

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                         |
|----------------------------|------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M3                                                  |
| Core Size                  | 32-Bit Single-Core                                               |
| Speed                      | 80MHz                                                            |
| Connectivity               | EBI/EMI, I <sup>2</sup> C, IrDA, SmartCard, SPI, UART/USART      |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, POR, PWM, WDT     |
| Number of I/O              | 50                                                               |
| Program Memory Size        | 32KB (32K x 8)                                                   |
| Program Memory Type        | FLASH                                                            |
| EEPROM Size                | -                                                                |
| RAM Size                   | 8K x 8                                                           |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                      |
| Data Converters            | A/D 28x12b; D/A 2x10b                                            |
| Oscillator Type            | Internal                                                         |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                |
| Mounting Type              | Surface Mount                                                    |
| Package / Case             | 64-TQFP                                                          |
| Supplier Device Package    | 64-TQFP (10x10)                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/silicon-labs/sim3c136-b-gqr |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 1. Related Documents and Conventions

# 1.1. Related Documents

This data sheet accompanies several documents to provide the complete description of the SiM3C1xx device family.

### 1.1.1. SiM3U1xx/SiM3C1xx Reference Manual

The Silicon Laboratories SiM3U1xx/SiM3C1xx Reference Manual provides detailed functional descriptions for the SiM3C1xx devices.

### 1.1.2. Hardware Access Layer (HAL) API Description

The Silicon Laboratories Hardware Access Layer (HAL) API provides C-language functions to modify and read each bit in the SiM3C1xx devices. This description can be found in the SiM3xxxx HAL API Reference Manual.

### 1.1.3. ARM Cortex-M3 Reference Manual

The ARM-specific features like the Nested Vector Interrupt Controller are described in the ARM Cortex-M3 reference documentation. The online reference manual can be found here: http://infocenter.arm.com/help/topic/com.arm.doc.subset.cortexm.m3/index.html#cortexm3.

### 1.2. Conventions

The block diagrams in this document use the following formatting conventions:



Figure 1.1. Block Diagram Conventions



### Table 3.2. Power Consumption

| Parameter                                                                     | Symbol          | Test Condition                                          | Min      | Тур  | Max  | Unit |
|-------------------------------------------------------------------------------|-----------------|---------------------------------------------------------|----------|------|------|------|
| Digital Core Supply Current                                                   | <u> </u>        |                                                         | -        |      |      |      |
| Normal Mode <sup>2,3,4,5</sup> —Full speed<br>with code executing from Flash, | I <sub>DD</sub> | F <sub>AHB</sub> = 80 MHz,<br>F <sub>APB</sub> = 40 MHz | -        | 33   | 36.5 | mA   |
| peripheral clocks ON                                                          |                 | $F_{AHB} = F_{APB} = 20 \text{ MHz}$                    | _        | 10.5 | 13.3 | mA   |
|                                                                               |                 | $F_{AHB} = F_{APB} = 2.5 \text{ MHz}$                   |          | 2.0  | 3.8  | mA   |
| Normal Mode <sup>2,3,4,5</sup> —Full speed<br>with code executing from Flash, | I <sub>DD</sub> | F <sub>AHB</sub> = 80 MHz,<br>F <sub>APB</sub> = 40 MHz | <u> </u> | 22   | 24.9 | mA   |
| peripheral clocks OFF                                                         |                 | $F_{AHB} = F_{APB} = 20 \text{ MHz}$                    |          | 7.8  | 10   | mA   |
|                                                                               |                 | $F_{AHB} = F_{APB} = 2.5 \text{ MHz}$                   | <u> </u> | 1.2  | 3    | mA   |
| Power Mode 1 <sup>2,3,4,6</sup> —Full speed<br>with code executing from RAM,  | I <sub>DD</sub> | F <sub>AHB</sub> = 80 MHz,<br>F <sub>APB</sub> = 40 MHz | —        | 30.5 | 35.5 | mA   |
| peripheral clocks UN                                                          |                 | $F_{AHB} = F_{APB} = 20 \text{ MHz}$                    | _        | 8.5  | _    | mA   |
|                                                                               |                 | $F_{AHB} = F_{APB} = 2.5 \text{ MHz}$                   | _        | 1.7  | _    | mA   |
| Power Mode 1 <sup>2,3,4,6</sup> —Full speed<br>with code executing from RAM,  | I <sub>DD</sub> | F <sub>AHB</sub> = 80 MHz,<br>F <sub>APB</sub> = 40 MHz | -        | 20   | 23   | mA   |
| peripheral clocks OFF                                                         |                 | $F_{AHB} = F_{APB} = 20 \text{ MHz}$                    | —        | 5.3  | _    | mA   |
|                                                                               |                 | F <sub>AHB</sub> = F <sub>APB</sub> = 2.5 MHz           | —        | 1.0  | _    | mA   |
| Power Mode 2 <sup>2,3,4</sup> —Core halted with peripheral clocks ON          | I <sub>DD</sub> | F <sub>AHB</sub> = 80 MHz,<br>F <sub>APB</sub> = 40 MHz | -        | 19   | 22   | mA   |
|                                                                               |                 | $F_{AHB} = F_{APB} = 20 \text{ MHz}$                    | _        | 7.8  | _    | mA   |
|                                                                               |                 | $F_{AHB} = F_{APB} = 2.5 \text{ MHz}$                   | _        | 1.3  | _    | mA   |
| Power Mode 3 <sup>2,3</sup>                                                   | I <sub>DD</sub> | V <sub>DD</sub> = 1.8 V, T <sub>A</sub> = 25 °C         | _        | 175  | _    | μA   |
|                                                                               |                 | V <sub>DD</sub> = 3.0 V, T <sub>A</sub> = 25 °C         |          | 250  | _    | μA   |

