E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	EBI/EMI, I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	50
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 28x12b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/sim3c146-b-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.	Related Documents and Conventions	4
	1.1. Related Documents	4
	1.1.1. SiM3U1xx/SiM3C1xx Reference Manual	4
	1.1.2. Hardware Access Layer (HAL) API Description	4
	1.1.3. ARM Cortex-M3 Reference Manual	4
	1.2. Conventions	4
2.	Typical Connection Diagrams	5
	2.1. Power	5
3.	Electrical Specifications	6
	3.1. Electrical Characteristics	6
	3.2. Thermal Conditions	29
	3.3. Absolute Maximum Ratings	29
4.	Precision32 [™] SiM3C1xx System Overview	32
	4.1. Power	34
	4.1.1. LDO and Voltage Regulator (VREG0)	34
	4.1.2. Voltage Supply Monitor (VMON0)	34
	4.1.3. External Regulator (EXTVREG0)	34
	4.1.4. Power Management Unit (PMU)	34
	4.1.5. Device Power Modes	35
	4.2. I/O	36
	4.2.1. General Features	36
	4.2.2. High Drive Pins (PB4)	36
	4.2.3. 5 V Tolerant Pins (PB3)	36
	4.2.4. Crossbars	36
	4.3. Clocking	37
	4.3.1. PLL (PLL0)	38
	4.3.2. Low Power Oscillator (LPOSC0)	38
	4.3.3. Low Frequency Oscillator (LFOSC0)	38
	4.3.4. External Oscillators (EXTOSC0)	38
	4.4. Data Peripherals	39
	4.4.1. 16-Channel DMA Controller	39
	4.4.2. 128/192/256-bit Hardware AES Encryption (AES0)	39
	4.4.3. 16/32-bit CRC (CRC0)	39
	4.5. Counters/Timers and PWM	40
	4.5.1. Programmable Counter Array (EPCA0, PCA0, PCA1)	40
	4.5.2. 32-bit Timer (TIMER0, TIMER1)	40
	4.5.3. Real-Time Clock (RTC0)	41
	4.5.4. Low Power Timer (LPTIMER0)	41
	4.5.5. Watchdog Timer (WDTIMER0)	41
	4.6. Communications Peripherals	42
	4.6.1. External Memory Interface (EMIF0)	42
	4.6.2. USART (USART0, USART1)	42
	4.6.3. UART (UART0, UART1)	42
	4.6.4. SPI (SPI0, SPI1)	43

	Table 3.2.	Power	Consum	ption ((Continued)
--	------------	-------	--------	---------	-------------

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Analog Peripheral Supply Current	is		L	· · · · ·		
Voltage Regulator (VREG0)	I _{VREGIN}	Normal Mode, $T_A = 25 \text{ °C}$ BGDIS = 0, SUSEN = 0		300	_	μA
		Normal Mode, $T_A = 85 \text{ °C}$ BGDIS = 0, SUSEN = 0	_	_	650	μA
		Suspend Mode, T _A = 25 °C BGDIS = 0, SUSEN = 1	_	75	—	μA
		Suspend Mode, T _A = 85 °C BGDIS = 0, SUSEN = 1	_	_	115	μA
		Sleep Mode, T _A = 25 °C BGDIS = 1, SUSEN = X	_	90	_	nA
		Sleep Mode, T _A = 85 °C BGDIS = 1, SUSEN = X			500	nA
Voltage Regulator (VREG0) Sense	I _{VRSENSE}	SENSEEN = 1		3		μA
External Regulator (EXTVREG0)	I _{EXTVREG}	Regulator		215	250	μA
		Current Sensor		7		μA
PLL0 Oscillator (PLL0OSC)	I _{PLLOSC}	Operating at 80 MHz		1.75	1.86	mA
Low-Power Oscillator (LPOSC0)	I _{LPOSC}	Operating at 20 MHz	—	190		μA
		Operating at 2.5 MHz	<u> </u>	40		μA
Low-Frequency Oscillator (LFOSC0)	I _{LFOSC}	Operating at 16.4 kHz, T _A = 25 °C		215		nA
		Operating at 16.4 kHz, T _A = 85 °C	_	_	500	nA

