E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	28
Program Memory Size	32KB (32K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 18x12b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-VFQFN Exposed Pad
Supplier Device Package	40-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/sim3u134-b-gm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	4.6.5. I2C (I2C0, I2C1)	43
	4.6.6. I2S (I2S0)	44
	4.7. Analog	45
	4.7.1. 12-Bit Analog-to-Digital Converters (SARADC0, SARADC1)	45
	4.7.2. Sample Sync Generator (SSG0)	45
	4.7.3. 10-Bit Digital-to-Analog Converter (IDAC0, IDAC1)	
	4.7.4. 16-Channel Capacitance-to-Digital Converter (CAPSENSE0)	46
	4.7.5. Low Current Comparators (CMP0, CMP1)	46
	4.7.6. Current-to-Voltage Converter (IVC0)	46
	4.8. Reset Sources	47
	4.9. Security	48
	4.10.On-Chip Debugging	48
5.	Ordering Information	49
6.	Pin Definitions and Packaging Information	51
	6.1. SiM3C1x7 Pin Definitions	51
	6.2. SiM3C1x6 Pin Definitions	59
	6.3. SiM3C1x4 Pin Definitions	66
	6.4. LGA-92 Package Specifications	70
	6.4.1. LGA-92 Solder Mask Design	72
	6.4.2. LGA-92 Stencil Design	72
	6.4.3. LGA-92 Card Assembly	72
	6.5. TQFP-80 Package Specifications	73
	6.5.1. TQFP-80 Solder Mask Design	76
	6.5.2. TQFP-80 Stencil Design	76
	6.5.3. TQFP-80 Card Assembly	76
	6.6. QFN-64 Package Specifications	77
	6.6.1. QFN-64 Solder Mask Design	79
	6.6.2. QFN-64 Stencil Design	79
	6.6.3. QFN-64 Card Assembly	79
	6.7. TQFP-64 Package Specifications	80
	6.7.1. TQFP-64 Solder Mask Design	83
	6.7.2. TQFP-64 Stencil Design	83
	6.7.3. TQFP-64 Card Assembly	83
	6.8. QFN-40 Package Specifications	84
	6.8.1. QFN-40 Solder Mask Design	86
	6.8.2. QFN-40 Stencil Design	86
	6.8.3. QFN-40 Card Assembly	86
7.	Revision Specific Behavior	87
	7.1. Revision Identification	87
	7.2. Comparator Rising/Falling Edge Flags in Debug Mode (CMP0, CMP1)	88
	7.2.1. Problem	88
	7.2.2. Impacts	88
	7.2.3. Workaround	88
-	7.2.4. Resolution	88
Do	cument Change List	89
Co	ntact Information	90

3. Electrical Specifications

3.1. Electrical Characteristics

All electrical parameters in all tables are specified under the conditions listed in Table 3.1, unless stated otherwise.

 Table 3.1. Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Operating Supply Voltage on VDD	V _{DD}		1.8		3.6	V
Operating Supply Voltage on VREGIN	V _{REGIN}	EXTVREG0 Not Used	4		5.5	V
		EXTVREG0 Used	3.0	_	3.6	V
Operating Supply Voltage on VIO	V _{IO}		1.8		V _{DD}	V
Operating Supply Voltage on VIOHD	V _{IOHD}	HV Mode (default)	2.7		6.0	V
		LV Mode	1.8		3.6	V
Voltage on I/O pins, Port Bank 0, 1 and 2 I/O	V _{IN}		V _{SS}		V _{IO}	V
Volta <u>ge on I</u> /O pins, Port Bank 3 I/O and RESET	V _{IN}	SiM3C1x7 PB3.0–PB3.7 and RESET	V _{SS}		V _{IO} +2.0	V
		SiM3C1x7 PB3.8 - PB3.11	V _{SS}	_	Lowest of V _{IO} +2.0 or V _{REGIN}	V
		SiM3C1x6 PB3.0–PB3.5 and RESET	V _{SS}		V _{IO} +2.0	V
		SiM3C1x6 PB3.6–PB3.9	V _{SS}	_	Lowest of V _{IO} +2.0 or V _{REGIN}	V
		SiM3C1x4 RESET	V _{SS}		V _{IO} +2.0	V
		SiM3C1x4 PB3.0–PB3.3	V _{SS}	_	Lowest of V _{IO} +2.0 or V _{REGIN}	V
Voltage on I/O pins, Port Bank 4 I/O	V _{IN}		V _{SSHD}	_	V _{IOHD}	V
System Clock Frequency (AHB)	f _{AHB}		0		80	MHz
Peripheral Clock Frequency (APB)	f _{APB}		0	_	50	MHz
Operating Ambient Temperature	T _A		-40	_	85	°C
Operating Junction Temperature	TJ		-40		105	°C
Note: All voltages with respect to V_{SS} .		+				