Notes:

1. Perhipheral currents drop to zero when peripheral clock and peripheral are disabled, unless otherwise noted.

2. Currents are additive. For example, where  $I_{DD}$  is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

3. Includes all peripherals that cannot have clocks gated in the Clock Control module.

4. Includes supply current from internal regulator and PLL0OSC (>20 MHz) or LPOSC0 (<=20 MHz).

5. Flash execution numbers use 2 wait states for 80 MHz and 0 wait states at 20 MHz or less.

6. RAM execution numbers use 0 wait states for all frequencies.

7. IDAC output current and IVC input current not included.

8. Bias current only. Does not include dynamic current from oscillator running at speed.



### Table 3.2. Power Consumption (Continued)

| Parameter                                                                      | Symbol              | Test Condition                                                                | Min | Тур | Max | Unit |
|--------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------|-----|-----|-----|------|
| Power Mode 9 <sup>2,3</sup> —Low Power<br>Shutdown with VREG0 disabled,        | I <sub>DD</sub>     | RTC Disabled,<br>V <sub>DD</sub> = 1.8 V, T <sub>A</sub> = 25 °C              | _   | 85  | _   | nA   |
| powered through VDD and VIO                                                    |                     | RTC w/ 16.4 kHz LFO,<br>V <sub>DD</sub> = 1.8 V, T <sub>A</sub> = 25 °C       |     | 350 |     | nA   |
|                                                                                |                     | RTC w/ 32.768 kHz Crystal,<br>V <sub>DD</sub> = 1.8 V, T <sub>A</sub> = 25 °C |     | 620 |     | nA   |
|                                                                                |                     | RTC Disabled,<br>V <sub>DD</sub> = 3.0 V, T <sub>A</sub> = 25 °C              | _   | 145 | _   | nA   |
|                                                                                |                     | RTC w/ 16.4 kHz LFO,<br>V <sub>DD</sub> = 3.0 V, T <sub>A</sub> = 25 °C       |     | 500 | _   | nA   |
|                                                                                |                     | RTC w/ 32.768 kHz Crystal,<br>V <sub>DD</sub> = 3.0 V, T <sub>A</sub> = 25 °C |     | 800 | _   | nA   |
| Power Mode 9 <sup>2,3</sup> —Low Power<br>Shutdown with VREG0 in Iow-          | I <sub>VREGIN</sub> | RTC Disabled,<br>VREGIN = 5 V, T <sub>A</sub> = 25 °C                         | _   | 300 |     | nA   |
| power mode, VDD and VIO pow-<br>ered through VREG0 (Includes<br>VREG0 current) |                     | RTC w/ 16.4 kHz LFO,<br>VREGIN = 5 V, T <sub>A</sub> = 25 °C                  |     | 650 |     | nA   |
|                                                                                |                     | RTC w/ 32.768 kHz Crystal,<br>VREGIN = 5 V, T <sub>A</sub> = 25 °C            |     | 950 | _   | nA   |
| VIOHD Current (High-drive I/O dis-                                             | I <sub>VIOHD</sub>  | HV Mode (default)                                                             | _   | 2.5 | 5   | μA   |
| abled)                                                                         |                     | LV Mode                                                                       | _   | 2   | _   | nA   |

Notes:

1. Perhipheral currents drop to zero when peripheral clock and peripheral are disabled, unless otherwise noted.

 Currents are additive. For example, where I<sub>DD</sub> is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

3. Includes all peripherals that cannot have clocks gated in the Clock Control module.

- 4. Includes supply current from internal regulator and PLL0OSC (>20 MHz) or LPOSC0 (<=20 MHz).
- 5. Flash execution numbers use 2 wait states for 80 MHz and 0 wait states at 20 MHz or less.
- 6. RAM execution numbers use 0 wait states for all frequencies.
- 7. IDAC output current and IVC input current not included.

