
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	28
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 18x12b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-VFQFN Exposed Pad
Supplier Device Package	40-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/sim3c154-b-gm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Related Documents and Conventions

1.1. Related Documents

This data sheet accompanies several documents to provide the complete description of the SiM3C1xx device family.

1.1.1. SiM3U1xx/SiM3C1xx Reference Manual

The Silicon Laboratories SiM3U1xx/SiM3C1xx Reference Manual provides detailed functional descriptions for the SiM3C1xx devices.

1.1.2. Hardware Access Layer (HAL) API Description

The Silicon Laboratories Hardware Access Layer (HAL) API provides C-language functions to modify and read each bit in the SiM3C1xx devices. This description can be found in the SiM3xxxx HAL API Reference Manual.

1.1.3. ARM Cortex-M3 Reference Manual

The ARM-specific features like the Nested Vector Interrupt Controller are described in the ARM Cortex-M3 reference documentation. The online reference manual can be found here: http://infocenter.arm.com/help/topic/com.arm.doc.subset.cortexm.m3/index.html#cortexm3.

1.2. Conventions

The block diagrams in this document use the following formatting conventions:

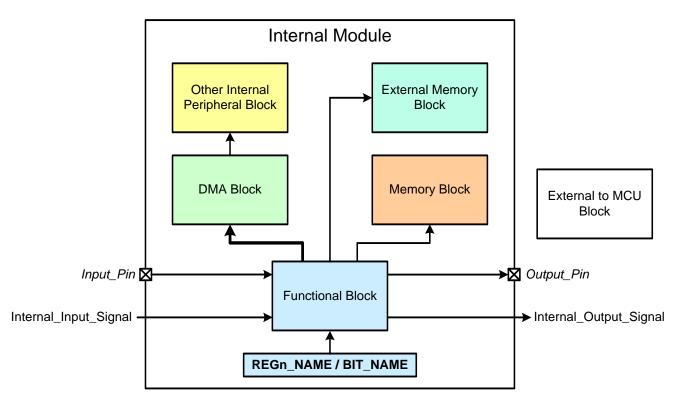


Figure 1.1. Block Diagram Conventions

3. Electrical Specifications

3.1. Electrical Characteristics

All electrical parameters in all tables are specified under the conditions listed in Table 3.1, unless stated otherwise.

 Table 3.1. Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Operating Supply Voltage on VDD	V _{DD}		1.8		3.6	V
Operating Supply Voltage on VREGIN	V _{REGIN}	EXTVREG0 Not Used	4	_	5.5	V
		EXTVREG0 Used	3.0		3.6	V
Operating Supply Voltage on VIO	V _{IO}		1.8	—	V _{DD}	V
Operating Supply Voltage on VIOHD	V _{IOHD}	HV Mode (default)	2.7	—	6.0	V
		LV Mode	1.8		3.6	V
Voltage on I/O pins, Port Bank 0, 1 and 2 I/O	V _{IN}		V _{SS}	—	V _{IO}	V
Voltage on I/O pins, Port Bank 3 I/O and RESET	V _{IN}	SiM3C1x7 PB3.0–PB3.7 and RESET	V _{SS}	—	V _{IO} +2.0	V
		SiM3C1x7 PB3.8 - PB3.11	V _{SS}	_	Lowest of V _{IO} +2.0 or V _{REGIN}	V
		SiM3C1x6 PB3.0–PB3.5 and RESET	V _{SS}	_	V _{IO} +2.0	V
		SiM3C1x6 PB3.6–PB3.9	V _{SS}	_	Lowest of V _{IO} +2.0 or V _{REGIN}	V
		SiM3C1x4 RESET	V _{SS}	_	V _{IO} +2.0	V
		SiM3C1x4 PB3.0–PB3.3	V _{SS}	_	Lowest of V _{IO} +2.0 or V _{REGIN}	V
Voltage on I/O pins, Port Bank 4 I/O	V _{IN}		V _{SSHD}		V _{IOHD}	V
System Clock Frequency (AHB)	f _{AHB}		0		80	MHz
Peripheral Clock Frequency (APB)	f _{APB}		0		50	MHz
Operating Ambient Temperature	T _A		-40		85	°C
Operating Junction Temperature	TJ		-40		105	°C
Note: All voltages with respect to V_{SS} .	<u> </u>	,	ı		ļ.	

