
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	28
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 18x12b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-VFQFN Exposed Pad
Supplier Device Package	40-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/sim3c144-b-gm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 3.2. Power Consumption (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit			
Flash Current on VDD									
Write Operation	I _{FLASH-W}		_		8	mA			
Erase Operation	I _{FLASH-E}		_		15	mA			
Notes:	· · ·				•	•			

Notes:

- 1. Perhipheral currents drop to zero when peripheral clock and peripheral are disabled, unless otherwise noted.
- Currents are additive. For example, where I_{DD} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.
- 3. Includes all peripherals that cannot have clocks gated in the Clock Control module.
- 4. Includes supply current from internal regulator and PLL0OSC (>20 MHz) or LPOSC0 (<=20 MHz).
- 5. Flash execution numbers use 2 wait states for 80 MHz and 0 wait states at 20 MHz or less.
- 6. RAM execution numbers use 0 wait states for all frequencies.
- 7. IDAC output current and IVC input current not included.
- 8. Bias current only. Does not include dynamic current from oscillator running at speed.

Table 3.3. Power Mode Wake Up Times

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Power Mode 2 Wake Time	t _{PM2}		4		5	clocks
Power Mode 3 Fast Wake Time	t _{PM3FW}		_	425	—	μs
Power Mode 9 Wake Time	t _{PM9}			12		μs

Table 3.8. Internal Oscillators (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Low Power Oscillator (LPOSC0)			1	I		
Oscillator Frequency	f _{LPOSC}	Full Temperature and Supply Range	19	20	21	MHz
		T _A = 25 °C, V _{DD} = 3.3 V	19.5	20	20.5	MHz
Divided Oscillator Frequency	f _{LPOSCD}	Full Temperature and Supply Range	2.375	2.5	2.625	MHz
Power Supply Sensitivity	PSS _{LPOSC}	T _A = 25 °C		0.5	—	%/V
Temperature Sensitivity	TS _{LPOSC}	V _{DD} = 3.3 V		55		ppm/°C
Low Frequency Oscillator (LFO	SCO)				1	
Oscillator Frequency	f _{LFOSC}	Full Temperature and Supply Range	13.4	16.4	19.7	kHz
		T _A = 25 °C, V _{DD} = 3.3 V	15.8	16.4	17.3	kHz
Power Supply Sensitivity	PSS _{LFOSC}	T _A = 25 °C	_	2.4		%/V
Temperature Sensitivity	TS _{LFOSC}	V _{DD} = 3.3 V	_	0.2		%/°C
RTC0 Oscillator (RTC0OSC)			I		1	4
Missing Clock Detector Trigger Frequency	f _{RTCMCD}			8	15	kHz
RTC Robust Duty Cycle Range	DC _{RTC}		25	_	55	%
*Note: PLL0OSC in free-running osci	llator mode.	1	1	1	1	1

Table 3.9. External Oscillator

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit		
External Input CMOS Clock Frequency*	f _{CMOS}		0	_	50	MHz		
External Input CMOS Clock High Time	t _{CMOSH}		9	_		ns		
External Input CMOS Clock Low Time	t _{CMOSL}		9			ns		
External Crystal Clock Frequency	f _{XTAL}		0.01	—	30	MHz		
*Note: Minimum of 10 kHz during debug operations.								

Table 3.10. SAR ADC (Continued)