Notes:

1. Perhipheral currents drop to zero when peripheral clock and peripheral are disabled, unless otherwise noted.

 Currents are additive. For example, where I_{DD} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

3. Includes all peripherals that cannot have clocks gated in the Clock Control module.

4. Includes supply current from internal regulator and PLL0OSC (>20 MHz) or LPOSC0 (<=20 MHz).

5. Flash execution numbers use 2 wait states for 80 MHz and 0 wait states at 20 MHz or less.

6. RAM execution numbers use 0 wait states for all frequencies.

7. IDAC output current and IVC input current not included.

8. Bias current only. Does not include dynamic current from oscillator running at speed.

Table 3.8. Internal Oscillators (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Low Power Oscillator (LPOSC0)						
Oscillator Frequency	f _{LPOSC}	Full Temperature and Supply Range	19	20	21	MHz
		T _A = 25 °C, V _{DD} = 3.3 V	19.5	20	20.5	MHz
Divided Oscillator Frequency	f _{LPOSCD}	Full Temperature and Supply Range	2.375	2.5	2.625	MHz
Power Supply Sensitivity	PSS _{LPOSC}	T _A = 25 °C	_	0.5		%/V
Temperature Sensitivity	TS _{LPOSC}	V _{DD} = 3.3 V		55		ppm/°C
Low Frequency Oscillator (LFOS	C0)					
Oscillator Frequency	f _{LFOSC}	Full Temperature and Supply Range	13.4	16.4	19.7	kHz
		T _A = 25 °C, V _{DD} = 3.3 V	15.8	16.4	17.3	kHz
Power Supply Sensitivity	PSS _{LFOSC}	T _A = 25 °C		2.4	_	%/V
Temperature Sensitivity	TS _{LFOSC}	V _{DD} = 3.3 V		0.2		%/°C
RTC0 Oscillator (RTC0OSC)						
Missing Clock Detector Trigger Frequency	f _{RTCMCD}		_	8	15	kHz
RTC Robust Duty Cycle Range	DC _{RTC}		25	_	55	%
*Note: PLL0OSC in free-running oscill	ator mode.	·				

Table 3.9. External Oscillator

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
External Input CMOS Clock Frequency*	f _{CMOS}		0		50	MHz
External Input CMOS Clock High Time	t _{CMOSH}		9		—	ns
External Input CMOS Clock Low Time	t _{CMOSL}		9		—	ns
External Crystal Clock Frequency	f _{XTAL}		0.01		30	MHz
*Note: Minimum of 10 kHz during debug operations.						

Table 3.10. SAR ADC (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Differential Nonlinearity	DNL	12 Bit Mode ²	-1	±0.7	1.8	LSB
(Guaranteed Monotonic)		10 Bit Mode	_	±0.2	±0.5	LSB
Offset Error (using VREFGND)	E _{OFF}	12 Bit Mode, VREF =2.4 V	-2	0	2	LSB
		10 Bit Mode, VREF =2.4 V	-1	0	1	LSB
Offset Temperatue Coefficient	TC _{OFF}		_	0.004		LSB/°C
Slope Error ³	E _M	12 Bit Mode	-0.07	-0.02	0.02	%
Dynamic Performance with 10 kHz Sine Wave Input 1 dB below full scale, Max throughput						
Signal-to-Noise	SNR	12 Bit Mode	62	66		dB
		10 Bit Mode	58	60		dB
Signal-to-Noise Plus Distortion	SNDR	12 Bit Mode	62	66		dB
		10 Bit Mode	58	60		dB
Total Harmonic Distortion	THD	12 Bit Mode	_	78		dB
(Up to 5th Harmonic)		10 Bit Mode	_	77	_	dB
Spurious-Free Dynamic Range	SFDR	12 Bit Mode	_	-79		dB
		10 Bit Mode	-	-74		dB
	1	<u>.</u>				

