
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	28
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 18x12b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-VFQFN Exposed Pad
Supplier Device Package	40-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/sim3u144-b-gm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Typical Connection Diagrams

This section provides typical connection diagrams for SiM3C1xx devices.

2.1. Power

Figure 2.1 shows a typical connection diagram for the power pins of the SiM3C1xx devices when the internal regulator is in use.

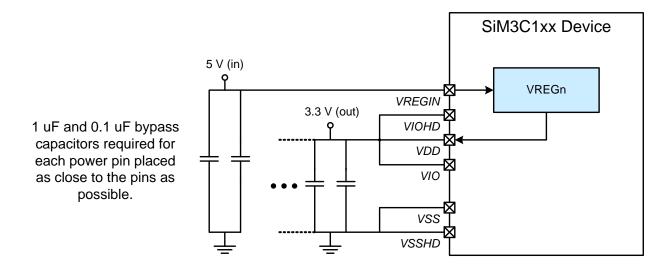


Figure 2.1. Connection Diagram with Voltage Regulator Used

Figure 2.2 shows a typical connection diagram for the power pins of the SiM3C1xx devices when the internal regulator is not used.

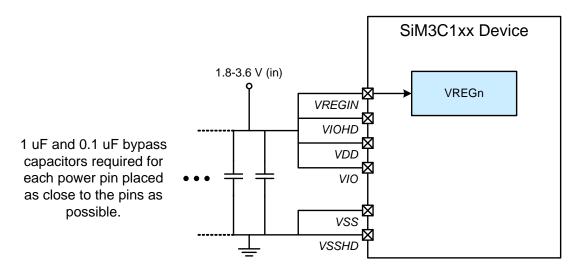


Figure 2.2. Connection Diagram with Voltage Regulator Not Used

3. Electrical Specifications

3.1. Electrical Characteristics

All electrical parameters in all tables are specified under the conditions listed in Table 3.1, unless stated otherwise.

 Table 3.1. Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Operating Supply Voltage on VDD	V _{DD}		1.8		3.6	V
Operating Supply Voltage on VREGIN	V _{REGIN}	EXTVREG0 Not Used	4	_	5.5	V
		EXTVREG0 Used	3.0		3.6	V
Operating Supply Voltage on VIO	V _{IO}		1.8	—	V _{DD}	V
Operating Supply Voltage on VIOHD	V _{IOHD}	HV Mode (default)	2.7	—	6.0	V
		LV Mode	1.8		3.6	V
Voltage on I/O pins, Port Bank 0, 1 and 2 I/O	V _{IN}		V _{SS}	—	V _{IO}	V
Voltage on I/O pins, Port Bank 3 I/O and RESET	V _{IN}	SiM3C1x7 PB3.0–PB3.7 and RESET	V _{SS}	—	V _{IO} +2.0	V
		SiM3C1x7 PB3.8 - PB3.11	V _{SS}	_	Lowest of V _{IO} +2.0 or V _{REGIN}	V
		SiM3C1x6 PB3.0–PB3.5 and RESET	V _{SS}	_	V _{IO} +2.0	V
		SiM3C1x6 PB3.6–PB3.9	V _{SS}	_	Lowest of V _{IO} +2.0 or V _{REGIN}	V
		SiM3C1x4 RESET	V _{SS}	_	V _{IO} +2.0	V
		SiM3C1x4 PB3.0–PB3.3	V _{SS}	_	Lowest of V _{IO} +2.0 or V _{REGIN}	V
Voltage on I/O pins, Port Bank 4 I/O	V _{IN}		V _{SSHD}		V _{IOHD}	V
System Clock Frequency (AHB)	f _{AHB}		0		80	MHz
Peripheral Clock Frequency (APB)	f _{APB}		0		50	MHz
Operating Ambient Temperature	T _A		-40		85	°C
Operating Junction Temperature	TJ		-40		105	°C
Note: All voltages with respect to V_{SS} .	<u> </u>	,	ı		ļ.	