8. Bias current only. Does not include dynamic current from oscillator running at speed.



# Table 3.4. Reset and Supply Monitor

| Parameter                                                            | Symbol             | Test Condition                                                | Min  | Тур  | Max  | Unit |
|----------------------------------------------------------------------|--------------------|---------------------------------------------------------------|------|------|------|------|
| V <sub>DD</sub> High Supply Monitor Threshold                        | V <sub>VDDMH</sub> | Early Warning                                                 | 2.10 | 2.20 | 2.30 | V    |
| (VDDHITHEN = 1)                                                      |                    | Reset                                                         | 1.95 | 2.05 | 2.1  | V    |
| V <sub>DD</sub> Low Supply Monitor Threshold                         | $V_{VDDML}$        | Early Warning                                                 | 1.81 | 1.85 | 1.88 | V    |
| (VDDHITHEN = 0)                                                      |                    | Reset                                                         | 1.70 | 1.74 | 1.77 | V    |
| V <sub>REGIN</sub> Supply Monitor Threshold                          | V <sub>VREGM</sub> | Early Warning                                                 | 4.2  | 4.4  | 4.6  | V    |
| Power-On Reset (POR) Threshold                                       | V <sub>POR</sub>   | Rising Voltage on $V_{DD}$                                    |      | 1.4  | —    | V    |
|                                                                      |                    | Falling Voltage on $V_{DD}$                                   | 0.8  | 1    | 1.3  | V    |
| V <sub>DD</sub> Ramp Time                                            | t <sub>RMP</sub>   | Time to $V_{DD} \ge 1.8 V$                                    | 10   |      | 3000 | μs   |
| Reset Delay from POR                                                 | t <sub>POR</sub>   | Relative to V <sub>DD</sub> ≥<br>V <sub>POR</sub>             | 3    |      | 100  | ms   |
| Reset Delay from non-POR source                                      | t <sub>RST</sub>   | Time between release<br>of reset source and<br>code execution | —    | 10   |      | μs   |
| RESET Low Time to Generate Reset                                     | t <sub>RSTL</sub>  |                                                               | 50   |      | _    | ns   |
| Missing Clock Detector Response<br>Time (final rising edge to reset) | t <sub>MCD</sub>   | F <sub>AHB</sub> > 1 MHz                                      |      | 0.4  | 1    | ms   |
| Missing Clock Detector Trigger<br>Frequency                          | F <sub>MCD</sub>   |                                                               |      | 7.5  | 13   | kHz  |
| V <sub>DD</sub> Supply Monitor Turn-On Time                          | t <sub>MON</sub>   |                                                               | _    | 2    |      | μs   |



| Parameter                                                                       | Symbol             | Test Condition                                                                                                | Min      | Тур         | Мах          | Unit        |
|---------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------|----------|-------------|--------------|-------------|
| 3.3 V Regulator Characteristics (VRI                                            | EG0, Supp          | olied from VREGIN Pin)                                                                                        |          | •           | •            | -1          |
| Output Voltage (at VDD pin)                                                     | V <sub>DDOUT</sub> | $4 \le V_{\text{REGIN}} \le 5.5$<br>BGDIS = 0, SUSEN = 0                                                      | 3.15     | 3.3         | 3.4          | V           |
|                                                                                 |                    | $4 \le V_{REGIN} \le 5.5$<br>BGDIS = 0, SUSEN = 1                                                             | 3.15     | 3.3         | 3.4          | V           |
|                                                                                 |                    | $\begin{array}{l} 4 \leq V_{REGIN} \leq 5.5 \\ BGDIS = 1,  SUSEN = X \\ I_{DDOUT} = 500 \; \mu A \end{array}$ | 2.3      | 2.8         | 3.6          | V           |
|                                                                                 |                    | $4 \le V_{REGIN} \le 5.5$<br>BGDIS = 1, SUSEN = X<br>I <sub>DDOUT</sub> = 5 mA                                | 2.1      | 2.65        | 3.3          | V           |
| Output Current (at VDD pin)*                                                    | IDDOUT             | $4 \le V_{\text{REGIN}} \le 5.5$<br>BGDIS = 0, SUSEN = X                                                      | _        |             | 150          | mA          |
|                                                                                 |                    | $4 \le V_{\text{REGIN}} \le 5.5$<br>BGDIS = 1, SUSEN = X                                                      | _        |             | 5            | mA          |
| Output Load Regulation                                                          | V <sub>DDLR</sub>  | BGDIS = 0                                                                                                     | _        | 0.1         | 1            | mV/mA       |
| Output Capacitance                                                              | C <sub>VDD</sub>   |                                                                                                               | 1        |             | 10           | μF          |
| *Note: Total current VREG0 is capable of p<br>external devices powered from VDE | providing. A<br>). | ny current consumed by the S                                                                                  | SiM3C1xx | reduces the | e current av | vailable to |