Notes:

1. Absolute input pin voltage is limited by the lower of the supply at VDD and VIO.

2. INL and DNL specifications for 12-bit mode do not include the first or last four ADC codes.

3. The maximum code in 12-bit mode is 0xFFFC. The Slope Error is referenced from the maximum code.

Table 3.15. Temperature Sensor

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Offset	V _{OFF}	T _A = 0 °C	—	760		mV
Offset Error*	E _{OFF}	T _A = 0 °C	—	±14		mV
Slope	М			2.8		mV/°C
Slope Error*	E _M		—	±120		µV/°C
Linearity			—	1		°C
Turn-on Time			_	1.8		μs
*Note: Represents one standard deviation from the mean.						

Table 3.16. Comparator

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Response Time, CMPMD = 00	t _{RESP0}	+100 mV Differential	_	100		ns
(Highest Speed)		-100 mV Differential	_	150		ns
Response Time, CMPMD = 11	t _{RESP3}	+100 mV Differential		1.4	_	μs
(Lowest Power)		-100 mV Differential	_	3.5	—	μs
Positive Hysteresis	HYS _{CP+}	CMPHYP = 00	_	0.4	—	mV
Mode 0 (CPMD = 00)		CMPHYP = 01		8	_	mV
		CMPHYP = 10	_	16	—	mV
		CMPHYP = 11		33		mV
Negative Hysteresis	HYS _{CP-}	CMPHYN = 00		0.4	_	mV
Mode 0 (CPMD = 00)		CMPHYN = 01		-8		mV
		CMPHYN = 10		-16		mV
		CMPHYN = 11		-33		mV
Positive Hysteresis	HYS _{CP+}	CMPHYP = 00		0.5		mV
Mode 1 (CPMD = 01)		CMPHYP = 01		6		mV
		CMPHYP = 10	_	12		mV
		CMPHYP = 11	_	24		mV
Negative Hysteresis	HYS _{CP-}	CMPHYN = 00		0.5		mV
Mode 1 (CPMD = 01)		CMPHYN = 01		-6.0		mV
		CMPHYN = 10	_	-12	—	mV
		CMPHYN = 11	_	-24	—	mV
Positive Hysteresis	HYS _{CP+}	CMPHYP = 00		0.6		mV
Mode 2 (CPMD = 10)		CMPHYP = 01	_	4.5	—	mV
		CMPHYP = 10		9.5		mV
		CMPHYP = 11	_	19		mV
Negative Hysteresis Mode 2 (CPMD = 10)	HYS _{CP-}	CMPHYN = 00	_	0.6		mV
		CMPHYN = 01	_	-4.5		mV
		CMPHYN = 10		-9.5		mV
		CMPHYN = 11	_	-19	—	mV

3.2. Thermal Conditions

Table 3.18. Thermal Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Thermal Resistance*	θ_{JA}	LGA-92 Packages		35		°C/W
		TQFP-80 Packages		40		°C/W
		QFN-64 Packages		25		°C/W
		TQFP-64 Packages		30		°C/W
		QFN-40 Packages		30		°C/W
*Note: Thermal resistance assumes a multi-layer PCB with any exposed pad soldered to a PCB pad.						

