 interrupt with minimal impact on the supply current.

4.1.5.4. Power Mode 3

In Power Mode 3, the AHB and APB clocks are halted. The device may only wake from enabled interrupt sources which do not require the APB clock (RTC0ALRM, RTC0FAIL, LPTIMER0, VDDLOW and VREGLOW). A special fast wake option allows the device to operate at a very low level from the RTC0TCLK or LFOSC0 oscillator while in PM3, but quickly switch to the faster LPOSC0 when the wake event occurs. Because the current consumption of these blocks is minimal, it is recommended to use the fast wake option.

The device will enter PM3 on a WFI or WFE instruction. Because all AHB master clocks are disabled, the LPOSC will automatically halt and go into a low-power suspended state. If the WFI instruction is called from an interrupt service routine, the interrupt that wakes the device from PM3 must be of a sufficient priority to be recognized by the core. It is recommended to perform both a DSB (Data Synchronization Barrier) and an ISB (Instruction Synchronization Barrier) operation prior to the WFI to ensure all bus access is complete.

4.1.5.5. Power Mode 9

In Power Mode 9, the core and all peripherals are halted, all clocks are stopped, and the pins and peripherals are set to a lower power mode. In addition, standard RAM contents are not preserved, though retention RAM contents are still available after exiting the power mode. This mode provides the lowest power consumption for the device, but requires an appropriate reset to exit. The available reset sources to wake from PM9 are controlled by the Power Management Unit (PMU).

Before entering PM9, the desired reset source(s) should be configured in the PMU. The SLEEPDEEP bit in the ARM System Control Register should be set, and the PMSEL bit in the RSTSRC0_CONFIG register must be set to indicate that PM9 is the desired power mode.

The device will enter PM9 on a WFI or WFE instruction, and remain in PM9 until a reset configured by the PMU occurs. It is recommended to perform both a DSB (Data Synchronization Barrier) and an ISB (Instruction Synchronization Barrier) operation prior to the WFI to ensure all bus access is complete.

4.4. Data Peripherals

4.4.1. 16-Channel DMA Controller

The DMA facilitates autonomous peripheral operation, allowing the core to finish tasks more quickly without spending time polling or waiting for peripherals to interrupt. This helps reduce the overall power consumption of the system, as the device can spend more time in low-power modes.

The DMA controller has the following features:

- Utilizes ARM PrimeCell uDMA architecture.
- Implements 16 channels.
- DMA crossbar supports SARADC0, SARADC1, IDAC0, IDAC1, I2C0, I2S0, SPI0, SPI1, USART0, USART1, AES0, EPCA0, external pin triggers, and timers.
- Supports primary, alternate, and scatter-gather data structures to implement various types of transfers.
- Access allowed to all AHB and APB memory space.

4.4.2. 128/192/256-bit Hardware AES Encryption (AES0)

The basic AES block cipher is implemented in hardware. The integrated hardware support for Cipher Block Chaining (CBC) and Counter (CTR) algorithms results in identical performance, memory bandwidth, and memory footprint between the most basic Electronic Codebook (ECB) algorithm and these more complex algorithms. This hardware accelerator translates to more core bandwidth available for other functions or a power savings for low-power applications.

The AES module includes the following features:

- Operates on 4-word (16-byte) blocks.
- Supports key sizes of 128, 192, and 256 bits for both encryption and decryption.
- Generates the round key for decryption operations.
- All cipher operations can be performed without any firmware intervention for a set of 4-word blocks (up to 32 kB).
- Support for various chained and stream-ciphering configurations with XOR paths on both the input and output.
- Internal 4-word FIFOs to facilitate DMA operations.
- Integrated key storage.
- Hardware acceleration for Cipher-Block Chaining (CBC) and Counter (CTR) algorithms utilizing integrated counterblock generation and previous-block caching.

4.4.3. 16/32-bit CRC (CRC0)

The CRC module is designed to provide hardware calculations for Flash memory verification and communications protocols.