Table 3.2. Power Co	nsumption	(Continued)
---------------------	-----------	-------------

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Analog Peripheral Supply Current	ts		1			
Voltage Regulator (VREG0)	I _{VREGIN}	Normal Mode, T _A = 25 °C BGDIS = 0, SUSEN = 0		300		μA
		Normal Mode, $T_A = 85 \degree C$ BGDIS = 0, SUSEN = 0	_		650	μA
		Suspend Mode, T _A = 25 °C BGDIS = 0, SUSEN = 1	_	75		μA
		Suspend Mode, T _A = 85 °C BGDIS = 0, SUSEN = 1	_		115	μA
		Sleep Mode, T _A = 25 °C BGDIS = 1, SUSEN = X	_	90	_	nA
		Sleep Mode, T _A = 85 °C BGDIS = 1, SUSEN = X	_	_	500	nA
Voltage Regulator (VREG0) Sense	I _{VRSENSE}	SENSEEN = 1		3		μA
External Regulator (EXTVREG0)	I _{EXTVREG}	Regulator	_	215	250	μA
		Current Sensor		7	—	μA
PLL0 Oscillator (PLL0OSC)	I _{PLLOSC}	Operating at 80 MHz	_	1.75	1.86	mA
Low-Power Oscillator (LPOSC0)	I _{LPOSC}	Operating at 20 MHz		190	—	μA
		Operating at 2.5 MHz		40	_	μA
Low-Frequency Oscillator (LFOSC0)	I _{LFOSC}	Operating at 16.4 kHz, T _A = 25 °C	_	215		nA
		Operating at 16.4 kHz, T _A = 85 °C	_		500	nA

Notes:

1. Perhipheral currents drop to zero when peripheral clock and peripheral are disabled, unless otherwise noted.

 Currents are additive. For example, where I_{DD} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

3. Includes all peripherals that cannot have clocks gated in the Clock Control module.

4. Includes supply current from internal regulator and PLL0OSC (>20 MHz) or LPOSC0 (<=20 MHz).

5. Flash execution numbers use 2 wait states for 80 MHz and 0 wait states at 20 MHz or less.

6. RAM execution numbers use 0 wait states for all frequencies.

7. IDAC output current and IVC input current not included.

8. Bias current only. Does not include dynamic current from oscillator running at speed.

Table 3.11. IDAC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Static Performance	L		1	1		
Resolution	N _{bits}			10		Bits
Integral Nonlinearity	INL			±0.5	±2	LSB
Differential Nonlinearity (Guaranteed Monotonic)	DNL			±0.5	±1	LSB
Output Compliance Range	V _{OCR}				V _{DD} – 1.0	V
Full Scale Output Current	I _{OUT}	2 mA Range	2.0	2.046	2.10	mA
		1 mA Range	0.99	1.023	1.05	mA
		0.5 mA Range	493	511.5	525	μA
Offset Error	E _{OFF}			250	_	nA
Full Scale Error Tempco	TC _{FS}	2 mA Range		100	—	ppm/°C
VDD Power Supply Rejection Ratio		2 mA Range		-220	—	ppm/V
Test Load Impedance (to V _{SS})	R _{TEST}			1	—	kΩ
Dynamic Performance						
Output Settling Time to 1/2 LSB		min output to max output		1.2	_	μs
Startup Time			<u> </u>	3	—	μs