Table 3.2. Power Consumption (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
External Oscillator (EXTOSC0) ⁸	IEXTOSC	FREQCN = 111		3.8	4.7	mA
		FREQCN = 110		840	950	μA
		FREQCN = 101		185	220	μA
		FREQCN = 100		65	80	μA
		FREQCN = 011		25	30	μA
		FREQCN = 010		10	15	μA
		FREQCN = 001		5	10	μA
		FREQCN = 000		3	8	μA
SARADC0, SARADC1	I _{SARADC}	Sampling at 1 Msps, highest power mode settings.	_	1.2	1.5	mA
		Sampling at 250 ksps, lowest power mode settings.		390	510	μΑ
Temperature Sensor	I _{TSENSE}			75	105	μA
Internal SAR Reference	IREFFS	Normal Power Mode		680	750	μA
		Low Power Mode		160	190	μA
VREF0	I _{REFP}			75	100	μA
Comparator 0 (CMP0),	I _{CMP}	CMPMD = 11		0.5		μA
Comparator 1 (CMP1)		CMPMD = 10		3		μA
		CMPMD = 01		10		μA
		CMPMD = 00		25	_	μA
Capacitive Sensing (CAPSENSE0)	I _{CS}	Continuous Conversions		55	80	μA
IDAC0 ⁷ , IDAC1 ⁷	I _{IDAC}		—	75	90	μΑ
IVC0 ⁷	I _{IVC}	$I_{IN} = 0$		1.5	2.5	μA
Voltage Supply Monitor (VMON0)	I _{VMON}			15	25	μA

Notes:

1. Perhipheral currents drop to zero when peripheral clock and peripheral are disabled, unless otherwise noted.

 Currents are additive. For example, where I_{DD} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

- 3. Includes all peripherals that cannot have clocks gated in the Clock Control module.
- 4. Includes supply current from internal regulator and PLL0OSC (>20 MHz) or LPOSC0 (<=20 MHz).
- 5. Flash execution numbers use 2 wait states for 80 MHz and 0 wait states at 20 MHz or less.
- 6. RAM execution numbers use 0 wait states for all frequencies.
- 7. IDAC output current and IVC input current not included.
- 8. Bias current only. Does not include dynamic current from oscillator running at speed.

Table 3.15. Temperature Sensor

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Offset	V _{OFF}	T _A = 0 °C	—	760		mV
Offset Error*	E _{OFF}	T _A = 0 °C	—	±14		mV
Slope	М			2.8		mV/°C
Slope Error*	E _M		—	±120		µV/°C
Linearity			—	1		°C
Turn-on Time			_	1.8		μs
*Note: Represents one standard deviation	from the mea	an.	•	•		•