Symbol	Test Condition	Min	Тур	Max	Unit
DNL	12 Bit Mode ²	-1	±0.7	1.8	LSB
	10 Bit Mode		±0.2	±0.5	LSB
E _{OFF}	12 Bit Mode, VREF =2.4 V	-2	0	2	LSB
	10 Bit Mode, VREF =2.4 V	-1	0	1	LSB
TC _{OFF}			0.004		LSB/°C
E _M	12 Bit Mode	-0.07	-0.02	0.02	%
Hz Sine Way	ve Input 1 dB below full scale	, Max th	roughpu	it	
SNR	12 Bit Mode	62	66	_	dB
	10 Bit Mode	58	60		dB
SNDR	12 Bit Mode	62	66	_	dB
	10 Bit Mode	58	60	_	dB
THD	12 Bit Mode		78		dB
	10 Bit Mode		77	_	dB
SFDR	12 Bit Mode		-79		dB
	10 Bit Mode		-74		dB
	DNL E _{OFF} TC _{OFF} E _M Hz Sine Wav SNR SNDR THD	$\begin{tabular}{ c c c c } \hline DNL & 12 & Bit & Mode^2 \\ \hline 10 & Bit & Mode \\ \hline E_{OFF} & 12 & Bit & Mode, & VREF = 2.4 & V \\ \hline 10 & Bit & Mode, & VREF = 2.4 & V \\ \hline TC_{OFF} & & & & & \\ \hline E_M & 12 & Bit & Mode \\ \hline Hz & Sine & Wave & Input 1 & dB & below & full & scale \\ \hline SNR & 12 & Bit & Mode \\ \hline SNR & 12 & Bit & Mode \\ \hline 10 & Bit & Mode \\ \hline SNDR & 12 & Bit & Mode \\ \hline THD & 12 & Bit & Mode \\ \hline THD & 12 & Bit & Mode \\ \hline SFDR & 12 & Bit & Mode \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c } \hline \mathbf{DNL} & $12 \mbox{ Bit Mode}^2$ & -1 \\ \hline $10 \mbox{ Bit Mode}$ & $$ \\ \hline $12 \mbox{ Bit Mode}$, $VREF = $2.4 \ V$ & -2 \\ \hline $10 \mbox{ Bit Mode}$, $VREF = $2.4 \ V$ & -1 \\ \hline $10 \mbox{ Bit Mode}$, $VREF = $2.4 \ V$ & -1 \\ \hline $10 \mbox{ Bit Mode}$, $VREF = $2.4 \ V$ & -1 \\ \hline $10 \mbox{ Bit Mode}$, $VREF = $2.4 \ V$ & -1 \\ \hline $10 \mbox{ Bit Mode}$, $VREF = $2.4 \ V$ & -1 \\ \hline $10 \mbox{ Bit Mode}$, $VREF = $2.4 \ V$ & -1 \\ \hline $10 \mbox{ Bit Mode}$, $VREF = $2.4 \ V$ & -1 \\ \hline $10 \mbox{ Bit Mode}$, $VREF = $2.4 \ V$ & -1 \\ \hline $10 \mbox{ Bit Mode}$, $VREF = $2.4 \ V$ & -1 \\ \hline $10 \mbox{ Bit Mode}$, $VREF = $2.4 \ V$ & -1 \\ \hline -1 \\ \hline $10 \mbox{ Bit Mode}$, -0.07 \\ \hline $12 \mbox{ Bit Mode}$, $12 \mbox{ Bit Mode}$, -1 \\ \hline $10 \mbox{ Bit Mode}$, -1 \\$	$\begin{tabular}{ c c c c c } \hline DNL & 12 & Bit & Mode^2 & -1 & \pm 0.7 \\ \hline 10 & Bit & Mode & & \pm 0.2 \\ \hline 10 & Bit & Mode, & VREF = 2.4 & V & -2 & 0 \\ \hline 10 & Bit & Mode, & VREF = 2.4 & V & -1 & 0 \\ \hline TC_{OFF} & & & 0.004 \\ \hline E_M & 12 & Bit & Mode & -0.07 & -0.02 \\ \hline Hz & Sine & Wave Input 1 & dB & below full & scale, & Max throughput \\ \hline SNR & 12 & Bit & Mode & 62 & 66 \\ \hline 10 & Bit & Mode & 58 & 60 \\ \hline SNDR & 12 & Bit & Mode & 58 & 60 \\ \hline THD & 12 & Bit & Mode & & 78 \\ \hline 10 & Bit & Mode & & 78 \\ \hline 10 & Bit & Mode & & 77 \\ \hline SFDR & 12 & Bit & Mode & & -79 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c } \hline 12 Bit Mode^2 & -1 & \pm 0.7 & 1.8 \\ \hline 10 Bit Mode & & \pm 0.2 & \pm 0.5 \\ \hline 12 Bit Mode, VREF = 2.4 V & -2 & 0 & 2 \\ \hline 10 Bit Mode, VREF = 2.4 V & -1 & 0 & 1 \\ \hline TC_{OFF} & & 0.004 & \\ \hline 10 Bit Mode, VREF = 2.4 V & -1 & 0 & 1 \\ \hline TC_{OFF} & & 0.004 & \\ \hline 10 Bit Mode & -0.07 & -0.02 & 0.02 \\ \hline Hz Sine Wave Input 1 dB below full scale, Max throughput \\ \hline SNR & 12 Bit Mode & 62 & 66 & \\ \hline 10 Bit Mode & 58 & 60 & \\ \hline 10 Bit Mode & 58 & 60 & \\ \hline 10 Bit Mode & 58 & 60 & \\ \hline 10 Bit Mode & 58 & 60 & \\ \hline 10 Bit Mode & 58 & 60 & \\ \hline 10 Bit Mode & -78 & \\ \hline 10 Bit Mode & $ 78 & \\ \hline 10 Bit Mode & $ 77 & \\ \hline $SFDR$ & 12 Bit Mode & $ 77 & \\ \hline $SFDR$ & 12 Bit Mode & $ 77 & \\ \hline \end{tabular}$