3.3. Absolute Maximum Ratings

Stresses above those listed under Table 3.19 may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 3.19. Absolute Maximum Ratings

Parameter	Symbol	Test Condition	Min	Max	Unit
Ambient Temperature Under Bias	T _{BIAS}		-55	125	°C
Storage Temperature	T _{STG}		-65	150	°C
Voltage on VDD	V _{DD}		V _{SS} –0.3	4.2	V
Voltage on VREGIN	V _{REGIN}	EXTVREG0 Not Used	V _{SS} –0.3	6.0	V
		EXTVREG0 Used	V _{SS} –0.3	3.6	V
Voltage on VIO	V _{IO}		V _{SS} –0.3	4.2	V
Voltage on VIOHD	V _{IOHD}		V _{SS} –0.3	6.5	V
Voltage on I/O pins,	V _{IN}	RESET, V _{IO} ≥ 3.3 V	V _{SS} –0.3	5.8	V
non Port Bank 3 1/0		RESET, V _{IO} < 3.3 V	V _{SS} –0.3	V _{IO} +2.5	V
		Port Bank 0, 1, and 2 I/O	V _{SS} -0.3	V _{IO} +0.3	V
		Port Bank 4 I/O	V _{SSHD} -0.3	V _{IOHD} +0.3	V
	4	·	· · · · · ·		·

*Note: VSS and VSSHD provide separate return current paths for device supplies, but are not isolated. They must always be connected to the same potential on board.

4.1. Power

4.1.1. LDO and Voltage Regulator (VREG0)

The SiM3C1xx devices include two internal regulators: the core LDO Regulator and the Voltage Regulator (VREG0).

The LDO Regulator converts a 1.8–3.6 V supply to the core operating voltage of 1.8 V. This LDO consumes little power and provides flexibility in choosing a power supply for the system.

The Voltage Regulator regulates from 5.5 to 2.7 V and can serve as an input to the LDO. This allows the device to be powered from up to a 5.5 V supply without any external components other than bypass capacitors.

4.1.2. Voltage Supply Monitor (VMON0)

The SiM3C1xx devices include a voltage supply monitor which allows devices to function in known, safe operating condition without the need for external hardware. The supply monitor includes additional circuitry that can monitor the main supply voltage and the VREGIN input voltage divided by 4 (VREGIN / 4).

The supply monitor module includes the following features:

- Main supply "VDD Low" (VDD below the early warning threshold) notification.
- Holds the device in reset if the main VDD supply drops below the VDD Reset threshold.
- VREGIN divided by 4 (VREGIN / 4) supply "VREGIN Low" notification.

4.1.3. External Regulator (EXTVREG0)

The External Regulator provides all the circuitry needed for a high-power regulator except the power transistor (NPN or PNP) and current sensing resistor (if current limiting is enabled).

The External Regulator module has the following features:

- Interfaces with either an NPN or PNP external transistor that serves as the pass device for the high current regulator.
- Automatic current limiting.
- Automatic foldback limiting.
- Sources up to 1 A for use by external circuitry.
- Variable output voltage from 1.8–3.6 V in 100 mV steps.

4.1.4. Power Management Unit (PMU)

The Power Management Unit on the SiM3C1xx manages the power systems of the device. On power-up, the PMU ensures the core voltages are a proper value before core instruction execution begins. It also recognizes and manages the various wake sources for low-power modes of the device.

The PMU module includes the following features:

- Up to 16 pin wake inputs can wake the device from Power Mode 9.
- The Low Power Timer, RTC0 (alarms and oscillator fail), Comparator 0, and the RESET pin can also serve as wake sources for Power Mode 9.
- All PM9 wake sources (except for the RESET pin) can also reset the Low Power Timer or RTC0 modules.
- Disables the level shifters to pins and peripherals to further reduce power usage in PM9. These level shifters must be re-enabed by firmware after exiting PM9.
- Provides a PMU_Asleep signal to a pin as an indicator that the device is in PM9.

4.2. I/O

4.2.1. General Features

The SiM3C1xx ports have the following features:

- Push-pull or open-drain output modes and analog or digital modes.
- Option for high or low output drive strength.
- Port Match allows the device to recognize a change on a port pin value.
- Internal pull-up resistors are enabled or disabled on a port-by-port basis.
- Two external interrupts with up to 16 inputs provide monitoring capability for external signals.
- Internal Pulse Generator Timer (PB2 only) to generate simple square waves.
- A subset of pins can also serve as inputs to the Port Mapped Level Shifters available on the High Drive Pins.