Table 3.17. Port I/O

Parameter	Parameter Symbol Test Condition		Min	Тур	Max	Unit
Standard I/O (PB0, PB1, and PB2)	d I/O (PB0, PB1, and PB2), 5 V Tolerant I/O (PB		T		Į	
Output High Voltage*	V _{OH}	Low Drive, I _{OH} = -2 mA	V _{IO} – 0.7	_		V
		High Drive, $I_{OH} = -5 \text{ mA}$	V _{IO} – 0.7			V
Output Low Voltage*	V _{OL}	Low Drive, I _{OL} = 3 mA	_		0.6	V
		High Drive, I _{OL} = 12.5 mA	—		0.6	V
Input High Voltage	V _{IH}	1.8 ≤ V _{IO} ≤ 2.0	0.7 x V _{IO}			V
		$2.0 \le V_{IO} \le 3.6$	V _{IO} – 0.6			V
Input Low Voltage	V _{IL}		_		0.6	V
Pin Capacitance	C _{IO}	PB0, PB1 and PB2 Pins		4	—	pF
		PB3 Pins	_	7		pF
Weak Pull-Up Current	I _{PU}	V _{IO} = 1.8	-6	-3.5	-2	μA
(Input Voltage = 0 V)		V _{IO} = 3.6	-30	-20	-10	μA
Input Leakage (Pullups off or Analog)	I _{LK}	$0 \le V_{IN} \le V_{IO}$	-1	—	1	μA
Input Leakage Current of Port Bank 3 I/O, V _{IN} above V _{IO}	ΙL	V _{IO} < V _{IN} < V _{IO} +2.0 V (pins without EXREG functions)	0	5	150	μA
		V _{IO} < V _{IN} < V _{REGIN} (pins with EXREG functions)	0	5	150	μA
High Drive I/O (PB4)					1	T.,
Output High Voltage	V _{OH}	Standard Mode, Low Drive, I _{OH} = –3 mA	V _{IOHD} – 0.7		_	V
		Standard Mode, High Drive, I _{OH} = -10 mA	V _{IOHD} – 0.7		_	V
Output Low Voltage	V _{OL}	Standard Mode, Low Drive, I _{OH} = 3 mA	—		0.6	V
		Standard Mode, High Drive, I _{OH} = 12.5 mA	—		0.6	V
Output Rise Time	t _R	Slew Rate Mode 0, V _{IOHD} = 5 V	—	50	—	ns
		Slew Rate Mode 1, V _{IOHD} = 5 V	—	300	—	ns
		Slew Rate Mode 2, V _{IOHD} = 5 V	—	1	—	μs
		Slew Rate Mode 3, V _{IOHD} = 5 V	—	3	—	μs
*Note: RESET does not drive to logic h	igh. Specifi	cations for RESET V _{OL} adher	re to the low driv	ve setting.		

Figure 3.2. Maximum Source Current vs. PB4.x Pin Voltage

volatile data storage and allowing field upgrades of the firmware. User firmware has complete control of all peripherals and may individually shut down and gate the clocks of any or all peripherals for power savings.

The on-chip debugging interface (SWJ-DP) allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional while debugging.

Each device is specified for 1.8 to 3.6 V operation over the industrial temperature range (-40 to +85 °C). The Port I/O and RESET pins are powered from the IO supply voltage. The SiM3C1xx devices are available in 40-pin or 64-pin QFN, 64-pin or 80-pin TQFP, or 92-pin LGA packages. All package options are lead-free and RoHS compliant. See Table 5.1 for ordering information. A block diagram is included in Figure 4.1.

Figure 4.1. Precision32[™] SiM3C1xx Family Block Diagram

4.2. I/O

4.2.1. General Features

The SiM3C1xx ports have the following features:

- Push-pull or open-drain output modes and analog or digital modes.
- Option for high or low output drive strength.
- Port Match allows the device to recognize a change on a port pin value.
- Internal pull-up resistors are enabled or disabled on a port-by-port basis.
- Two external interrupts with up to 16 inputs provide monitoring capability for external signals.
- Internal Pulse Generator Timer (PB2 only) to generate simple square waves.
- A subset of pins can also serve as inputs to the Port Mapped Level Shifters available on the High Drive Pins.

4.2.2. High Drive Pins (PB4)

The High Drive pins have the following additional features:

- Programmable safe state: high, low, or high impedance.
- Programmable drive strength and slew rates.
- Programmable hardware current limiting.
- Powered from a separate source (VIOHD, which can be up to 6 V) from the rest of the device.
- Supports various functions, including GPIO, UART1 pins, EPCA0 pins, or Port Mapped Level Shifting.

4.2.3. 5 V Tolerant Pins (PB3)

The 5 V tolerant pins can be connected to external circuitry operating at voltages above the device supply without needing extra components to shift the voltage level.

4.2.4. Crossbars

The SiM3C1xx devices have two Crossbars with the following features:

- Flexible peripheral assignment to port pins.
- Pins can be individually skipped to move peripherals as needed for design or layout considerations.

The Crossbars have a fixed priority for each I/O function and assign these functions to the port pins. When a digital resource is selected, the least-significant unassigned port pin is assigned to that resource. If a port pin is assigned, the Crossbars skip that pin when assigning the next selected resource. Additionally, the Crossbars will skip port pins whose associated bits in the PBSKIPEN registers are set. This provides some flexibility when designing a system: pins involved with sensitive analog measurements can be moved away from digital I/O and peripherals can be moved around the chip as needed to ease layout constraints.