# Table 3.5. On-Chip Regulators



# Table 3.8. Internal Oscillators (Continued)

| Parameter                                   | Symbol               | Test Condition                                     | Min   | Тур  | Max   | Unit   |
|---------------------------------------------|----------------------|----------------------------------------------------|-------|------|-------|--------|
| Low Power Oscillator (LPOSC0)               |                      |                                                    |       |      |       |        |
| Oscillator Frequency                        | f <sub>LPOSC</sub>   | Full Temperature and<br>Supply Range               | 19    | 20   | 21    | MHz    |
|                                             |                      | T <sub>A</sub> = 25 °C,<br>V <sub>DD</sub> = 3.3 V | 19.5  | 20   | 20.5  | MHz    |
| Divided Oscillator Frequency                | f <sub>LPOSCD</sub>  | Full Temperature and<br>Supply Range               | 2.375 | 2.5  | 2.625 | MHz    |
| Power Supply Sensitivity                    | PSS <sub>LPOSC</sub> | T <sub>A</sub> = 25 °C                             | _     | 0.5  |       | %/V    |
| Temperature Sensitivity                     | TS <sub>LPOSC</sub>  | V <sub>DD</sub> = 3.3 V                            |       | 55   |       | ppm/°C |
| Low Frequency Oscillator (LFOS              | C0)                  |                                                    |       |      |       |        |
| Oscillator Frequency                        | f <sub>LFOSC</sub>   | Full Temperature and<br>Supply Range               | 13.4  | 16.4 | 19.7  | kHz    |
|                                             |                      | T <sub>A</sub> = 25 °C,<br>V <sub>DD</sub> = 3.3 V | 15.8  | 16.4 | 17.3  | kHz    |
| Power Supply Sensitivity                    | PSS <sub>LFOSC</sub> | T <sub>A</sub> = 25 °C                             |       | 2.4  | _     | %/V    |
| Temperature Sensitivity                     | TS <sub>LFOSC</sub>  | V <sub>DD</sub> = 3.3 V                            |       | 0.2  |       | %/°C   |
| RTC0 Oscillator (RTC0OSC)                   |                      |                                                    |       |      |       |        |
| Missing Clock Detector Trigger<br>Frequency | f <sub>RTCMCD</sub>  |                                                    | _     | 8    | 15    | kHz    |
| RTC Robust Duty Cycle Range                 | DC <sub>RTC</sub>    |                                                    | 25    | _    | 55    | %      |
| *Note: PLL0OSC in free-running oscill       | ator mode.           | ·                                                  |       |      |       |        |

# Table 3.9. External Oscillator

| Parameter                                         | Symbol             | Test Condition | Min  | Тур | Max | Unit |  |
|---------------------------------------------------|--------------------|----------------|------|-----|-----|------|--|
| External Input CMOS Clock<br>Frequency*           | f <sub>CMOS</sub>  |                | 0    |     | 50  | MHz  |  |
| External Input CMOS Clock High Time               | t <sub>CMOSH</sub> |                | 9    |     | —   | ns   |  |
| External Input CMOS Clock Low Time                | t <sub>CMOSL</sub> |                | 9    |     | —   | ns   |  |
| External Crystal Clock Frequency                  | f <sub>XTAL</sub>  |                | 0.01 |     | 30  | MHz  |  |
| *Note: Minimum of 10 kHz during debug operations. |                    |                |      |     |     |      |  |



# Table 3.17. Port I/O

| Parameter                                                                          | Symbol          | Test Condition                                                                                  | Min                     | Тур         | Max | Unit |
|------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------|-------------------------|-------------|-----|------|
| Standard I/O (PB0, PB1, and PB2)                                                   | , 5 V Tole      | rant I/O (PB3), and RESE                                                                        | T                       |             | Į   |      |
| Output High Voltage*                                                               | V <sub>OH</sub> | Low Drive, I <sub>OH</sub> = -2 mA                                                              | V <sub>IO</sub> – 0.7   | _           |     | V    |
|                                                                                    |                 | High Drive, $I_{OH} = -5 \text{ mA}$                                                            | V <sub>IO</sub> – 0.7   |             |     | V    |
| Output Low Voltage*                                                                | V <sub>OL</sub> | Low Drive, I <sub>OL</sub> = 3 mA                                                               | _                       |             | 0.6 | V    |
|                                                                                    |                 | High Drive,<br>I <sub>OL</sub> = 12.5 mA                                                        | —                       |             | 0.6 | V    |
| Input High Voltage                                                                 | V <sub>IH</sub> | 1.8 ≤ V <sub>IO</sub> ≤ 2.0                                                                     | 0.7 x V <sub>IO</sub>   |             |     | V    |
|                                                                                    |                 | $2.0 \le V_{IO} \le 3.6$                                                                        | V <sub>IO</sub> – 0.6   |             |     | V    |
| Input Low Voltage                                                                  | V <sub>IL</sub> |                                                                                                 | _                       |             | 0.6 | V    |
| Pin Capacitance                                                                    | C <sub>IO</sub> | PB0, PB1 and PB2 Pins                                                                           |                         | 4           | —   | pF   |
|                                                                                    |                 | PB3 Pins                                                                                        | _                       | 7           |     | pF   |
| Weak Pull-Up Current                                                               | I <sub>PU</sub> | V <sub>IO</sub> = 1.8                                                                           | -6                      | -3.5        | -2  | μA   |
| (Input Voltage = 0 V)                                                              |                 | V <sub>IO</sub> = 3.6                                                                           | -30                     | -20         | -10 | μA   |
| Input Leakage<br>(Pullups off or Analog)                                           | I <sub>LK</sub> | $0 \le V_{IN} \le V_{IO}$                                                                       | -1                      | —           | 1   | μA   |
| Input Leakage Current of Port<br>Bank 3 I/O, V <sub>IN</sub> above V <sub>IO</sub> | ΙL              | V <sub>IO</sub> < V <sub>IN</sub> < V <sub>IO</sub> +2.0 V<br>(pins without EXREG<br>functions) | 0                       | 5           | 150 | μA   |
|                                                                                    |                 | V <sub>IO</sub> < V <sub>IN</sub> < V <sub>REGIN</sub><br>(pins with EXREG<br>functions)        | 0                       | 5           | 150 | μA   |
| High Drive I/O (PB4)                                                               | <del></del>     |                                                                                                 |                         |             | 1   | T.,  |
| Output High Voltage                                                                | V <sub>OH</sub> | Standard Mode, Low<br>Drive, I <sub>OH</sub> = –3 mA                                            | V <sub>IOHD</sub> – 0.7 |             | _   | V    |
|                                                                                    |                 | Standard Mode, High<br>Drive, I <sub>OH</sub> = -10 mA                                          | V <sub>IOHD</sub> – 0.7 |             | _   | V    |
| Output Low Voltage                                                                 | V <sub>OL</sub> | Standard Mode, Low<br>Drive, I <sub>OH</sub> = 3 mA                                             | —                       |             | 0.6 | V    |
|                                                                                    |                 | Standard Mode, High<br>Drive, I <sub>OH</sub> = 12.5 mA                                         | —                       |             | 0.6 | V    |
| Output Rise Time                                                                   | t <sub>R</sub>  | Slew Rate Mode 0,<br>V <sub>IOHD</sub> = 5 V                                                    | —                       | 50          | —   | ns   |
|                                                                                    |                 | Slew Rate Mode 1,<br>V <sub>IOHD</sub> = 5 V                                                    | —                       | 300         | —   | ns   |
|                                                                                    |                 | Slew Rate Mode 2,<br>V <sub>IOHD</sub> = 5 V                                                    | —                       | 1           | —   | μs   |
|                                                                                    |                 | Slew Rate Mode 3,<br>V <sub>IOHD</sub> = 5 V                                                    | —                       | 3           | —   | μs   |
| *Note: RESET does not drive to logic h                                             | igh. Specifi    | cations for RESET V <sub>OL</sub> adher                                                         | re to the low driv      | ve setting. |     |      |