Notes:

1. Absolute input pin voltage is limited by the lower of the supply at VDD and VIO.

2. INL and DNL specifications for 12-bit mode do not include the first or last four ADC codes.

3. The maximum code in 12-bit mode is 0xFFFC. The Slope Error is referenced from the maximum code.

Table 3.12. Capacitive Sense

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Single Conversion Time	t _{single}	12-bit Mode		25	_	μs
(Default Configuration)		13-bit Mode	_	27		μs
		14-bit Mode	_	29		μs
		16-bit Mode	_	33		μs
Maximum External Capacitive Load	CL	Highest Gain Setting (default)	_	45		pF
		Lowest Gain Setting	_	500		pF
Maximum External Series Impedance	CL	Highest Gain Setting (default)	_	50		kΩ

Table 3.13. Current-to-Voltage Converter (IVC)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supply Voltage (VDD)	V _{DDIVC}		2.2		3.6	V
Input Pin Voltage	V _{IN}		2.2		VDD	V
Minimum Input Current (source)	I _{IN}		100	_	_	μA
Integral Nonlinearity	INL _{IVC}		-0.6		0.6	%
Full Scale Output	V _{IVCOUT}		_	1.65	_	V
Slope	M _{IVC}	Input Range 1 mA (INxRANGE = 101)	1.55	1.65	1.75	V/mA
		Input Range 2 mA (INxRANGE = 100)	795	830	860	mV/mA
		Input Range 3 mA (INxRANGE = 011)	525	550	570	mV/mA
		Input Range 4 mA (INxRANGE = 010)	390	415	430	mV/mA
		Input Range 5 mA (INxRANGE = 001)	315	330	340	mV/mA
		Input Range 6 mA (INxRANGE = 000)	260	275	285	mV/mA
Settling Time to 0.1%	V _{IVCOUT}				500	ns

Table 3.19. Absolute Maximum	Ratings (Continued)
------------------------------	---------------------

Parameter	Symbol	Test Condition	Min	Мах	Unit	
Voltage on I/O pins, Port Bank 3 I/O	V _{IN}	SiM3C1x7, PB3.0– PB3.7, V _{IO} ≥ 3.3 V	V _{SS} -0.3	5.8	V	
		SiM3C1x7, PB3.0– PB3.7, V _{IO} < 3.3 V	V _{SS} -0.3	V _{IO} +2.5	V	
		SiM3C1x7, PB3.8 - PB3.11	V _{SS} -0.3	Lowest of V _{IO} +2.5, V _{REGIN} +0.3, or 5.8	V	
		SiM3C1x6, PB3.0– PB3.5, V _{IO} ≥ 3.3 V	V _{SS} -0.3	5.8	V	
		SiM3C1x6, PB3.0– PB3.5, V _{IO} < 3.3 V	V _{SS} -0.3	V _{IO} +2.5	V	
		SiM3C1x6, PB3.6– PB3.9	V _{SS} -0.3	Lowest of V _{IO} +2.5, V _{REGIN} +0.3, or 5.8	V	
		SiM3C1x4, PB3.0– PB3.3	V _{SS} -0.3	Lowest of V _{IO} +2.5, V _{REGIN} +0.3, or 5.8	V	
Total Current Sunk into Supply Pins	I _{SUPP}	$V_{DD},V_{REGIN},V_{IO},V_{IOHD}$	—	400	mA	
Total Current Sourced out of Ground Pins	I _{VSS}	V _{SS} , V _{SSHD}	400	_	mA	
Current Sourced or Sunk by Any I/O Pin	I _{PIO}	PB0, PB1 <u>, PB2,</u> PB3, and RESET	-100	100	mA	
		PB4	-300	300	mA	
Current Injected on Any I/O Pin	I _{INJ}	PB0, PB1 <u>, PB2,</u> PB3, and RESET	-100	100	mA	
		PB4	-300	300	mA	
Total Injected Current on I/O Pins	ΣΙ _{INJ}	Sum <u>of all I/O</u> and RESET	-400	400	mA	

4.1. Power

4.1.1. LDO and Voltage Regulator (VREG0)

The SiM3C1xx devices include two internal regulators: the core LDO Regulator and the Voltage Regulator (VREG0).