Table 3.10. SAR ADC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
Resolution	N _{bits}	12 Bit Mode		12		Bits	
		10 Bit Mode		10			
Supply Voltage Requirements	V _{ADC}	High Speed Mode	2.2	_	3.6	V	
(VDD)		Low Power Mode	1.8	_	3.6	V	
Throughput Rate	f _S	12 Bit Mode	_	_	250	ksps	
(High Speed Mode)		10 Bit Mode		_	1	Msps	
Throughput Rate	f _S	12 Bit Mode	_	_	62.5	ksps	
(Low Power Mode)		10 Bit Mode	_	_	250	ksps	
Tracking Time	t _{TRK}	High Speed Mode	230	_		ns	
		Low Power Mode	450	_		ns	
SAR Clock Frequency	f _{SAR}	High Speed Mode	_	_	16.24	MHz	
		Low Power Mode	_	_	4	MHz	
Conversion Time	t _{CNV}	10-Bit Conversion, SAR Clock = 16 MHz, APB Clock = 40 MHz		762.5			
Sample/Hold Capacitor	C _{SAR}	Gain = 1	_	5	_	pF	
		Gain = 0.5	_	2.5		pF	
Input Pin Capacitance	C _{IN}	High Quality Inputs	_	18		pF	
		Normal Inputs	_	20		pF	
Input Mux Impedance	R _{MUX}	High Quality Inputs	_	300		Ω	
		Normal Inputs	_	550		Ω	
Voltage Reference Range	V _{REF}		1	_	V _{DD}	V	
Input Voltage Range ¹	V _{IN}	Gain = 1	0	_	V _{REF}	V	
		Gain = 0.5	0	_	$2 x V_{REF}$	V	
Power Supply Rejection Ratio	PSRR _{ADC}		-	70	_	dB	
DC Performance	L		I		ıl		
				. 4	10	LSB	
Integral Nonlinearity	INL	12 Bit Mode ²		±1	±1.9	LOD	

1. Absolute input pin voltage is limited by the lower of the supply at VDD and VIO.

2. INL and DNL specifications for 12-bit mode do not include the first or last four ADC codes.

3. The maximum code in 12-bit mode is 0xFFFC. The Slope Error is referenced from the maximum code.

Table 3.10. SAR ADC (Continued)