4.3.1. PLL (PLL0)

The PLL module consists of a dedicated Digitally-Controlled Oscillator (DCO) that can be used in Free-Running mode without a reference frequency, Frequency-Locked to a reference frequency, or Phase-Locked to a reference frequency. The reference frequency for Frequency-Lock and Phase-Lock modes can use one of multiple sources (including the external oscillator) to provide maximum flexibility for different application needs. Because the PLL module generates its own clock, the DCO can be locked to a particular reference frequency and then moved to Free-Running mode to reduce system power and noise.

The PLL module includes the following features:

- Five output ranges with output frequencies ranging from 23 to 80 MHz.
- Multiple reference frequency inputs.
- Three output modes: free-running DCO, frequency-locked, and phase-locked.
- Ability to sense the rising edge or falling edge of the reference source.
- DCO frequency LSB dithering to provide finer average output frequencies.
- Spectrum spreading to reduce generated system noise.
- Low jitter and fast lock times.
- Ability to suspend all output frequency updates (including dithering and spectrum spreading) using the STALL bit during jitter-sensitive operations.

4.3.2. Low Power Oscillator (LPOSC0)

The Low Power Oscillator is the default AHB oscillator on SiM3C1xx devices and enables or disables automatically, as needed.

The Low Power Oscillator has the following features:

- 20 MHz and divided 2.5 MHz frequencies available for the AHB clock.
- Automatically starts and stops as needed.

4.3.3. Low Frequency Oscillator (LFOSC0)

The low frequency oscillator (LFOSC0) provides a low power internal clock source running at approximately 16.4 kHz for the RTC0 timer and other peripherals on the device. No external components are required to use the low frequency oscillator

4.3.4. External Oscillators (EXTOSC0)

The EXTOSC0 external oscillator circuit may drive an external crystal, ceramic resonator, capacitor, or RC network. A CMOS clock may also provide a clock input. The external oscillator output may be selected as the AHB clock or used to clock other modules independent of the AHB clock selection.

The External Oscillator control has the following features:

- Support for external crystal, RC, C, or CMOS oscillators.
- Support external CMOS frequencies from 10 kHz to 50 MHz and external crystal frequencies from 10 kHz to 30 MHz.
- Various drive strengths for flexible crystal oscillator support.
- Internal frequency divide-by-two option available.

4.5.3. Real-Time Clock (RTC0)

The RTC0 module includes a 32-bit timer that allows up to 36 hours of independent time-keeping when used with a 32.768 kHz watch crystal. The RTC0 provides three alarm events in addition to a missing clock event, which can also function as interrupt, reset, or wakeup sources on SiM3C1xx devices.

The RTC0 module includes internal loading capacitors that are programmable to 16 discrete levels, allowing compatibility with a wide range of crystals.

The RTC0 output can be buffered and routed to a port bank pin to provide an accurate, low frequency clock to other devices while the core is in its lowest power down mode. The module also includes a low power internal low frequency oscillator that reduces low power mode current and is available for other modules to use as a clock source.

The RTC module includes the following features:

- 32-bit timer (supports up to 36 hours) with three separate alarms.
- Option for one alarm to automatically reset the RTC timer.
- Missing clock detector.
- Can be used with the internal low frequency oscillator (LFOSC0), an external 32.768 kHz crystal (no additional resistors or capacitors necessary), or with an external CMOS clock.
- Programmable internal loading capacitors support a wide range of external 32.768 kHz crystals.
- Operates directly from VDD and remains operational even when the device goes into its lowest power down mode.
- The RTC timer clock (RTC0TCLK) can be buffered and routed to an I/O pin to provide an accurate, low frequency clock to other devices while the core is in its lowest power down mode.

4.5.4. Low Power Timer (LPTIMER0)

The Low Power Timer (LPTIMER0) module runs from the clock selected by the RTC0 module, allowing the LPTIMER0 to operate even if the AHB and APB clocks are disabled. The LPTIMER0 counter can increment using one of two clock sources: the clock selected by the RTC0 module, or rising or falling edges of an external signal.

The Low Power Timer includes the following features:

- Runs on a low-frequency clock (RTC0TCLK)
- The LPTIMER counter can increment using one of two clock sources: the RTC0TCLK or rising or falling edges of an external signal.
- Overflow and threshold-match detection, which can generate an interrupt, reset the timer, or wake some devices from low power modes.
- Timer reset on threshold-match allows square-wave generation at a variable output frequency.

4.5.5. Watchdog Timer (WDTIMER0)

The WDTIMER0 module includes a 16-bit timer, a programmable early warning interrupt, and a programmable reset period. The timer registers are protected from inadvertent access by an independent lock and key interface.