Figure 3.2. Maximum Source Current vs. PB4.x Pin Voltage



# 3.2. Thermal Conditions

### Table 3.18. Thermal Conditions

| Parameter                                                                                       | Symbol        | Test Condition   | Min | Тур | Max | Unit |  |  |
|-------------------------------------------------------------------------------------------------|---------------|------------------|-----|-----|-----|------|--|--|
| Thermal Resistance*                                                                             | $\theta_{JA}$ | LGA-92 Packages  |     | 35  |     | °C/W |  |  |
|                                                                                                 |               | TQFP-80 Packages |     | 40  |     | °C/W |  |  |
|                                                                                                 |               | QFN-64 Packages  |     | 25  |     | °C/W |  |  |
|                                                                                                 |               | TQFP-64 Packages |     | 30  |     | °C/W |  |  |
|                                                                                                 |               | QFN-40 Packages  |     | 30  |     | °C/W |  |  |
| *Note: Thermal resistance assumes a multi-layer PCB with any exposed pad soldered to a PCB pad. |               |                  |     |     |     |      |  |  |

## 3.3. Absolute Maximum Ratings

Stresses above those listed under Table 3.19 may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

### Table 3.19. Absolute Maximum Ratings

| Parameter                      | Symbol                     | Test Condition                 | Min                    | Max                    | Unit |
|--------------------------------|----------------------------|--------------------------------|------------------------|------------------------|------|
| Ambient Temperature Under Bias | T <sub>BIAS</sub>          |                                | -55                    | 125                    | °C   |
| Storage Temperature            | T <sub>STG</sub>           |                                | -65                    | 150                    | °C   |
| Voltage on VDD                 | V <sub>DD</sub>            |                                | V <sub>SS</sub> –0.3   | 4.2                    | V    |
| Voltage on VREGIN              | V <sub>REGIN</sub> EXTVREG |                                | V <sub>SS</sub> –0.3   | 6.0                    | V    |
|                                |                            | EXTVREG0 Used                  | V <sub>SS</sub> –0.3   | 3.6                    | V    |
| Voltage on VIO                 | V <sub>IO</sub>            |                                | V <sub>SS</sub> –0.3   | 4.2                    | V    |
| Voltage on VIOHD               | V <sub>IOHD</sub>          |                                | V <sub>SS</sub> –0.3   | 6.5                    | V    |
| Voltage on I/O pins,           | V <sub>IN</sub>            | RESET, V <sub>IO</sub> ≥ 3.3 V | V <sub>SS</sub> –0.3   | 5.8                    | V    |
|                                |                            | RESET, V <sub>IO</sub> < 3.3 V | V <sub>SS</sub> –0.3   | V <sub>IO</sub> +2.5   | V    |
|                                |                            | Port Bank 0, 1, and 2 I/O      | V <sub>SS</sub> -0.3   | V <sub>IO</sub> +0.3   | V    |
|                                |                            | Port Bank 4 I/O                | V <sub>SSHD</sub> -0.3 | V <sub>IOHD</sub> +0.3 | V    |
|                                | 4                          | ·                              |                        |                        | ·    |

\*Note: VSS and VSSHD provide separate return current paths for device supplies, but are not isolated. They must always be connected to the same potential on board.