The LDO Regulator converts a 1.8–3.6 V supply to the core operating voltage of 1.8 V. This LDO consumes little power and provides flexibility in choosing a power supply for the system.

The Voltage Regulator regulates from 5.5 to 2.7 V and can serve as an input to the LDO. This allows the device to be powered from up to a 5.5 V supply without any external components other than bypass capacitors.

4.1.2. Voltage Supply Monitor (VMON0)

The SiM3C1xx devices include a voltage supply monitor which allows devices to function in known, safe operating condition without the need for external hardware. The supply monitor includes additional circuitry that can monitor the main supply voltage and the VREGIN input voltage divided by 4 (VREGIN / 4).

The supply monitor module includes the following features:

- Main supply "VDD Low" (VDD below the early warning threshold) notification.
- Holds the device in reset if the main VDD supply drops below the VDD Reset threshold.
- VREGIN divided by 4 (VREGIN / 4) supply "VREGIN Low" notification.

4.1.3. External Regulator (EXTVREG0)

The External Regulator provides all the circuitry needed for a high-power regulator except the power transistor (NPN or PNP) and current sensing resistor (if current limiting is enabled).

The External Regulator module has the following features:

- Interfaces with either an NPN or PNP external transistor that serves as the pass device for the high current regulator.
- Automatic current limiting.
- Automatic foldback limiting.
- Sources up to 1 A for use by external circuitry.
- Variable output voltage from 1.8–3.6 V in 100 mV steps.

4.1.4. Power Management Unit (PMU)

The Power Management Unit on the SiM3C1xx manages the power systems of the device. On power-up, the PMU ensures the core voltages are a proper value before core instruction execution begins. It also recognizes and manages the various wake sources for low-power modes of the device.

The PMU module includes the following features:

- Up to 16 pin wake inputs can wake the device from Power Mode 9.
- The Low Power Timer, RTC0 (alarms and oscillator fail), Comparator 0, and the RESET pin can also serve as wake sources for Power Mode 9.
- All PM9 wake sources (except for the RESET pin) can also reset the Low Power Timer or RTC0 modules.
- Disables the level shifters to pins and peripherals to further reduce power usage in PM9. These level shifters must be re-enabed by firmware after exiting PM9.
- Provides a PMU_Asleep signal to a pin as an indicator that the device is in PM9.

4.3.1. PLL (PLL0)

The PLL module consists of a dedicated Digitally-Controlled Oscillator (DCO) that can be used in Free-Running mode without a reference frequency, Frequency-Locked to a reference frequency, or Phase-Locked to a reference frequency. The reference frequency for Frequency-Lock and Phase-Lock modes can use one of multiple sources (including the external oscillator) to provide maximum flexibility for different application needs. Because the PLL module generates its own clock, the DCO can be locked to a particular reference frequency and then moved to Free-Running mode to reduce system power and noise.

The PLL module includes the following features:

- Five output ranges with output frequencies ranging from 23 to 80 MHz.
- Multiple reference frequency inputs.
- Three output modes: free-running DCO, frequency-locked, and phase-locked.
- Ability to sense the rising edge or falling edge of the reference source.
- DCO frequency LSB dithering to provide finer average output frequencies.
- Spectrum spreading to reduce generated system noise.
- Low jitter and fast lock times.
- Ability to suspend all output frequency updates (including dithering and spectrum spreading) using the STALL bit during jitter-sensitive operations.

4.3.2. Low Power Oscillator (LPOSC0)

The Low Power Oscillator is the default AHB oscillator on SiM3C1xx devices and enables or disables automatically, as needed.

The Low Power Oscillator has the following features:

- 20 MHz and divided 2.5 MHz frequencies available for the AHB clock.
- Automatically starts and stops as needed.

4.3.3. Low Frequency Oscillator (LFOSC0)

The low frequency oscillator (LFOSC0) provides a low power internal clock source running at approximately 16.4 kHz for the RTC0 timer and other peripherals on the device. No external components are required to use the low frequency oscillator

4.3.4. External Oscillators (EXTOSC0)

The EXTOSC0 external oscillator circuit may drive an external crystal, ceramic resonator, capacitor, or RC network. A CMOS clock may also provide a clock input. The external oscillator output may be selected as the AHB clock or used to clock other modules independent of the AHB clock selection.