The watchdog timer runs from the low frequency oscillator (LFOSC0).

The Watchdog Timer has the following features:

- Programmable timeout interval.
- Optional interrupt to warn when the Watchdog Timer is nearing the reset trip value.
- Lock-out feature to prevent any modification until a system reset.

• Spike suppression up to 2 times the APB period.

4.6.6. I²S (I2S0)

The I²S module receives digital data from an external source over a data line in the standard I²S, left-justified, rightjustified, or time domain multiplexing format, de-serializes the data, and generates requests to transfer the data using the DMA. The module also reads stereo audio samples from the DMA, serializes the data, and sends it out of the chip on a data line in the same standard serial format for digital audio. The I²S receive interface consists of 3 signals: SCK (bit clock), WS (word select or frame sync), and SD (data input). The block's transmit interface consists of 3 signals: SCK (bit clock), WS (word select or frame sync) and SD (data output).

The I²S module includes the following features:

- Master or slave capability.
- Flexible 10-bit clock divider with 8-bit fractional clock divider provides support for various common sampling frequencies (16 kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, and 48 kHz) for up to two 32-bit channels.
- Support for DMA data transfers.
- Support for various data formats.
- Time Division Multiplexing

4.8. Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- The core halts program execution.
- Module registers are initialized to their defined reset values unless the bits reset only with a power-on reset.
- External port pins are forced to a known state.
- Interrupts and timers are disabled.
- Clocks to all AHB peripherals are enabled.
- Clocks to all APB peripherals other than Watchdog Timer, EMIF0, and DMAXBAR are disabled.

All registers are reset to the predefined values noted in the register descriptions unless the bits only reset with a power-on reset. The contents of RAM are unaffected during a reset; any previously stored data is preserved as long as power is not lost.

The Port I/O latches are reset to 1 in open-drain mode. Weak pullups are enabled during and after the reset. For VDD Supply Monitor and power-on resets, the RESET pin is driven low until the device exits the reset state.

On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to an internal oscillator. The Watchdog Timer is enabled with the Low Frequency Oscillator (LFO0) as its clock source. Program execution begins at location 0x00000000.

4.9. Security

The peripherals on the SiM3C1xx devices have a register lock and key mechanism that prevents any undesired accesses of the peripherals from firmware. Each bit in the PERIPHLOCKx registers controls a set of peripherals. A key sequence must be written in order to the KEY register to modify any of the bits in PERIPHLOCKx. Any subsequent write to KEY will then inhibit any accesses of PERIPHLOCKx until it is unlocked again through KEY. Reading the KEY register indicates the current status of the PERIPHLOCKx lock state.

If a peripheral's registers are locked, all writes will be ignored. The registers can always be read, regardless of the peripheral's lock state.

4.10. On-Chip Debugging

The SiM3C1xx devices include JTAG and Serial Wire programming and debugging interfaces and ETM for instruction trace. The JTAG interface is supported on SiM3C1x7 and SiM3C1x6 devices only, and does not include boundary scan capabilites. The ETM interface is supported on SiM3C1x7 devices. The JTAG and ETM interfaces can be optionally enabled to provide more visibility while debugging at the cost of using several Port I/O pins. Additionally, if the core is configured for Serial Wire (SW) mode and not JTAG, then the Serial Wire Viewer (SWV) is available to provide a single pin to send out TPIU messages on SiM3C1x7 and SiM3C1x6 devices.

Most peripherals have the option to halt or continue functioning when the core halts in debug mode.

SiM3C1xx

Pin Name	Туре	Pin Numbers	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
VSS	Ground	25 59							
VDD	Power (Core)	58							
VIO	Power (I/O)	24 39							
VREGIN	Power (Regulator)	60							
VSSHD	Ground (High Drive)	2							
VIOHD	Power (High Drive)	3							
RESET	Active-low Reset	64							
SWCLK/TCK	Serial Wire / JTAG	36							
SWDIO/TMS	Serial Wire / JTAG	35							
PB0.0	Standard I/O	57	XBR0	\checkmark					ADC0.2 CS0.1
PB0.1	Standard I/O	56	XBR0	\checkmark					ADC0.3 CS0.2
PB0.2	Standard I/O	55	XBR0	\checkmark					ADC0.4 CS0.3
PB0.3	Standard I/O	54	XBR0	\checkmark					ADC0.5 CS0.4
PB0.4	Standard I/O	53	XBR0	\checkmark					ADC0.6 CS0.5 IVC0.0
PB0.5	Standard I/O	52	XBR0	\checkmark					ADC0.7 CS0.6 IVC0.1
PB0.6	Standard I/O	51	XBR0	\checkmark					ADC0.8 CS0.7 RTC1