Symbol	Test Condition	Min	Тур	Max	Unit
DNL	12 Bit Mode ²	-1	±0.7	1.8	LSB
	10 Bit Mode		±0.2	±0.5	LSB
E _{OFF}	12 Bit Mode, VREF =2.4 V	-2	0	2	LSB
	10 Bit Mode, VREF =2.4 V	-1	0	1	LSB
TC _{OFF}			0.004		LSB/°C
E _M	12 Bit Mode	-0.07	-0.02	0.02	%
Hz Sine Way	ve Input 1 dB below full scale	, Max th	roughpu	it	
SNR	12 Bit Mode	62	66	_	dB
	10 Bit Mode	58	60		dB
SNDR	12 Bit Mode	62	66	_	dB
	10 Bit Mode	58	60	_	dB
THD	12 Bit Mode		78		dB
	10 Bit Mode		77	_	dB
SFDR	12 Bit Mode		-79		dB
	10 Bit Mode		-74		dB
	DNL E _{OFF} TC _{OFF} E _M Hz Sine Wav SNR SNDR THD	$\begin{tabular}{ c c c c } \hline DNL & 12 & Bit & Mode^2 \\ \hline 10 & Bit & Mode \\ \hline E_{OFF} & 12 & Bit & Mode, & VREF = 2.4 & V \\ \hline 10 & Bit & Mode, & VREF = 2.4 & V \\ \hline TC_{OFF} & & & & & & \\ \hline E_M & 12 & Bit & Mode \\ \hline Hz & Sine & Wave & Input 1 & dB & below & full & scale \\ \hline SNR & 12 & Bit & Mode \\ \hline SNR & 12 & Bit & Mode \\ \hline 10 & Bit & Mode \\ \hline SNDR & 12 & Bit & Mode \\ \hline THD & 12 & Bit & Mode \\ \hline THD & 12 & Bit & Mode \\ \hline SFDR & 12 & Bit & Mode \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c } \hline \mathbf{DNL} & $12 \mbox{ Bit Mode}^2$ & -1 \\ \hline $10 \mbox{ Bit Mode}$ & $$ \\ \hline $12 \mbox{ Bit Mode}$, $VREF = $2.4 \ V$ & -2 \\ \hline $10 \mbox{ Bit Mode}$, $VREF = $2.4 \ V$ & -1 \\ \hline $10 \mbox{ Bit Mode}$, $VREF = $2.4 \ V$ & -1 \\ \hline $10 \mbox{ Bit Mode}$, $VREF = $2.4 \ V$ & -1 \\ \hline $10 \mbox{ Bit Mode}$, $VREF = $2.4 \ V$ & -1 \\ \hline $10 \mbox{ Bit Mode}$, $VREF = $2.4 \ V$ & -1 \\ \hline $10 \mbox{ Bit Mode}$, $VREF = $2.4 \ V$ & -1 \\ \hline $10 \mbox{ Bit Mode}$, $VREF = $2.4 \ V$ & -1 \\ \hline $10 \mbox{ Bit Mode}$, $VREF = $2.4 \ V$ & -1 \\ \hline $10 \mbox{ Bit Mode}$, $VREF = $2.4 \ V$ & -1 \\ \hline $10 \mbox{ Bit Mode}$, $VREF = $2.4 \ V$ & -1 \\ \hline -1 \\ \hline $10 \mbox{ Bit Mode}$, -0.07 \\ \hline $12 \mbox{ Bit Mode}$, $12 \mbox{ Bit Mode}$, -1 \\ \hline $10 \mbox{ Bit Mode}$, -1 \\$	$\begin{tabular}{ c c c c c } \hline DNL & 12 & Bit & Mode^2 & -1 & \pm 0.7 \\ \hline 10 & Bit & Mode & & \pm 0.2 \\ \hline 10 & Bit & Mode, & VREF = 2.4 & V & -2 & 0 \\ \hline 10 & Bit & Mode, & VREF = 2.4 & V & -1 & 0 \\ \hline TC_{OFF} & & & 0.004 \\ \hline E_M & 12 & Bit & Mode & -0.07 & -0.02 \\ \hline Hz & Sine & Wave Input 1 & dB & below full & scale, & Max throughput \\ \hline SNR & 12 & Bit & Mode & 62 & 66 \\ \hline 10 & Bit & Mode & 58 & 60 \\ \hline SNDR & 12 & Bit & Mode & 58 & 60 \\ \hline THD & 12 & Bit & Mode & & 78 \\ \hline 10 & Bit & Mode & & 78 \\ \hline 10 & Bit & Mode & & 77 \\ \hline SFDR & 12 & Bit & Mode & & -79 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c } \hline 12 Bit Mode^2 & -1 & \pm 0.7 & 1.8 \\ \hline 10 Bit Mode & & \pm 0.2 & \pm 0.5 \\ \hline 12 Bit Mode, VREF = 2.4 V & -2 & 0 & 2 \\ \hline 10 Bit Mode, VREF = 2.4 V & -1 & 0 & 1 \\ \hline TC_{OFF} & & 0.004 & \\ \hline 10 Bit Mode, VREF = 2.4 V & -1 & 0 & 1 \\ \hline TC_{OFF} & & 0.004 & \\ \hline 10 Bit Mode & -0.07 & -0.02 & 0.02 \\ \hline Hz Sine Wave Input 1 dB below full scale, Max throughput \\ \hline SNR & 12 Bit Mode & 62 & 66 & \\ \hline 10 Bit Mode & 58 & 60 & \\ \hline 10 Bit Mode & 58 & 60 & \\ \hline 10 Bit Mode & 58 & 60 & \\ \hline 10 Bit Mode & 58 & 60 & \\ \hline 10 Bit Mode & 58 & 60 & \\ \hline 10 Bit Mode & -78 & \\ \hline 10 Bit Mode & $ 78 & \\ \hline 10 Bit Mode & $ 77 & \\ \hline $SFDR$ & 12 Bit Mode & $ 77 & \\ \hline $SFDR$ & 12 Bit Mode & $ 77 & \\ \hline \end{tabular}$

Notes:

1. Absolute input pin voltage is limited by the lower of the supply at VDD and VIO.

2. INL and DNL specifications for 12-bit mode do not include the first or last four ADC codes.

3. The maximum code in 12-bit mode is 0xFFFC. The Slope Error is referenced from the maximum code.

Table 3.12. Capacitive Sense

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Single Conversion Time	t _{single}	12-bit Mode		25	_	μs
(Default Configuration)		13-bit Mode	_	27		μs
	l	14-bit Mode	_	29		μs
		16-bit Mode	_	33		μs
Maximum External Capacitive Load	CL	Highest Gain Setting (default)	_	45		pF
		Lowest Gain Setting	_	500		pF
Maximum External Series Impedance	CL	Highest Gain Setting (default)	_	50		kΩ