The External Oscillator control has the following features:

- Support for external crystal, RC, C, or CMOS oscillators.
- Support external CMOS frequencies from 10 kHz to 50 MHz and external crystal frequencies from 10 kHz to 30 MHz.
- Various drive strengths for flexible crystal oscillator support.
- Internal frequency divide-by-two option available.

4.5. Counters/Timers and PWM

4.5.1. Programmable Counter Array (EPCA0, PCA0, PCA1)

The SiM3C1xx devices include two types of PCA module: Enhanced and Standard.

The Enhanced Programmable Counter Array (EPCA0) and Standard Programmable Counter Array (PCA0, PCA1) modules are timer/counter systems allowing for complex timing or waveform generation. Multiple modules run from the same main counter, allowing for synchronous output waveforms.

The Enhanced PCA module is multi-purpose, but is optimized for motor control applications. The EPCA module includes the following features:

- Three sets of channel pairs (six channels total) capable of generating complementary waveforms.
- Center- and edge-aligned waveform generation.
- Programmable dead times that ensure channel pairs are never both active at the same time.
- Programmable clock divisor and multiple options for clock source selection.
- Waveform update scheduling.
- Option to function while the core is inactive.
- Multiple synchronization triggers and outputs.
- Pulse-Width Modulation (PWM) waveform generation.
- High-speed square wave generation.
- Input capture mode.
- DMA capability for both input capture and waveform generation.
- PWM generation halt input.

The Standard PCA module (PCA) includes the following features:

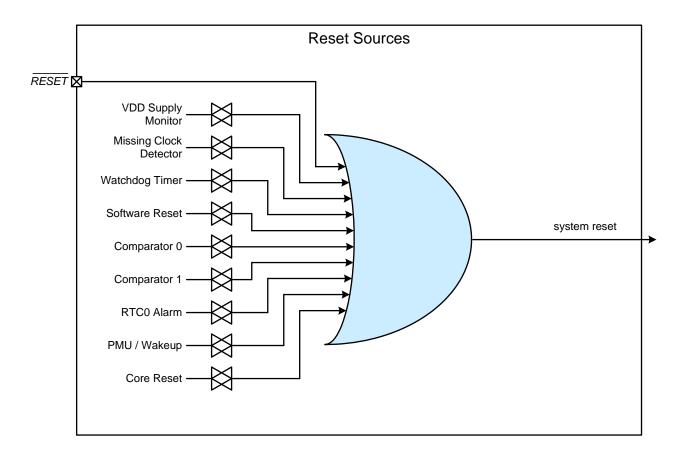
- Two independent channels.
- Center- and edge-aligned waveform generation.
- Programmable clock divisor and multiple options for clock source selection.
- Pulse-Width Modulation waveform generation.

4.5.2. 32-bit Timer (TIMER0, TIMER1)

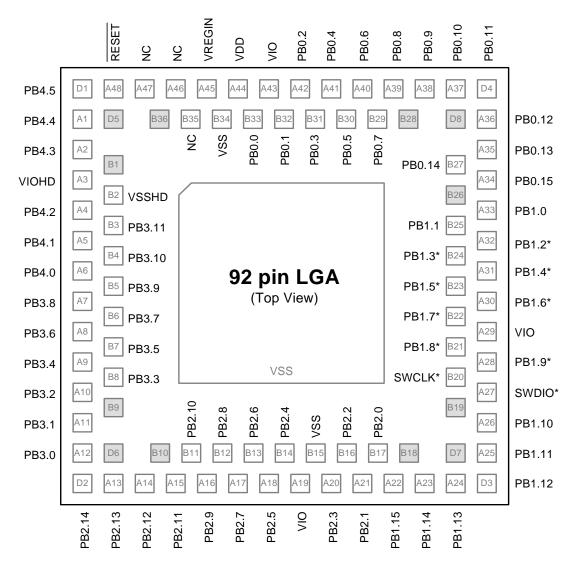
Each timer module is independent, and includes the following features:

- Operation as a single 32-bit or two independent 16-bit timers.
- Clocking options include the APB clock, the APB clock scaled using an 8-bit prescaler, the external oscillator, or falling edges on an external input pin (synchronized to the APB clock).
- Auto-reload functionality in both 32-bit and 16-bit modes.
- Up/Down count capability, controlled by an external input pin.
- Rising and falling edge capture modes.
- Low or high pulse capture modes.
- Duty cycle capture mode.
- Square wave output mode, which is capable of toggling an external pin at a given rate with 50% duty cycle.
- 32- or 16-bit pulse-width modulation mode.