The CRC module supports four common polynomials. The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3). The three supported 16-bit polynomials are 0x1021 (CCITT-16), 0x3D65 (IEC16-MBus), and 0x8005 (ZigBee, 802.15.4, and USB).

The CRC module includes the following features:

- Support for four common polynomials (one 32-bit and three 16-bit options).
- Byte-level bit reversal for the CRC input.
- Byte-order reorientation of words for the CRC input.
- Word or half-word bit reversal of the CRC result.
- Ability to configure and seed an operation in a single register write.
- Support for single-cycle parallel (unrolled) CRC computation for 32- or 8-bit blocks.
- Capability to CRC 32 bits of data per peripheral bus (APB) clock.
- Support for DMA writes using firmware request mode.

4.6. Communications Peripherals

4.6.1. External Memory Interface (EMIF0)

The External Memory Interface (EMIF0) allows external parallel asynchronous devices, like SRAMs and LCD controllers, to appear as part of the system memory map. The EMIF0 module includes the following features:

- Provides a memory mapped view of multiple external devices.
- Support for byte, half-word and word accesses regardless of external device data-width.
- Error indicator for certain invalid transfers.
- Minimum external timing allows for 3 clocks per write or 4 clocks per read.
- Output bus can be shared between non-muxed and muxed devices.
- Available extended address output allows for up to 24-bit address with 8-bit parallel devices.
- Support for 8-bit and 16-bit (muxed-mode only) devices with up to two chip-select signals.
- Support for internally muxed devices with dynamic address shifting.
- Fully programmable control signal waveforms.

4.6.2. USART (USART0, USART1)

The USART uses two signals (TX and RX) and a predetermined fixed baud rate to communicate with a single device. In addition to these signals, the USART0 module can optionally use a clock (UCLK) or hardware handshaking (RTS and CTS).

The USART module provides the following features:

- Independent transmitter and receiver configurations with separate 16-bit baud rate generators.
- Synchronous or asynchronous transmissions and receptions.
- Clock master or slave operation with programmable polarity and edge controls.
- Up to 5 Mbaud (synchronous or asynchronous, TX or RX, and master or slave) or 1 Mbaud Smartcard (TX or RX).
- Individual enables for generated clocks during start, stop, and idle states.
- Internal transmit and receive FIFOs with flush capability and support for byte, half-word, and word reads and writes.
- Data bit lengths from 5 to 9 bits.
- Programmable inter-packet transmit delays.
- Auto-baud detection with support for the LIN SYNC byte.
- Automatic parity generation (with enable).
- Automatic start and stop generation (with separate enables).
- Transmit and receive hardware flow-control.
- Independent inversion correction for TX, RX, RTS, and CTS signals.
- IrDA modulation and demodulation with programmable pulse widths.
- Smartcard ACK/NACK support.
- Parity error, frame error, overrun, and underrun detection.
- Multi-master and half-duplex support.
- Multiple loop-back modes supported.
- Multi-processor communications support.

4.6.3. UART (UART0, UART1)

The USART uses two signals (TX and RX) and a predetermined fixed baud rate to communicate with a single device.

The UART module provides the following features:

- Independent transmitter and receiver configurations with separate 16-bit baud-rate generators.
- Asynchronous transmissions and receptions.
- Up to 5 Mbaud (TX or RX) or 1 Mbaud Smartcard (TX or RX).

• Spike suppression up to 2 times the APB period.

4.6.6. I²S (I2S0)

The I²S module receives digital data from an external source over a data line in the standard I²S, left-justified, rightjustified, or time domain multiplexing format, de-serializes the data, and generates requests to transfer the data using the DMA. The module also reads stereo audio samples from the DMA, serializes the data, and sends it out of the chip on a data line in the same standard serial format for digital audio. The I²S receive interface consists of 3 signals: SCK (bit clock), WS (word select or frame sync), and SD (data input). The block's transmit interface consists of 3 signals: SCK (bit clock), WS (word select or frame sync) and SD (data output).