Table 3.13. Current-to-Voltage Converter (IVC)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supply Voltage (VDD)	V _{DDIVC}		2.2		3.6	V
Input Pin Voltage	V _{IN}		2.2		VDD	V
Minimum Input Current (source)	I _{IN}		100	_	_	μA
Integral Nonlinearity	INL _{IVC}		-0.6		0.6	%
Full Scale Output	V _{IVCOUT}		_	1.65	_	V
Slope	M _{IVC}	Input Range 1 mA (INxRANGE = 101)	1.55	1.65	1.75	V/mA
		Input Range 2 mA (INxRANGE = 100)	795	830	860	mV/mA
		Input Range 3 mA (INxRANGE = 011)	525	550	570	mV/mA
		Input Range 4 mA (INxRANGE = 010)	390	415	430	mV/mA
		Input Range 5 mA (INxRANGE = 001)	315	330	340	mV/mA
		Input Range 6 mA (INxRANGE = 000)	260	275	285	mV/mA
Settling Time to 0.1%	V _{IVCOUT}		—		500	ns

Table 3.16. Comparator (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Positive Hysteresis	HYS _{CP+}	CMPHYP = 00		1.4	_	mV
Mode 3 (CPMD = 11)		CMPHYP = 01		4		mV
		CMPHYP = 10		8	—	mV
		CMPHYP = 11		16	—	mV
Negative Hysteresis	HYS _{CP-}	CMPHYN = 00		1.4		mV
Mode 3 (CPMD = 11)		CMPHYN = 01		-4	—	mV
		CMPHYN = 10		-8	—	mV
		CMPHYN = 11		-16	—	mV
Input Range (CP+ or CP-)	V _{IN}		-0.25	_	V _{DD} +0.25	V
Input Pin Capacitance	C _{CP}	PB2 Pins		7.5	—	pF
		PB3 Pins		10.5		pF
Common-Mode Rejection Ratio	CMRR _{CP}			75		dB
Power Supply Rejection Ratio	PSRR _{CP}		_	72	—	dB
Input Offset Voltage	V _{OFF}		-10	0	10	mV
Input Offset Tempco	TC _{OFF}		—	3.5	—	µV/°C
Reference DAC Resolution	N _{Bits}			6		bits

Table 3.19. Absolute Maximum	Ratings (Continued)
------------------------------	---------------------

Parameter	Symbol	Test Condition	Min	Мах	Unit
Voltage on I/O pins, Port Bank 3 I/O	V _{IN}	SiM3C1x7, PB3.0– PB3.7, V _{IO} ≥ 3.3 V	V _{SS} -0.3	5.8	V
		SiM3C1x7, PB3.0– PB3.7, V _{IO} < 3.3 V	V _{SS} -0.3	V _{IO} +2.5	V
		SiM3C1x7, PB3.8 - PB3.11	V _{SS} -0.3	Lowest of V _{IO} +2.5, V _{REGIN} +0.3, or 5.8	V
		SiM3C1x6, PB3.0– PB3.5, V _{IO} ≥ 3.3 V	V _{SS} -0.3	5.8	V
		SiM3C1x6, PB3.0– PB3.5, V _{IO} < 3.3 V	V _{SS} -0.3	V _{IO} +2.5	V
		SiM3C1x6, PB3.6– PB3.9	V _{SS} -0.3	Lowest of V _{IO} +2.5, V _{REGIN} +0.3, or 5.8	V
		SiM3C1x4, PB3.0– PB3.3	V _{SS} -0.3	Lowest of V _{IO} +2.5, V _{REGIN} +0.3, or 5.8	V
Total Current Sunk into Supply Pins	I _{SUPP}	$V_{DD},V_{REGIN},V_{IO},V_{IOHD}$	—	400	mA
Total Current Sourced out of Ground Pins	I _{VSS}	V _{SS} , V _{SSHD}	400	_	mA
Current Sourced or Sunk by Any I/O Pin	I _{PIO}	PB0, PB1 <u>, PB2,</u> PB3, and RESET	-100	100	mA
		PB4	-300	300	mA
Current Injected on Any I/O Pin	I _{INJ}	PB0, PB1 <u>, PB2,</u> PB3, and RESET	-100	100	mA
		PB4	-300	300	mA
Total Injected Current on I/O Pins	ΣΙ _{INJ}	Sum <u>of all I/O</u> and RESET	-400	400	mA

4. Precision32[™] SiM3C1xx System Overview

The SiM3C1xx Precision32[™] devices are fully integrated, mixed-signal system-on-a-chip MCUs. Highlighted features are listed below. Refer to Table 5.1 for specific product feature selection and part ordering numbers.