# 4.3. Clocking

The SiM3C1xx devices have two system clocks: AHB and APB. The AHB clock services memory peripherals and is derived from one of seven sources: the RTC0 timer clock (RTC0TCLK), the Low Frequency Oscillator, the Low Power Oscillator, the divided Low Power Oscillator, the External Oscillator, and the PLL0 Oscillator. In addition, a divider for the AHB clock provides flexible clock options for the device. The APB clock services data peripherals and is synchronized with the AHB clock. The APB clock can be equal to the AHB clock (if AHB is less than or equal to 50 MHz) or set to the AHB clock divided by two.

Clock Control allows the AHB and APB clocks to be turned off to unused peripherals to save system power. Any registers in a peripheral with disabled clocks will be unable to be accessed until the clocks are enabled. Most peripherals have clocks off by default after a power-on reset.





### 4.3.1. PLL (PLL0)

The PLL module consists of a dedicated Digitally-Controlled Oscillator (DCO) that can be used in Free-Running mode without a reference frequency, Frequency-Locked to a reference frequency, or Phase-Locked to a reference frequency. The reference frequency for Frequency-Lock and Phase-Lock modes can use one of multiple sources (including the external oscillator) to provide maximum flexibility for different application needs. Because the PLL module generates its own clock, the DCO can be locked to a particular reference frequency and then moved to Free-Running mode to reduce system power and noise.

The PLL module includes the following features:

- Five output ranges with output frequencies ranging from 23 to 80 MHz.
- Multiple reference frequency inputs.
- Three output modes: free-running DCO, frequency-locked, and phase-locked.
- Ability to sense the rising edge or falling edge of the reference source.
- DCO frequency LSB dithering to provide finer average output frequencies.
- Spectrum spreading to reduce generated system noise.
- Low jitter and fast lock times.
- Ability to suspend all output frequency updates (including dithering and spectrum spreading) using the STALL bit during jitter-sensitive operations.

#### 4.3.2. Low Power Oscillator (LPOSC0)

The Low Power Oscillator is the default AHB oscillator on SiM3C1xx devices and enables or disables automatically, as needed.

The Low Power Oscillator has the following features:

- 20 MHz and divided 2.5 MHz frequencies available for the AHB clock.
- Automatically starts and stops as needed.

#### 4.3.3. Low Frequency Oscillator (LFOSC0)

The low frequency oscillator (LFOSC0) provides a low power internal clock source running at approximately 16.4 kHz for the RTC0 timer and other peripherals on the device. No external components are required to use the low frequency oscillator

#### 4.3.4. External Oscillators (EXTOSC0)

The EXTOSC0 external oscillator circuit may drive an external crystal, ceramic resonator, capacitor, or RC network. A CMOS clock may also provide a clock input. The external oscillator output may be selected as the AHB clock or used to clock other modules independent of the AHB clock selection.

The External Oscillator control has the following features:

- Support for external crystal, RC, C, or CMOS oscillators.
- Support external CMOS frequencies from 10 kHz to 50 MHz and external crystal frequencies from 10 kHz to 30 MHz.
- Various drive strengths for flexible crystal oscillator support.
- Internal frequency divide-by-two option available.



#### 4.5.3. Real-Time Clock (RTC0)

The RTC0 module includes a 32-bit timer that allows up to 36 hours of independent time-keeping when used with a 32.768 kHz watch crystal. The RTC0 provides three alarm events in addition to a missing clock event, which can also function as interrupt, reset, or wakeup sources on SiM3C1xx devices.

The RTC0 module includes internal loading capacitors that are programmable to 16 discrete levels, allowing compatibility with a wide range of crystals.

The RTC0 output can be buffered and routed to a port bank pin to provide an accurate, low frequency clock to other devices while the core is in its lowest power down mode. The module also includes a low power internal low frequency oscillator that reduces low power mode current and is available for other modules to use as a clock source.

The RTC module includes the following features:

- 32-bit timer (supports up to 36 hours) with three separate alarms.
- Option for one alarm to automatically reset the RTC timer.
- Missing clock detector.
- Can be used with the internal low frequency oscillator (LFOSC0), an external 32.768 kHz crystal (no additional resistors or capacitors necessary), or with an external CMOS clock.
- Programmable internal loading capacitors support a wide range of external 32.768 kHz crystals.
- Operates directly from VDD and remains operational even when the device goes into its lowest power down mode.
- The RTC timer clock (RTC0TCLK) can be buffered and routed to an I/O pin to provide an accurate, low frequency clock to other devices while the core is in its lowest power down mode.

#### 4.5.4. Low Power Timer (LPTIMER0)

The Low Power Timer (LPTIMER0) module runs from the clock selected by the RTC0 module, allowing the LPTIMER0 to operate even if the AHB and APB clocks are disabled. The LPTIMER0 counter can increment using one of two clock sources: the clock selected by the RTC0 module, or rising or falling edges of an external signal.

The Low Power Timer includes the following features:

- Runs on a low-frequency clock (RTC0TCLK)
- The LPTIMER counter can increment using one of two clock sources: the RTC0TCLK or rising or falling edges of an external signal.
- Overflow and threshold-match detection, which can generate an interrupt, reset the timer, or wake some devices from low power modes.
- Timer reset on threshold-match allows square-wave generation at a variable output frequency.

#### 4.5.5. Watchdog Timer (WDTIMER0)

The WDTIMER0 module includes a 16-bit timer, a programmable early warning interrupt, and a programmable reset period. The timer registers are protected from inadvertent access by an independent lock and key interface.