4.2.2. High Drive Pins (PB4)

The High Drive pins have the following additional features:

- Programmable safe state: high, low, or high impedance.
- Programmable drive strength and slew rates.
- Programmable hardware current limiting.
- Powered from a separate source (VIOHD, which can be up to 6 V) from the rest of the device.
- Supports various functions, including GPIO, UART1 pins, EPCA0 pins, or Port Mapped Level Shifting.

4.2.3. 5 V Tolerant Pins (PB3)

The 5 V tolerant pins can be connected to external circuitry operating at voltages above the device supply without needing extra components to shift the voltage level.

4.2.4. Crossbars

The SiM3C1xx devices have two Crossbars with the following features:

- Flexible peripheral assignment to port pins.
- Pins can be individually skipped to move peripherals as needed for design or layout considerations.

The Crossbars have a fixed priority for each I/O function and assign these functions to the port pins. When a digital resource is selected, the least-significant unassigned port pin is assigned to that resource. If a port pin is assigned, the Crossbars skip that pin when assigning the next selected resource. Additionally, the Crossbars will skip port pins whose associated bits in the PBSKIPEN registers are set. This provides some flexibility when designing a system: pins involved with sensitive analog measurements can be moved away from digital I/O and peripherals can be moved around the chip as needed to ease layout constraints.

4.3.1. PLL (PLL0)

The PLL module consists of a dedicated Digitally-Controlled Oscillator (DCO) that can be used in Free-Running mode without a reference frequency, Frequency-Locked to a reference frequency, or Phase-Locked to a reference frequency. The reference frequency for Frequency-Lock and Phase-Lock modes can use one of multiple sources (including the external oscillator) to provide maximum flexibility for different application needs. Because the PLL module generates its own clock, the DCO can be locked to a particular reference frequency and then moved to Free-Running mode to reduce system power and noise.

The PLL module includes the following features:

- Five output ranges with output frequencies ranging from 23 to 80 MHz.
- Multiple reference frequency inputs.
- Three output modes: free-running DCO, frequency-locked, and phase-locked.
- Ability to sense the rising edge or falling edge of the reference source.
- DCO frequency LSB dithering to provide finer average output frequencies.
- Spectrum spreading to reduce generated system noise.
- Low jitter and fast lock times.
- Ability to suspend all output frequency updates (including dithering and spectrum spreading) using the STALL bit during jitter-sensitive operations.

4.3.2. Low Power Oscillator (LPOSC0)

The Low Power Oscillator is the default AHB oscillator on SiM3C1xx devices and enables or disables automatically, as needed.

The Low Power Oscillator has the following features:

- 20 MHz and divided 2.5 MHz frequencies available for the AHB clock.
- Automatically starts and stops as needed.

4.3.3. Low Frequency Oscillator (LFOSC0)

The low frequency oscillator (LFOSC0) provides a low power internal clock source running at approximately 16.4 kHz for the RTC0 timer and other peripherals on the device. No external components are required to use the low frequency oscillator

4.3.4. External Oscillators (EXTOSC0)

The EXTOSC0 external oscillator circuit may drive an external crystal, ceramic resonator, capacitor, or RC network. A CMOS clock may also provide a clock input. The external oscillator output may be selected as the AHB clock or used to clock other modules independent of the AHB clock selection.

The External Oscillator control has the following features:

- Support for external crystal, RC, C, or CMOS oscillators.
- Support external CMOS frequencies from 10 kHz to 50 MHz and external crystal frequencies from 10 kHz to 30 MHz.
- Various drive strengths for flexible crystal oscillator support.
- Internal frequency divide-by-two option available.