The I²S module includes the following features:

- Master or slave capability.
- Flexible 10-bit clock divider with 8-bit fractional clock divider provides support for various common sampling frequencies (16 kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, and 48 kHz) for up to two 32-bit channels.
- Support for DMA data transfers.
- Support for various data formats.
- Time Division Multiplexing

SiM3C1xx

Pin Name	Туре	Pin Numbers	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
VSS	Ground	25 59							
VDD	Power (Core)	58							
VIO	Power (I/O)	24 39							
VREGIN	Power (Regulator)	60							
VSSHD	Ground (High Drive)	2							
VIOHD	Power (High Drive)	3							
RESET	Active-low Reset	64							
SWCLK/TCK	Serial Wire / JTAG	36							
SWDIO/TMS	Serial Wire / JTAG	35							
PB0.0	Standard I/O	57	XBR0	~					ADC0.2 CS0.1
PB0.1	Standard I/O	56	XBR0	~					ADC0.3 CS0.2
PB0.2	Standard I/O	55	XBR0	~					ADC0.4 CS0.3
PB0.3	Standard I/O	54	XBR0	~					ADC0.5 CS0.4
PB0.4	Standard I/O	53	XBR0	~					ADC0.6 CS0.5 IVC0.0
PB0.5	Standard I/O	52	XBR0	\checkmark					ADC0.7 CS0.6 IVC0.1
PB0.6	Standard I/O	51	XBR0	\checkmark					ADC0.8 CS0.7 RTC1

 Table 6.2. Pin Definitions and alternate functions for SiM3C1x6

Pin Name	Туре	oin Numbers	Crossbar Capability see Port Config Section)	Port Match	External Memory Interface m = muxed mode)	Port-Mapped Level Shifter	Dutput Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB0.7	Standard I/O	50	XBR0	~		_			RTC2
PB0.8	Standard I/O	49	XBR0	~					ADC0.9 VREFGND
PB0.9	Standard I/O	48	XBR0	~					ADC0.10 VREF
PB0.10	Standard I/O	47	XBR0	~					ADC1.6 IDAC0
PB0.11	Standard I/O	46	XBR0	\checkmark					IDAC1
PB0.12	Standard I/O	45	XBR0	\checkmark					XTAL1
PB0.13	Standard I/O	44	XBR0	\checkmark					XTAL2
PB0.14/TDO/ SWV	Standard I/O / JTAG / Serial Wire Viewer	43	XBR0	\checkmark					ADC0.12 ADC1.12
PB0.15/TDI	Standard I/O / JTAG	42	XBR0	<					ADC0.13 ADC1.13
PB1.0	Standard I/O	41	XBR0	~					ADC0.14 ADC1.14
PB1.1	Standard I/O	40	XBR0	\checkmark					ADC0.15 ADC1.15
PB1.2	Standard I/O	38	XBR0	1					ADC1.11 CS0.8
PB1.3	Standard I/O	37	XBR0	~					ADC1.10 CS0.9
PB1.4	Standard I/O	34	XBR0	\checkmark					ADC1.8
PB1.5	Standard I/O	33	XBR0	\checkmark					ADC1.7
PB1.6	Standard I/O	32	XBR0	~				ADC0T15 WAKE.0	ADC1.5 CS0.10
PB1.7	Standard I/O	31	XBR0	~	AD15m/ A7			ADC1T15 WAKE.1	ADC1.4 CS0.11

Table 6.2. Pin Definitions and alternate functions for SiM3C1x6 (Continued)