- Core:
 - 32-bit ARM Cortex-M3 CPU.
 - 80 MHz maximum operating frequency.
 - Branch target cache and prefetch buffers to minimize wait states.
- Memory: 32–256 kB Flash; in-system programmable, 8–32 kB SRAM (including 4 kB retention SRAM, which preserves state in PM9 mode).
- Power:
 - Low drop-out (LDO) regulator for CPU core voltage.
 - Power-on reset circuit and brownout detectors.
 - 3.3 V output LDO for direct power from 5 V supplies.
 - External transistor regulator.
 - Power Management Unit (PMU).
- I/O: Up to 65 total multifunction I/O pins:
 - Up to six programmable high-power capable (5–300 mA with programmable current limiting, 1.8–5 V).
 - Up to twelve 5 V tolerant general purpose pins.
 - Two flexible peripheral crossbars for peripheral routing.
- Clock Sources:
 - Internal oscillator with PLL: 23–80 MHz with ± 1.5% accuracy in free-running mode.
 - Low-power internal oscillator: 20 MHz and 2.5 MHz modes.
 - Low-frequency internal oscillator: 16.4 kHz.
 - External RTC crystal oscillator: 32.768 kHz.
 - External oscillator: Crystal, RC, C, CMOS clock modes.
 - Programmable clock divider allows any oscillator source to be divided by binary factor from 1-128.
- Data Peripherals:
 - 16-Channel DMA Controller.
 - 128/192/256-bit Hardware AES Encryption.
 - 16/32-bit CRC.

Timers/Counters and PWM:

- 6-channel Enhanced Programmable Counter Array (EPCAn) supporting advanced PWM and capture/compare.
- 2 x 2-channel Standard Programmable Counter Array (PCAn) supporting PWM and capture/compare.
- 2 x 32-bit Timers can be split into 4 x 16-bit Timers, support PWM and capture/compare.
- Real Time Clock (RTCn).
- Low Power Timer.
- Watchdog Timer.
- Communications Peripherals:
 - External Memory Interface.
 - 2 x USARTs and 2 x UARTs with IrDA and ISO7816 SmartCard support.
 - 3 x SPIs.
 - 2 x I2C.
 - I²S (receive and transmit).
- Analog:
 - 2 x 12-Bit Analog-to-Digital Converters (SARADC).
 - 2 x 10-Bit Digital-to-Analog Converter (IDAC).
 - 16-Channel Capacitance-to-Digital Converter (CAPSENSE).
 - 2 x Low-Current Comparators (CMP).
 - 1 x Current-to-Voltage Converter (IVC) module with two channels.

On-Chip Debugging

With on-chip power-on reset, voltage supply monitor, watchdog timer, and clock oscillator, the SiM3C1xx devices are truly standalone system-on-a-chip solutions. The Flash memory is reprogrammable in-circuit, providing non-

4.2. I/O

4.2.1. General Features

The SiM3C1xx ports have the following features:

- Push-pull or open-drain output modes and analog or digital modes.
- Option for high or low output drive strength.
- Port Match allows the device to recognize a change on a port pin value.
- Internal pull-up resistors are enabled or disabled on a port-by-port basis.
- Two external interrupts with up to 16 inputs provide monitoring capability for external signals.
- Internal Pulse Generator Timer (PB2 only) to generate simple square waves.
- A subset of pins can also serve as inputs to the Port Mapped Level Shifters available on the High Drive Pins.

4.2.2. High Drive Pins (PB4)

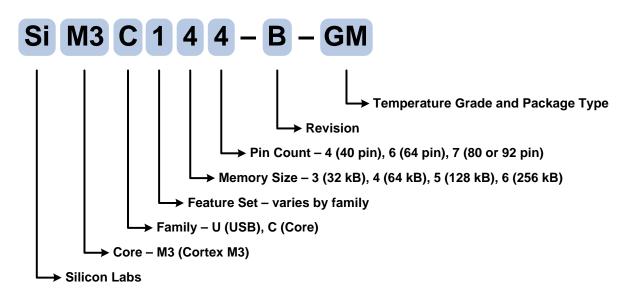
The High Drive pins have the following additional features:

- Programmable safe state: high, low, or high impedance.
- Programmable drive strength and slew rates.
- Programmable hardware current limiting.
- Powered from a separate source (VIOHD, which can be up to 6 V) from the rest of the device.
- Supports various functions, including GPIO, UART1 pins, EPCA0 pins, or Port Mapped Level Shifting.

4.2.3. 5 V Tolerant Pins (PB3)

The 5 V tolerant pins can be connected to external circuitry operating at voltages above the device supply without needing extra components to shift the voltage level.

4.2.4. Crossbars


The SiM3C1xx devices have two Crossbars with the following features:

- Flexible peripheral assignment to port pins.
- Pins can be individually skipped to move peripherals as needed for design or layout considerations.