4.5. Counters/Timers and PWM

4.5.1. Programmable Counter Array (EPCA0, PCA0, PCA1)

The SiM3C1xx devices include two types of PCA module: Enhanced and Standard.

The Enhanced Programmable Counter Array (EPCA0) and Standard Programmable Counter Array (PCA0, PCA1) modules are timer/counter systems allowing for complex timing or waveform generation. Multiple modules run from the same main counter, allowing for synchronous output waveforms.

The Enhanced PCA module is multi-purpose, but is optimized for motor control applications. The EPCA module includes the following features:

- Three sets of channel pairs (six channels total) capable of generating complementary waveforms.
- Center- and edge-aligned waveform generation.
- Programmable dead times that ensure channel pairs are never both active at the same time.
- Programmable clock divisor and multiple options for clock source selection.
- Waveform update scheduling.
- Option to function while the core is inactive.
- Multiple synchronization triggers and outputs.
- Pulse-Width Modulation (PWM) waveform generation.
- High-speed square wave generation.
- Input capture mode.
- DMA capability for both input capture and waveform generation.
- PWM generation halt input.

The Standard PCA module (PCA) includes the following features:

- Two independent channels.
- Center- and edge-aligned waveform generation.
- Programmable clock divisor and multiple options for clock source selection.
- Pulse-Width Modulation waveform generation.

4.5.2. 32-bit Timer (TIMER0, TIMER1)

Each timer module is independent, and includes the following features:

- Operation as a single 32-bit or two independent 16-bit timers.
- Clocking options include the APB clock, the APB clock scaled using an 8-bit prescaler, the external oscillator, or falling edges on an external input pin (synchronized to the APB clock).
- Auto-reload functionality in both 32-bit and 16-bit modes.
- Up/Down count capability, controlled by an external input pin.
- Rising and falling edge capture modes.
- Low or high pulse capture modes.
- Duty cycle capture mode.
- Square wave output mode, which is capable of toggling an external pin at a given rate with 50% duty cycle.
- 32- or 16-bit pulse-width modulation mode.

4.5.3. Real-Time Clock (RTC0)

The RTC0 module includes a 32-bit timer that allows up to 36 hours of independent time-keeping when used with a 32.768 kHz watch crystal. The RTC0 provides three alarm events in addition to a missing clock event, which can also function as interrupt, reset, or wakeup sources on SiM3C1xx devices.

The RTC0 module includes internal loading capacitors that are programmable to 16 discrete levels, allowing compatibility with a wide range of crystals.

The RTC0 output can be buffered and routed to a port bank pin to provide an accurate, low frequency clock to other devices while the core is in its lowest power down mode. The module also includes a low power internal low frequency oscillator that reduces low power mode current and is available for other modules to use as a clock source.

The RTC module includes the following features:

- 32-bit timer (supports up to 36 hours) with three separate alarms.
- Option for one alarm to automatically reset the RTC timer.
- Missing clock detector.
- Can be used with the internal low frequency oscillator (LFOSC0), an external 32.768 kHz crystal (no additional resistors or capacitors necessary), or with an external CMOS clock.
- Programmable internal loading capacitors support a wide range of external 32.768 kHz crystals.
- Operates directly from VDD and remains operational even when the device goes into its lowest power down mode.
- The RTC timer clock (RTC0TCLK) can be buffered and routed to an I/O pin to provide an accurate, low frequency clock to other devices while the core is in its lowest power down mode.

4.5.4. Low Power Timer (LPTIMER0)

The Low Power Timer (LPTIMER0) module runs from the clock selected by the RTC0 module, allowing the LPTIMER0 to operate even if the AHB and APB clocks are disabled. The LPTIMER0 counter can increment using one of two clock sources: the clock selected by the RTC0 module, or rising or falling edges of an external signal.