4.8. Reset Sources

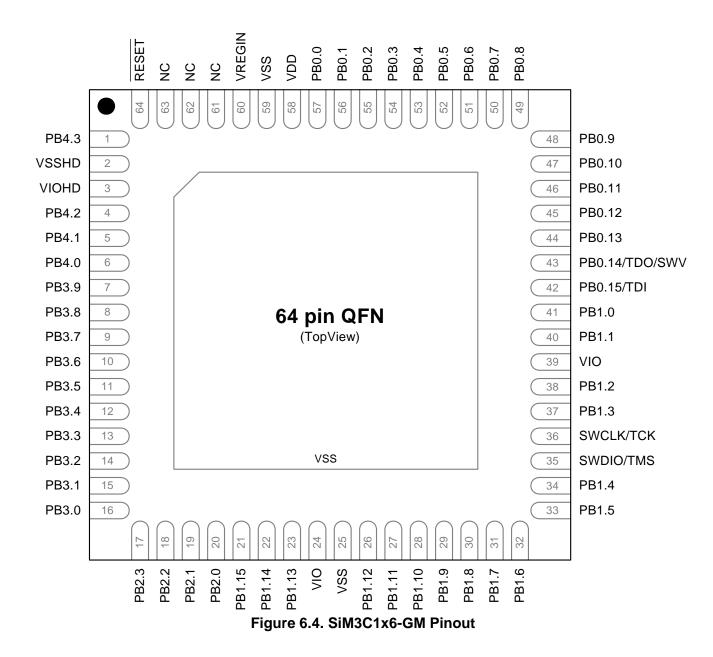

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- The core halts program execution.
- Module registers are initialized to their defined reset values unless the bits reset only with a power-on reset.
- External port pins are forced to a known state.
- Interrupts and timers are disabled.
- Clocks to all AHB peripherals are enabled.
- Clocks to all APB peripherals other than Watchdog Timer, EMIF0, and DMAXBAR are disabled.


All registers are reset to the predefined values noted in the register descriptions unless the bits only reset with a power-on reset. The contents of RAM are unaffected during a reset; any previously stored data is preserved as long as power is not lost.

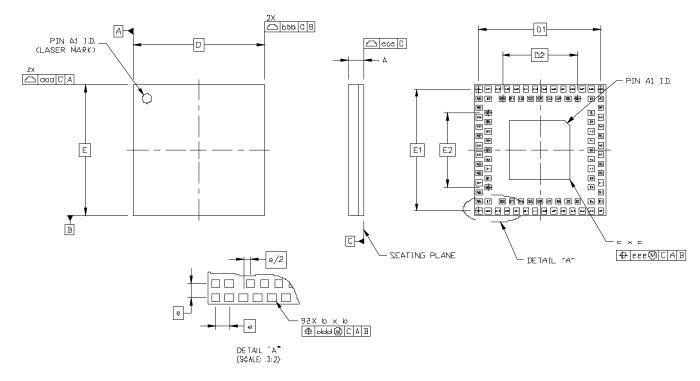
The Port I/O latches are reset to 1 in open-drain mode. Weak pullups are enabled during and after the reset. For VDD Supply Monitor and power-on resets, the RESET pin is driven low until the device exits the reset state.

On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to an internal oscillator. The Watchdog Timer is enabled with the Low Frequency Oscillator (LFO0) as its clock source. Program execution begins at location 0x00000000.



*Noted pins are listed in the pinout table and 80-pin TQFP package figure with additional names. These alternate functions are also present on the 92-pin LGA package and are identical to those on the 80-pin TQFP package.