The Crossbars have a fixed priority for each I/O function and assign these functions to the port pins. When a digital resource is selected, the least-significant unassigned port pin is assigned to that resource. If a port pin is assigned, the Crossbars skip that pin when assigning the next selected resource. Additionally, the Crossbars will skip port pins whose associated bits in the PBSKIPEN registers are set. This provides some flexibility when designing a system: pins involved with sensitive analog measurements can be moved away from digital I/O and peripherals can be moved around the chip as needed to ease layout constraints.

5. Ordering Information

Figure 5.1. SiM3C1xx Part Numbering

All devices in the SiM3C1xx family have the following features:

- Core: ARM Cortex-M3 with maximum operating frequency of 80 MHz.
- Flash Program Memory: 32-256 kB, in-system programmable.
- RAM: 8–32 kB SRAM, with 4 kB retention SRAM
- I/O: Up to 65 multifunction I/O pins, including high-drive and 5 V-tolerant pins.
- Clock Sources: Internal and external oscillator options.
- 16-Channel DMA Controller.
- 128/192/256-bit AES.
- 16/32-bit CRC.
- **Timers:** 2 x 32-bit (4 x 16-bit).
- Real-Time Clock.
- Low-Power Timer.
- PCA: 1 x 6 channels (Enhanced), 2 x 2 channels (Standard). PWM, capture, and clock generation capabilites.
- ADC: 2 x 12-bit 250 ksps (10-bit 1 Msps) SAR.
- **DAC:** 2 x 10-bit IDAC.
- Temperature Sensor.
- Internal VREF.
- 16-channel Capacitive Sensing (CAPSENSE).
- **Comparator:** 2 x low current.
- Current to Voltage Converter (IVC).
- Serial Buses: 2 x USART, 2 x UART, 3 x SPI, 2 x I2C, 1 x I²S.

The inclusion of some features varies across different members of the device family. The differences are detailed in Table 5.1.

SiM3C1xx

Pin Name	Туре	Pin Numbers TQFP-80	Pin Numbers LGA-92	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
VSS	Ground	33 75	B15 B34							
VDD	Power (Core)	74	A44							
VIO	Power (I/O)	32 49 73	A19 A29 A43							
VREGIN	Power (Regulator)	76	A45							
VSSHD	Ground (High Drive)	4	B2							
VIOHD	Power (High Drive)	5	A3							
RESET	Active-low Reset	80	A48							
SWCLK/TCK	Serial Wire/JTAG	45	B20							
SWDIO/TMS	Serial Wire/JTAG	44	A27							
PB0.0	Standard I/O	72	B33	XBR0	\checkmark					ADC0.0
PB0.1	Standard I/O	71	B32	XBR0	V					ADC0.1 CS0.0
PB0.2	Standard I/O	70	A42	XBR0	~					ADC0.2 CS0.1
PB0.3	Standard I/O	69	B31	XBR0	~					ADC0.3 CS0.2
PB0.4	Standard I/O	68	A41	XBR0	~					ADC0.4 CS0.3
PB0.5	Standard I/O	67	B30	XBR0	~					ADC0.5 CS0.4
PB0.6	Standard I/O	66	A40	XBR0	\checkmark					CS0.5
PB0.7	Standard I/O	65	B29	XBR0	~					ADC0.6 CS0.6 IVC0.0

Table 6.1. Pin Definitions and alternate functions for SiM3C1x7

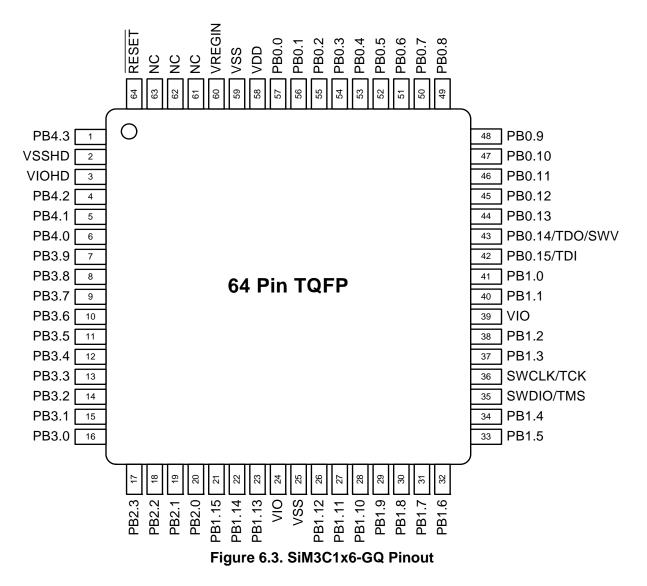


Table 6.1. Pin Definitions and alternate	e functions for SiM3C1x7	(Continued)
--	--------------------------	-------------