 Table 6.2. Pin Definitions and alternate functions for SiM3C1x6

Pin Name	Туре	Pin Numbers	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB3.2	5 V Tolerant I/O	14	XBR1	V	AD0m/ D0			DAC0T0 DAC1T0 LPT0T0 WAKE.8	CMP0P.2 CMP1P.2
PB3.3	5 V Tolerant I/O	13	XBR1	V	WR			DAC0T1 DAC1T1 INT0.4 INT1.4 WAKE.9	CMP0N.2 CMP1N.2
PB3.4	5 V Tolerant I/O	12	XBR1	V	ŌĒ			INT0.5 INT1.5 WAKE.10	CMP0P.3 CMP1P.3
PB3.5	5 V Tolerant I/O	11	XBR1	V	ALEm			DAC0T2 DAC1T2 INT0.6 INT1.6 WAKE.11	CMP0N.3 CMP1N.3
PB3.6	5 V Tolerant I/O	10	XBR1	~	CS0			DAC0T3 DAC1T3 INT0.7 INT1.7 WAKE.12	CMP0P.4 CMP1P.4 EXREGSP
PB3.7	5 V Tolerant I/O	9	XBR1	~	BE1			DAC0T4 DAC1T4 INT0.8 INT1.8 WAKE.13	CMP0N.4 CMP1N.4 EXREGSN
PB3.8	5 V Tolerant I/O	8	XBR1	~	CS1			DAC0T5 DAC1T5 LPT0T1 INT0.9 INT1.9 WAKE.14	CMP0P.5 CMP1P.5 EXREGOUT

Table 6.2. Pin Definitions and alternate functions for SiM3C1x6 (Continued)

6.4. LGA-92 Package Specifications

Table	6.4. L	GA-92	Package	Dimensions
-------	--------	-------	---------	-------------------

Dimension	Min	Nominal	Max					
Α	0.74	0.84	0.94					
b	0.25	0.30	0.35					
C	3.15	3.20	3.25					
D		7.00 BSC						
D1		6.50 BSC						
D2		4.00 BSC						
e	0.50 BSC							
E	7.00 BSC							
E1		6.50 BSC						
E2		4.00 BSC						
aaa	—	—	0.10					
bbb	—	—	0.10					
CCC	—	—	0.08					
ddd	—	— — 0.10						
eee	— — 0.10							
Notes:								

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Figure 6.11. QFN-64 Landing Diagram

Dimension	mm
C1	8.90
C2	8.90
E	0.50
X1	0.30
Y1	0.85
X2	4.25
Y2	4.25
Notes:	•

Table 6.9. QFN-64 Landing Diagram Dimensions

- 1. All dimensions shown are in millimeters (mm).
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.

6.6.1. QFN-64 Solder Mask Design

All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

6.6.2. QFN-64 Stencil Design

- 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- 3. The ratio of stencil aperture to land pad size should be 1:1 for all pads.
- 4. A 3x3 array of 1.0 mm square openings on a 1.5 mm pitch should be used for the center ground pad.

6.6.3. QFN-64 Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

D	imension	Min	Nominal	Max					
	aaa	—	—	0.20					
	bbb	—	—	0.20					
	CCC	—	—	0.08					
	ddd	—	—	0.08					
Notes 1. 2. 3. 4.	Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This package outline conforms to JEDEC MS-026, variant ACD. 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020								

Table 6.10. TQFP-64 Package Dimensions (Continued)

SILICON LABS

Figure 7.3. SiM3C1x6 Revision Information

7.2. Comparator Rising/Falling Edge Flags in Debug Mode (CMP0, CMP1)

7.2.1. Problem

On Revision A and Revision B devices, if the comparator output is high, the comparator rising and falling edge flags will both be set to 1 upon single-step or exit from debug mode.

7.2.2. Impacts

Firmware using the rising and falling edge flags to make decisions may see a false trigger of the comparator if the output of the comparator is high during a debug session. This does not impact the non-debug operation of the device.

7.2.3. Workaround

There is not a system-agnostic workaround for this issue.

7.2.4. Resolution

This issue exists on Revision A and Revision B devices. It may be corrected in a future device revision.