The Low Power Timer includes the following features:

- Runs on a low-frequency clock (RTC0TCLK)
- The LPTIMER counter can increment using one of two clock sources: the RTC0TCLK or rising or falling edges of an external signal.
- Overflow and threshold-match detection, which can generate an interrupt, reset the timer, or wake some devices from low power modes.
- Timer reset on threshold-match allows square-wave generation at a variable output frequency.

4.5.5. Watchdog Timer (WDTIMER0)

The WDTIMER0 module includes a 16-bit timer, a programmable early warning interrupt, and a programmable reset period. The timer registers are protected from inadvertent access by an independent lock and key interface.

The watchdog timer runs from the low frequency oscillator (LFOSC0).

The Watchdog Timer has the following features:

- Programmable timeout interval.
- Optional interrupt to warn when the Watchdog Timer is nearing the reset trip value.
- Lock-out feature to prevent any modification until a system reset.

Table 6.1. Pin Definitions and alter	nate functions for SiM3C1x7 (Continued)
--------------------------------------	---

Pin Name	Туре	Pin Numbers TQFP-80	Pin Numbers LGA-92	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB0.8	Standard I/O	64	A39	XBR0	~					ADC0.7 CS0.7 IVC0.1
PB0.9	Standard I/O	63	A38	XBR0	~					ADC0.8 RTC1
PB0.10	Standard I/O	62	A37	XBR0	\checkmark					RTC2
PB0.11	Standard I/O	61	D4	XBR0	\checkmark					ADC0.9 VREFGND
PB0.12	Standard I/O	60	A36	XBR0	~					ADC0.10 VREF
PB0.13	Standard I/O	59	A35	XBR0	\checkmark					IDAC0
PB0.14	Standard I/O	58	B27	XBR0	\checkmark					IDAC1
PB0.15	Standard I/O	57	A34	XBR0	\checkmark					XTAL1
PB1.0	Standard I/O	56	A33	XBR0	\checkmark					XTAL2
PB1.1	Standard I/O	55	B25	XBR0	\checkmark					ADC0.11
PB1.2/TRST	Standard I/O /JTAG	54	A32	XBR0	\checkmark					
PB1.3/TDO/ SWV	Standard I/O /JTAG/ Serial Wire Viewer	53	B24	XBR0	\checkmark					ADC0.12 ADC1.12
PB1.4/TDI	Standard I/O /JTAG	52	A31	XBR0	~					ADC0.13 ADC1.13
PB1.5/ETM0	Standard I/O /ETM	51	B23	XBR0	~					ADC0.14 ADC1.14
PB1.6/ETM1	Standard I/O /ETM	50	A30	XBR0	~					ADC0.15 ADC1.15
PB1.7/ETM2	Standard I/O /ETM	48	B22	XBR0	~					ADC1.11 CS0.8
PB1.8/ETM3	Standard I/O /ETM	47	B21	XBR0	V					ADC1.10 CS0.9

Pin Name	Туре	Pin Numbers TQFP-80	Pin Numbers LGA-92	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB3.4	5 V Tolerant I/O	16	A9	XBR1	~	ŌĒ			INT0.9 INT1.9 WAKE.8	CMP0P.4 CMP1P.4
PB3.5	5 V Tolerant I/O	15	B7	XBR1	~	ALEm			DAC0T2 DAC1T2 INT0.10 INT1.10 WAKE.9	CMP0N.4 CMP1N.4
PB3.6	5 V Tolerant I/O	14	A8	XBR1	<	CS0			DAC0T3 DAC1T3 INT0.11 INT1.11 WAKE.10	CMP0P.5 CMP1P.5
PB3.7	5 V Tolerant I/O	13	B6	XBR1	<	BE1			DAC0T4 DAC1T4 LPT0T1 INT0.12 INT1.12 WAKE.11	CMP0N.5 CMP1N.5
PB3.8	5 V Tolerant I/O	12	A7	XBR1	<	CS1			DAC0T5 DAC1T5 LPT0T2 INT0.13 INT1.13 WAKE.12	CMP0P.6 CMP1P.6 EXREGSP
PB3.9	5 V Tolerant I/O	11	B5	XBR1	~	BEO			DAC0T6 DAC1T6 INT0.14 INT1.14 WAKE.13	CMP0N.6 CMP1N.6 EXREGSN
PB3.10	5 V Tolerant I/O	10	B4	XBR1	~				INT0.15 INT1.15 WAKE.14	CMP0P.7 CMP1P.7 EXREGOUT
PB3.11	5 V Tolerant I/O	9	B3	XBR1	\checkmark				WAKE.15	CMP0N.7 CMP1N.7 EXREGBD