Dia Nama	Torre	Pin Numbers TQFP-80	Pin Numbers LGA-92	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
Pin Name PB1.9/ TRACECLK	Type Standard I/O /ETM	ä 46	ā A28	ن <u>ت</u> XBR0	<u>√</u>	ά£	Рс	õ	<u>ش</u>	ਪ ਛੋ ADC1.9
PB1.10	Standard I/O	43	A26	XBR0	~	A23m/ A15			DMA0T1	ADC1.8
PB1.11	Standard I/O	42	A25	XBR0	~	A22m/ A14			DMA0T0	ADC1.7
PB1.12	Standard I/O	41	D3	XBR0	~	A21m/ A13				ADC1.6
PB1.13	Standard I/O	40	A24	XBR0	~	A20m/ A12			ADC0T15 WAKE.0	ADC1.5 CS0.10
PB1.14	Standard I/O	39	A23	XBR0	~	A19m/ A11			ADC1T15 WAKE.1	ADC1.4 CS0.11
PB1.15	Standard I/O	38	A22	XBR0	~	A18m/ A10			WAKE.2	ADC1.3 CS0.12
PB2.0	Standard I/O	37	B17	XBR1	V	A17m/ A9	LSI0	Yes	INT0.0 INT1.0 WAKE.3	ADC1.2 CS0.13
PB2.1	Standard I/O	36	A21	XBR1	~	A16m/ A8	LSI1	Yes	INT0.1 INT1.1 WAKE.4	ADC1.1 CS0.14
PB2.2	Standard I/O	35	B16	XBR1	~	AD15m/ A7	LSI2	Yes	INT0.2 INT1.2 WAKE.5	ADC1.0 CS0.15 PMU_Asleep
PB2.3	Standard I/O	34	A20	XBR1	~	AD14m/ A6	LSI3	Yes	INT0.3 INT1.3 WAKE.6	
PB2.4	Standard I/O	31	B14	XBR1	~	AD13m/ A5	LSI4	Yes	INT0.4 INT1.4 WAKE.7	
PB2.5	Standard I/O	30	A18	XBR1	\checkmark	AD12m / A4	LSI5	Yes	INT0.5 INT1.5	

6.2. SiM3C1x6 Pin Definitions

SiM3C1xx

Pin Name	Туре	Pin Numbers	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
VSS	Ground	25 59							
VDD	Power (Core)	58							
VIO	Power (I/O)	24 39							
VREGIN	Power (Regulator)	60							
VSSHD	Ground (High Drive)	2							
VIOHD	Power (High Drive)	3							
RESET	Active-low Reset	64							
SWCLK/TCK	Serial Wire / JTAG	36							
SWDIO/TMS	Serial Wire / JTAG	35							
PB0.0	Standard I/O	57	XBR0	~					ADC0.2 CS0.1
PB0.1	Standard I/O	56	XBR0	\checkmark					ADC0.3 CS0.2
PB0.2	Standard I/O	55	XBR0	$\mathbf{\mathbf{Y}}$					ADC0.4 CS0.3
PB0.3	Standard I/O	54	XBR0	\checkmark					ADC0.5 CS0.4
PB0.4	Standard I/O	53	XBR0	\checkmark					ADC0.6 CS0.5 IVC0.0
PB0.5	Standard I/O	52	XBR0	~					ADC0.7 CS0.6 IVC0.1
PB0.6	Standard I/O	51	XBR0	\checkmark					ADC0.8 CS0.7 RTC1

 Table 6.2. Pin Definitions and alternate functions for SiM3C1x6

	1		r		1	1	1		,
Pin Name	Туре	Pin Numbers	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB0.7	Standard I/O	50	XBR0	\checkmark					RTC2
PB0.8	Standard I/O	49	XBR0	\checkmark					ADC0.9 VREFGND
PB0.9	Standard I/O	48	XBR0	\checkmark					ADC0.10 VREF
PB0.10	Standard I/O	47	XBR0	\checkmark					ADC1.6 IDAC0
PB0.11	Standard I/O	46	XBR0	\checkmark					IDAC1
PB0.12	Standard I/O	45	XBR0	\checkmark					XTAL1
PB0.13	Standard I/O	44	XBR0	\checkmark					XTAL2
PB0.14/TDO/ SWV	Standard I/O / JTAG / Serial Wire Viewer	43	XBR0	~					ADC0.12 ADC1.12
PB0.15/TDI	Standard I/O / JTAG	42	XBR0	~					ADC0.13 ADC1.13
PB1.0	Standard I/O	41	XBR0	\checkmark					ADC0.14 ADC1.14
PB1.1	Standard I/O	40	XBR0	\checkmark					ADC0.15 ADC1.15
PB1.2	Standard I/O	38	XBR0	~					ADC1.11 CS0.8
PB1.3	Standard I/O	37	XBR0	~					ADC1.10 CS0.9
PB1.4	Standard I/O	34	XBR0	\checkmark					ADC1.8
PB1.5	Standard I/O	33	XBR0	\checkmark					ADC1.7
PB1.6	Standard I/O	32	XBR0	~				ADC0T15 WAKE.0	ADC1.5 CS0.10
PB1.7	Standard I/O	31	XBR0	\checkmark	AD15m/ A7			ADC1T15 WAKE.1	ADC1.4 CS0.11