Figure 6.2. SiM3C1x7-GM Pinout



Pin Name	Туре	Pin Numbers	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB3.9	5 V Tolerant I/O	7	XBR1	V	BE0			DAC0T6 DAC1T6 LPT0T2 INT0.10 INT1.10 WAKE.15	CMP0N.5 CMP1N.5 EXREGBD
PB4.0	High Drive I/O	6				LSO0			
PB4.1	High Drive I/O	5				LSO1			
PB4.2	High Drive I/O	4				LSO2			
PB4.3	High Drive I/O	1				LSO3			

Table 6.2. Pin Definitions and alternate functions for SiM3C1x6 (Continued)

6.4. LGA-92 Package Specifications

Dimension	Min	Nominal	Max
Α	0.74	0.84	0.94
b	0.25	0.30	0.35
С	3.15	3.20	3.25
D	7.00 BSC		
D1	6.50 BSC		
D2	4.00 BSC		
е	0.50 BSC		
E	7.00 BSC		
E1	6.50 BSC		
E2	4.00 BSC		
aaa	_	—	0.10
bbb	_	—	0.10
CCC	— — 0.08		0.08
ddd	— — 0.10		0.10
eee		—	0.10
Notes:		• • •	

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

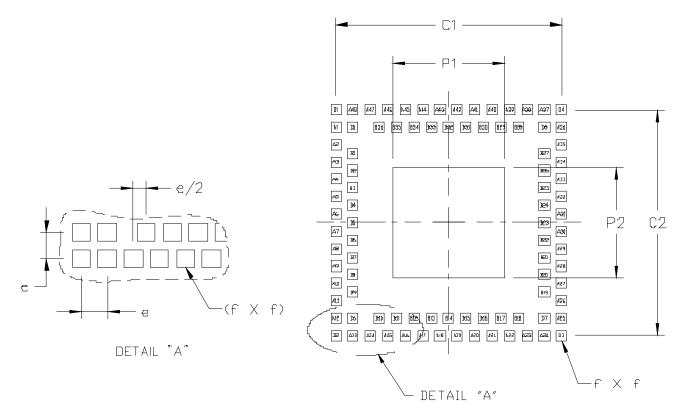
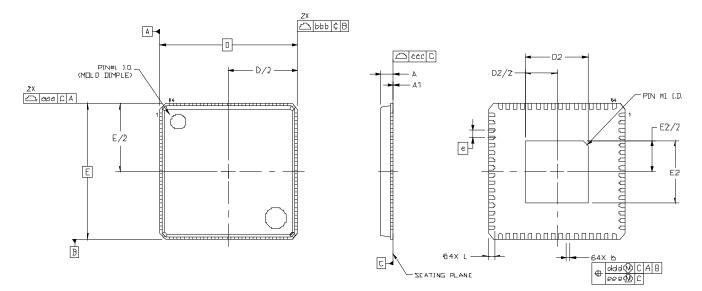
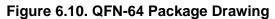



Figure 6.7. LGA-92 Landing Diagram


Dimension	Typical	Max	
C1	6.50	—	
C2	6.50	_	
e	0.50	—	
f	—	0.35	
P1	—	3.20	
P2	—	3.20	
 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed. 			
3. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994			

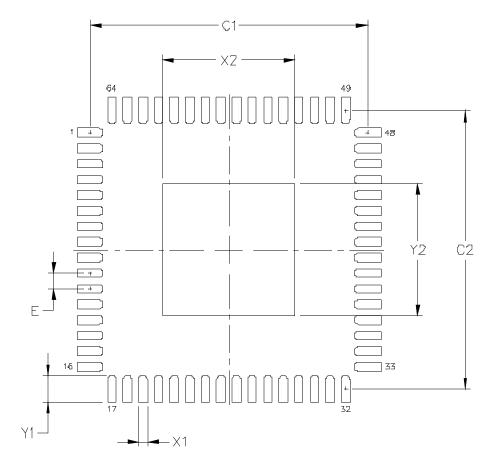
- Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
- 4. This land pattern design is based on the IPC-7351 guidelines.

6.6. QFN-64 Package Specifications

Dimension	Min	Nominal	Max
Α	0.80	0.85	0.90
A1	0.00	0.02	0.05
b	0.18	0.25	0.30
D	9.00 BSC		
D2	3.95	4.10	4.25
e	0.50 BSC		
E	9.00 BSC		
E2	3.95	4.10	4.25
L	0.30	0.40	0.50
aaa	0.10		
bbb	0.10		
ccc	0.08		
ddd	0.10		
eee	0.05		

Table 6.8. QFN-64 Package Dimensions

Notes:


1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This package outline conforms to JEDEC MO-220.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Figure 6.11. QFN-64 Landing Diagram

Dimension	mm	
C1	8.90	
C2	8.90	
E	0.50	
X1	0.30	
Y1	0.85	
X2	4.25	
Y2	4.25	
Notes:		

Table 6.9. QFN-64 Landing Diagram Dimensions

- 1. All dimensions shown are in millimeters (mm).
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.