The watchdog timer runs from the low frequency oscillator (LFOSC0).

The Watchdog Timer has the following features:

- Programmable timeout interval.
- Optional interrupt to warn when the Watchdog Timer is nearing the reset trip value.
- Lock-out feature to prevent any modification until a system reset.



# 4.7. Analog

### 4.7.1. 12-Bit Analog-to-Digital Converters (SARADC0, SARADC1)

The SARADC0 and SARADC1 modules on SiM3C1xx devices are Successive Approximation Register (SAR) Analog to Digital Converters (ADCs). The key features of the SARADC module are:

- Single-ended 12-bit and 10-bit modes.
- Supports an output update rate of 250 k samples per second in 12-bit mode or 1 M samples per second in 10-bit mode.
- Operation in low power modes at lower conversion speeds.
- Selectable asynchronous hardware conversion trigger with hardware channel select.
- Output data window comparator allows automatic range checking.
- Support for Burst Mode, which produces one set of accumulated data per conversion-start trigger with programmable power-on settling and tracking time.
- Conversion complete, multiple conversion complete, and FIFO overflow and underflow flags and interrupts supported.
- Flexible output data formatting.
- Sequencer allows up to 8 sources to be automatically scanned using one of four channel characteristic profiles without software intervention.
- Eight-word conversion data FIFO for DMA operations.
- Multiple SARADC modules can work together synchronously or by interleaving samples.
- Includes two internal references (1.65 V fast-settling, 1.2/2.4 V precision), support for an external reference, and support for an external signal ground.

#### 4.7.2. Sample Sync Generator (SSG0)

The SSG module includes a phase counter and a pulse generator. The phase counter is a 4-bit free-running counter clocked from the SARADC module clock. Counting-up from zero, the phase counter marks sixteen equally-spaced events for any number of SARADC modules. The ADCs can use this phase counter to start a conversion. The programmable pulse generator creates a 50% duty cycle pulse with a period of 16 phase counter ticks. Up to four programmable outputs available to external devices can be driven by the pulse generator with programmable polarity and a defined output setting when the pulse generator is stopped.

The Sample Sync Generator module has the following features:

- Connects multiple modules together to perform synchronized actions.
- Outputs a clock synchronized to the internal sampling clock used by any number of SARADC modules to pins for use by external devices.
- Includes a phase counter, pulse generator, and up to four programmable outputs.

#### 4.7.3. 10-Bit Digital-to-Analog Converter (IDAC0, IDAC1)

The IDAC takes a digital value as an input and outputs a proportional constant current on a pin. The IDAC module includes the following features:

- 10-bit current DAC with support for four timer, up to seven external I/O, on demand, and SSG0 output update triggers.
- Ability to update on rising, falling, or both edges for any of the external I/O trigger sources (DACnTx).
- Supports an output update rate greater than 600 k samples per second.
- Support for three full-scale output modes: 0.5 mA, 1.0 mA and 2.0 mA.
- Four-word FIFO to aid with high-speed waveform generation or DMA interactions.
- Individual FIFO overrun, underrun, and went-empty interrupt status sources.
- Support for multiple data packing formats, including: single 10-bit sample per word, dual 10-bit samples per word, or four 8-bit samples per word.
- Support for left- and right-justified data.



# 6.2. SiM3C1x6 Pin Definitions





| Pin Name           | Туре                                        | oin Numbers | Crossbar Capability<br>see Port Config Section) | Port Match   | <b>External Memory Interface</b><br>m = muxed mode) | Port-Mapped Level Shifter | <b>Dutput Toggle Logic</b> | External Trigger Inputs | Analog or Additional<br>Functions |
|--------------------|---------------------------------------------|-------------|-------------------------------------------------|--------------|-----------------------------------------------------|---------------------------|----------------------------|-------------------------|-----------------------------------|
| PB0.7              | Standard I/O                                | 50          | XBR0                                            | $\checkmark$ |                                                     |                           |                            |                         | RTC2                              |
| PB0.8              | Standard I/O                                | 49          | XBR0                                            | ~            |                                                     |                           |                            |                         | ADC0.9<br>VREFGND                 |
| PB0.9              | Standard I/O                                | 48          | XBR0                                            | ~            |                                                     |                           |                            |                         | ADC0.10<br>VREF                   |
| PB0.10             | Standard I/O                                | 47          | XBR0                                            | ~            |                                                     |                           |                            |                         | ADC1.6<br>IDAC0                   |
| PB0.11             | Standard I/O                                | 46          | XBR0                                            | $\checkmark$ |                                                     |                           |                            |                         | IDAC1                             |
| PB0.12             | Standard I/O                                | 45          | XBR0                                            | $\checkmark$ |                                                     |                           |                            |                         | XTAL1                             |
| PB0.13             | Standard I/O                                | 44          | XBR0                                            | $\checkmark$ |                                                     |                           |                            |                         | XTAL2                             |
| PB0.14/TDO/<br>SWV | Standard I/O / JTAG<br>/ Serial Wire Viewer | 43          | XBR0                                            | $\checkmark$ |                                                     |                           |                            |                         | ADC0.12<br>ADC1.12                |
| PB0.15/TDI         | Standard I/O / JTAG                         | 42          | XBR0                                            | <            |                                                     |                           |                            |                         | ADC0.13<br>ADC1.13                |
| PB1.0              | Standard I/O                                | 41          | XBR0                                            | ~            |                                                     |                           |                            |                         | ADC0.14<br>ADC1.14                |
| PB1.1              | Standard I/O                                | 40          | XBR0                                            | ~            |                                                     |                           |                            |                         | ADC0.15<br>ADC1.15                |
| PB1.2              | Standard I/O                                | 38          | XBR0                                            | ~            |                                                     |                           |                            |                         | ADC1.11<br>CS0.8                  |
| PB1.3              | Standard I/O                                | 37          | XBR0                                            | ~            |                                                     |                           |                            |                         | ADC1.10<br>CS0.9                  |
| PB1.4              | Standard I/O                                | 34          | XBR0                                            | $\checkmark$ |                                                     |                           |                            |                         | ADC1.8                            |
| PB1.5              | Standard I/O                                | 33          | XBR0                                            | $\checkmark$ |                                                     |                           |                            |                         | ADC1.7                            |
| PB1.6              | Standard I/O                                | 32          | XBR0                                            | ~            |                                                     |                           |                            | ADC0T15<br>WAKE.0       | ADC1.5<br>CS0.10                  |
| PB1.7              | Standard I/O                                | 31          | XBR0                                            | ~            | AD15m/<br>A7                                        |                           |                            | ADC1T15<br>WAKE.1       | ADC1.4<br>CS0.11                  |