Table 6.2. Pin Definitions and alternate functions for SiM3C1x6 (Continued)

Pin Name	Туре	Pin Numbers	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB3.9	5 V Tolerant I/O	7	XBR1	~	BE0			DAC0T6 DAC1T6 LPT0T2 INT0.10 INT1.10 WAKE.15	CMP0N.5 CMP1N.5 EXREGBD
PB4.0	High Drive I/O	6				LSO0			
PB4.1	High Drive I/O	5				LSO1			
PB4.2	High Drive I/O	4				LSO2			
PB4.3	High Drive I/O	1				LSO3			

Table 6.2. Pin Definitions and alternate functions for SiM3C1x6 (Continued)

Pin Name	Туре	Pin Numbers	Crossbar Capability (see Port Config Section)	Port Match	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
VSS	Ground	14			-		
VDD	Power (Core)	35					
VIO	Power (I/O)	13					
VREGIN	Power (Regulator)	36					
VSSHD	Ground (High Drive)	2					
VIOHD	Power (High Drive)	3					
RESET	Active-low Reset	40					
SWCLK	Serial Wire	24					
SWDIO	Serial Wire	23					
PB0.0	Standard I/O	34	XBR0	~			ADC0.8 CS0.7 RTC1
PB0.1	Standard I/O	33	XBR0	\checkmark			RTC2
PB0.2	Standard I/O	32	XBR0	~			ADC0.9 CS0.0 VREFGND
PB0.3	Standard I/O	31	XBR0	~			ADC0.10 CS0.1 VREF
PB0.4	Standard I/O	30	XBR0	\checkmark			ADC1.6 CS0.2 IDAC0
PB0.5	Standard I/O	29					IDAC1
PB0.6	Standard I/O	28	XBR0	\checkmark			ADC0.0 CS0.3 XTAL1
PB0.7	Standard I/O	27	XBR0	~			ADC0.1 CS0.4 XTAL2

 Table 6.3. Pin Definitions and Alternate Functions for SiM3C1x4

Dimension	Min	Nominal	Max					
aaa	aaa —		0.20					
bbb		_	0.20					
ccc	ccc — — 0.08							
ddd			0.08					
 Notes: All dimensions shown are in millimeters (mm) unless otherwise noted. Dimensioning and Tolerancing per ANSI Y14.5M-1994. This package outline conforms to JEDEC MS-026, variant ACD. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. 								

Table 6.10. TQFP-64 Package Dimensions (Continued)

SILICON LABS

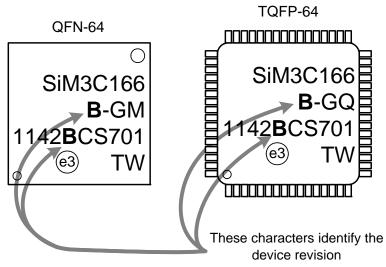
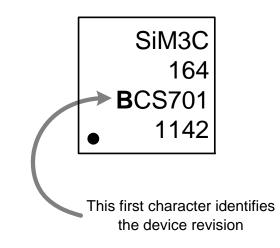



Figure 7.3. SiM3C1x6 Revision Information

7.2. Comparator Rising/Falling Edge Flags in Debug Mode (CMP0, CMP1)

7.2.1. Problem

On Revision A and Revision B devices, if the comparator output is high, the comparator rising and falling edge flags will both be set to 1 upon single-step or exit from debug mode.

7.2.2. Impacts

Firmware using the rising and falling edge flags to make decisions may see a false trigger of the comparator if the output of the comparator is high during a debug session. This does not impact the non-debug operation of the device.

7.2.3. Workaround

There is not a system-agnostic workaround for this issue.

7.2.4. Resolution

This issue exists on Revision A and Revision B devices. It may be corrected in a future device revision.

Silicon Labs

Simplicity Studio⁴

Simplicity Studio

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!

Support and Community community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com