Pin Name	Туре	Pin Numbers	Crossbar Capability (see Port Config Section)	Port Match	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB0.8	Standard I/O	26	XBR0	~			ADC0.14 ADC1.14
PB0.9	Standard I/O	25	XBR0	~			ADC0.15 ADC1.15
PB0.10	Standard I/O	22	XBR0	\checkmark		DMA0T1	ADC1.8
PB0.11	Standard I/O	21	XBR0	\checkmark		DMA0T0	ADC1.7
PB0.12	Standard I/O	20	XBR0	~		ADC0T15 WAKE.0	ADC1.5 CS0.10
PB0.13	Standard I/O	19	XBR0	~		ADC1T15 WAKE.1	ADC1.4 CS0.11
PB0.14	Standard I/O	18	XBR0	~		WAKE.2	ADC1.3 CS0.12
PB0.15	Standard I/O	17	XBR0	~		WAKE.3	ADC1.2 CS0.13
PB1.0	Standard I/O	16	XBR0	V		WAKE.4	ADC1.1 CS0.14
PB1.1	Standard I/O	15	XBR0	\checkmark		WAKE.5	ADC1.0 CS0.15 PMU_Asleep
PB1.2	Standard I/O	12	XBR0	~			CMP0N.0 CMP1N.0 RTC0TCLK_OUT
PB1.3	Standard I/O	11	XBR0	V			CMP0P.0 CMP1P.0
PB3.0	5 V Tolerant I/O	10	XBR1	V		DAC0T0 DAC1T0 LPT0T0 INT0.0 INT1.0 WAKE.12	CMP0P.1 CMP1P.1 EXREGSP

Table 6.3. Pin Definitions and Alternate Functions for SiM3C1x4 (Continued)

Pin Name	Туре	Pin Numbers	Crossbar Capability (see Port Config Section)	Port Match	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB3.1	5 V Tolerant I/O	9	XBR1	~		DAC0T1 DAC1T1 LPT0T1 INT0.1 INT1.1 WAKE.13	CMP0N.1 CMP1N.1 EXREGSN
PB3.2	5 V Tolerant I/O	8	XBR1	~		DAC0T2 DAC1T2 LPT0T2 INT0.2 INT1.3 WAKE.14	CMP0P.2 CMP1P.2 EXREGOUT
PB3.3	5 V Tolerant I/O	7	XBR1	 ✓ 		DAC0T3 DAC1T3 INT0.3 INT1.3 WAKE.15	CMP0N.2 CMP1N.2 EXREGBD
PB4.0	High Drive I/O	6					
PB4.1	High Drive I/O	5					
PB4.2	High Drive I/O	4					
PB4.3	High Drive I/O	1					

Table 6.3. Pin Definitions and Alternate Functions for SiM3C1x4 (Continued)

6.6. QFN-64 Package Specifications

Dimension	Min	Max					
Α	0.80	0.85	0.90				
A1	0.00	0.02	0.05				
b	0.18	0.30					
D	9.00 BSC						
D2	3.95 4.10 4.25						
е	0.50 BSC						
E	9.00 BSC						
E2	3.95 4.10 4.25						
L	0.30 0.40 0.50						
aaa	0.10						
bbb	0.10						
CCC	0.08						
ddd	I 0.10						
eee	0.05						
	·						

Table 6.8. QFN-64 Package Dimensions

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This package outline conforms to JEDEC MO-220.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

6.6.1. QFN-64 Solder Mask Design

All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

6.6.2. QFN-64 Stencil Design

- 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- 3. The ratio of stencil aperture to land pad size should be 1:1 for all pads.
- 4. A 3x3 array of 1.0 mm square openings on a 1.5 mm pitch should be used for the center ground pad.

6.6.3. QFN-64 Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Figure 6.15. QFN-40 Landing Diagram

Dimension	mm
C1	5.90
C2	5.90
E	0.50
X1	0.30
Y1	0.85
X2	4.65
Y2	4.65

Table 6.13. QFN-40 Landing Diagram Dimensions

Notes:

- 1. All dimensions shown are in millimeters (mm).
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- **3.** All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a
 - Fabrication Allowance of 0.05 mm.