Table 6.1. Pin Definitions and alternate functions for SiM3C1x7 (Continued)

6.2. SiM3C1x6 Pin Definitions

Pin Name	Туре	Pin Numbers	Crossbar Capability (see Port Config Section)	Port Match	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB3.1	5 V Tolerant I/O	9	XBR1	~		DAC0T1 DAC1T1 LPT0T1 INT0.1 INT1.1 WAKE.13	CMP0N.1 CMP1N.1 EXREGSN
PB3.2	5 V Tolerant I/O	8	XBR1	~		DAC0T2 DAC1T2 LPT0T2 INT0.2 INT1.3 WAKE.14	CMP0P.2 CMP1P.2 EXREGOUT
PB3.3	5 V Tolerant I/O	7	XBR1	 ✓ 		DAC0T3 DAC1T3 INT0.3 INT1.3 WAKE.15	CMP0N.2 CMP1N.2 EXREGBD
PB4.0	High Drive I/O	6					
PB4.1	High Drive I/O	5					
PB4.2	High Drive I/O	4					
PB4.3	High Drive I/O	1					

Table 6.3. Pin Definitions and Alternate Functions for SiM3C1x4 (Continued)

Figure 6.7. LGA-92 Landing Diagram

ension	Typical	Мах				
21	6.50	_				
22	6.50	—				
e	0.50					
f	—	0.35				
P1	—	3.20				
2	—	3.20				
 All dimensions shown are in millimeters (mm) unless otherwise noted. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed. 						
	ension 21 22 e f 21 22 dimensions shed. eature sizes s a card fabric: onsionica on	Image: sensionTypicalC16.50C26.50e0.50f—P1—P2—dimensions shown are in millimeters (med.eature sizes shown are at Maximum Ma card fabrication tolerance of 0.05 monsigning and Telerancing is part to A				

- Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
- 4. This land pattern design is based on the IPC-7351 guidelines.

Figure 6.8. TQFP-80 Package Drawing

Table 6.6.	TQFP-80	Package	Dimensions
------------	---------	---------	------------

Dimension	Min	Nominal	Max			
Α	_	—	1.20			
A1	0.05	—	0.15			
A2	0.95	1.00	1.05			
b	0.17	0.20	0.27			
С	0.09	—	0.20			
D	14.00 BSC					
D1		12.00 BSC				
е	0.50 BSC					
E		14.00 BSC				
E1	12.00 BSC					

Figure 7.3. SiM3C1x6 Revision Information

7.2. Comparator Rising/Falling Edge Flags in Debug Mode (CMP0, CMP1)

7.2.1. Problem

On Revision A and Revision B devices, if the comparator output is high, the comparator rising and falling edge flags will both be set to 1 upon single-step or exit from debug mode.

7.2.2. Impacts

Firmware using the rising and falling edge flags to make decisions may see a false trigger of the comparator if the output of the comparator is high during a debug session. This does not impact the non-debug operation of the device.

7.2.3. Workaround

There is not a system-agnostic workaround for this issue.

7.2.4. Resolution

This issue exists on Revision A and Revision B devices. It may be corrected in a future device revision.

Silicon Labs

Simplicity Studio⁴

Simplicity Studio

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!

www.silabs.com/quality

Support and Community community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com