6.6.1. QFN-64 Solder Mask Design

All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

6.6.2. QFN-64 Stencil Design

- 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- 3. The ratio of stencil aperture to land pad size should be 1:1 for all pads.
- 4. A 3x3 array of 1.0 mm square openings on a 1.5 mm pitch should be used for the center ground pad.

6.6.3. QFN-64 Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

6.7. TQFP-64 Package Specifications

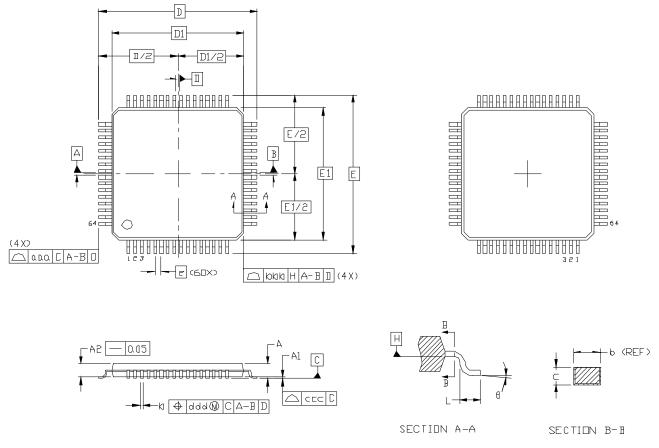


Figure 6.12. TQFP-64 Package Drawing

Dimension	Min	Nominal	Max
A	—	_	1.20
A1	0.05	_	0.15
A2	0.95	1.00	1.05
b	0.17	0.22	0.27
с	0.09	—	0.20
D	12.00 BSC		
D1	10.00 BSC		
е	0.50 BSC		
E	12.00 BSC		
E1	10.00 BSC		
L	0.45	0.60	0.75
Θ	0°	3.5°	7°

Table 6.10. TQFP-64 Package Dimensions

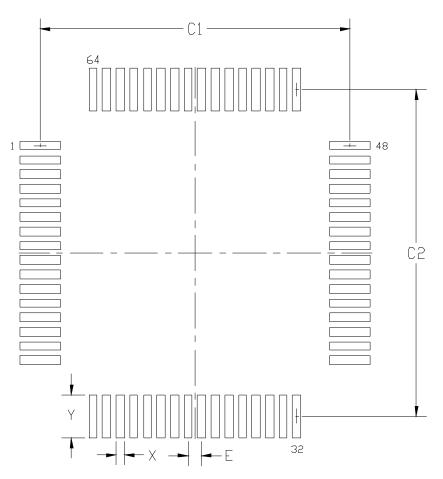


Figure 6.13. TQFP-64 Landing Diagram

 Table 6.11. TQFP-64 Landing Diagram Dimensions

Dimension	Min	Мах	
C1	11.30	11.40	
C2	11.30	11.40	
E	0.50 BSC		
X	0.20	0.30	
Y	1.40	1.50	
 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This land pattern design is based on the IPC-7351 guidelines. 			

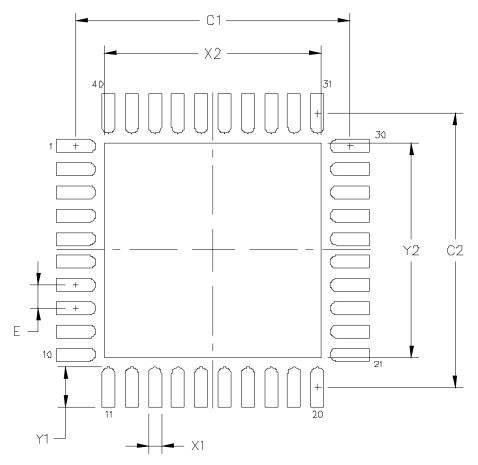


Figure 6.15. QFN-40 Landing Diagram

Dimension	mm
C1	5.90
C2	5.90
E	0.50
X1	0.30
Y1	0.85
X2	4.65
Y2	4.65
Notos	

Table 6.13. QFN-40 Landing Diagram Dimensions

Notes:

- 1. All dimensions shown are in millimeters (mm).
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- **3.** All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a
 - Fabrication Allowance of 0.05 mm.