# Table 6.2. Pin Definitions and alternate functions for SiM3C1x6 (Continued)





## 6.4. LGA-92 Package Specifications



| Table | 6.4. L | GA-92 | Package | <b>Dimensions</b> |
|-------|--------|-------|---------|-------------------|
|-------|--------|-------|---------|-------------------|

| Dimension | Min      | Nominal | Max  |
|-----------|----------|---------|------|
| Α         | 0.74     | 0.84    | 0.94 |
| b         | 0.25     | 0.30    | 0.35 |
| C         | 3.15     | 3.20    | 3.25 |
| D         | 7.00 BSC |         |      |
| D1        | 6.50 BSC |         |      |
| D2        | 4.00 BSC |         |      |
| e         | 0.50 BSC |         |      |
| E         | 7.00 BSC |         |      |
| E1        | 6.50 BSC |         |      |
| E2        | 4.00 BSC |         |      |
| aaa       | —        | —       | 0.10 |
| bbb       | —        | —       | 0.10 |
| CCC       | —        | —       | 0.08 |
| ddd       | —        | —       | 0.10 |
| eee       | —        | —       | 0.10 |
| Notes:    | •        |         |      |

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

**3.** Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.



### 6.5.1. TQFP-80 Solder Mask Design

All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

### 6.5.2. TQFP-80 Stencil Design

- 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- 3. The ratio of stencil aperture to land pad size should be 1:1 for all pads.

#### 6.5.3. TQFP-80 Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.





### Figure 6.11. QFN-64 Landing Diagram

| Dimension | mm   |  |
|-----------|------|--|
| C1        | 8.90 |  |
| C2        | 8.90 |  |
| E         | 0.50 |  |
| X1        | 0.30 |  |
| Y1        | 0.85 |  |
| X2        | 4.25 |  |
| Y2        | 4.25 |  |
| Notes:    | •    |  |

### Table 6.9. QFN-64 Landing Diagram Dimensions

- 1. All dimensions shown are in millimeters (mm).
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.



# SiM3C1xx

# 6.8. QFN-40 Package Specifications



Figure 6.14. QFN-40 Package Drawing

| Dimension | Min      | Nominal | Max  |
|-----------|----------|---------|------|
| Α         | 0.80     | 0.85    | 0.90 |
| A1        | 0.00     | 0.02    | 0.05 |
| b         | 0.18     | 0.25    | 0.30 |
| D         | 6.00 BSC |         |      |
| D2        | 4.35     | 4.50    | 4.65 |
| е         | 0.50 BSC |         |      |
| E         | 6.00 BSC |         |      |
| E2        | 4.35     | 4.5     | 4.65 |
| L         | 0.30     | 0.40    | 0.50 |
| aaa       | 0.10     |         |      |
| bbb       | 0.10     |         |      |
| CCC       | 0.08     |         |      |
| ddd       | 0.10     |         |      |
| eee       | 0.05     |         |      |
|           |          |         |      |

### Table 6.12. QFN-40 Package Dimensions

Notes:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- 3. This package outline conforms to JEDEC MO-220.
- **4.** Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.





Figure 6.15. QFN-40 Landing Diagram

| Dimension | mm   |  |
|-----------|------|--|
| C1        | 5.90 |  |
| C2        | 5.90 |  |
| E         | 0.50 |  |
| X1        | 0.30 |  |
| Y1        | 0.85 |  |
| X2        | 4.65 |  |
| Y2        | 4.65 |  |
|           |      |  |

# Table 6.13. QFN-40 Landing Diagram Dimensions

Notes:

- 1. All dimensions shown are in millimeters (mm).
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- **3.** All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a
  - Fabrication Allowance of 0.05 mm.