Table 3.14. Voltage Reference Electrical Characteristics

 V_{DD} = 1.8 to 3.6 V, -40 to +85 °C unless otherwise specified.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Internal Fast Settling Refer	ence					
Output Voltage	Voltage V_{REFFS} -40 to +85 °C, V_{DD} = 1.8-3.6 V				1.68	V
Temperature Coefficient	TC _{REFFS}		—	50	_	ppm/°C
Turn-on Time	t _{REFFS}		—		1.5	μs
Power Supply Rejection	PSRR _{REFFS}		—	400	_	ppm/V
On-Chip Precision Referen	ce (VREF0)					
Valid Supply Range	V _{DD}	VREF2X = 0	1.8		3.6	V
		VREF2X = 1	2.7	_	3.6	V
Output Voltage	V _{REFP}	25 °C ambient, VREF2X = 0	1.195	1.2	1.205	V
		25 °C ambient, VREF2X = 1	2.39	2.4	2.41	V
Short-Circuit Current	I _{SC}		—		10	mA
Temperature Coefficient	TC _{VREFP}		—	25	_	ppm/°C
Load Regulation	LR _{VREFP}	Load = 0 to 200 µA to VREFGND	—	4.5	_	ppm/µA
Load Capacitor	C _{VREFP}	Load = 0 to 200 µA to VREFGND	0.1	_	_	μF
Turn-on Time	t _{VREFPON}	4.7 μF tantalum, 0.1 μF ceramic bypass	_	3.8	_	ms
		0.1 µF ceramic bypass	—	200	—	μs
Power Supply Rejection	PSRR _{VREFP}	VREF2X = 0	—	320	—	ppm/V
		VREF2X = 1	—	560	—	ppm/V
External Reference		•				•
Input Current	IEXTREF	Sample Rate = 250 ksps; VREF = 3.0 V	—	5.25	_	μA

Table 3.16. Comparator

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Response Time, CMPMD = 00	t _{RESP0}	+100 mV Differential		100	_	ns
(Highest Speed)		-100 mV Differential	_	150	_	ns
Response Time, CMPMD = 11	t _{RESP3}	+100 mV Differential	_	1.4	_	μs
(Lowest Power)		-100 mV Differential		3.5	_	μs
Positive Hysteresis	HYS _{CP+}	CMPHYP = 00	_	0.4	_	mV
Mode 0 (CPMD = 00)		CMPHYP = 01	_	8	_	mV
		CMPHYP = 10		16	_	mV
		CMPHYP = 11	_	33		mV
Negative Hysteresis	HYS _{CP-}	CMPHYN = 00	_	0.4	_	mV
Mode 0 (CPMD = 00)		CMPHYN = 01		-8	_	mV
		CMPHYN = 10	_	-16	_	mV
		CMPHYN = 11	_	-33		mV
Positive Hysteresis	HYS _{CP+}	CMPHYP = 00		0.5	_	mV
Mode 1 (CPMD = 01)		CMPHYP = 01 —		6	_	mV
		CMPHYP = 10		12	_	mV
		CMPHYP = 11	_	24	_	mV
Negative Hysteresis	HYS _{CP-}	CMPHYN = 00		0.5	_	mV
Mode 1 (CPMD = 01)		CMPHYN = 01		-6.0	_	mV
		CMPHYN = 10	_	-12	_	mV
		CMPHYN = 11		-24	_	mV
Positive Hysteresis	HYS _{CP+}	CMPHYP = 00		0.6	_	mV
Mode 2 (CPMD = 10)		CMPHYP = 01	_	4.5	_	mV
		CMPHYP = 10	_	9.5	_	mV
		CMPHYP = 11		19	_	mV
Negative Hysteresis	HYS _{CP-}	CMPHYN = 00	_	0.6	—	mV
Mode 2 (CPMD = 10)		CMPHYN = 01	_	-4.5	—	mV
		CMPHYN = 10	_	-9.5	—	mV
		CMPHYN = 11		-19	_	mV

Table 3.19. Absolute Maximum	Ratings (Continued)
------------------------------	----------------------------

Parameter	Symbol	Test Condition	Min	Max	Unit
Power Dissipation at T _A = 85 °C	PD	LGA-92 Package		570	mW
		TQFP-80 Package	—	500	mW
		QFN-64 Package	—	800	mW
		TQFP-64 Package		650	mW
	-	QFN-40 Package	—	650	mW
*Note: VSS and VSSHD provide separat connected to the same potential o		ent paths for device supplies,	but are not isol	ated. They must al	ways be

4.2. I/O

4.2.1. General Features

The SiM3C1xx ports have the following features:

- Push-pull or open-drain output modes and analog or digital modes.
- Option for high or low output drive strength.
- Port Match allows the device to recognize a change on a port pin value.
- Internal pull-up resistors are enabled or disabled on a port-by-port basis.
- Two external interrupts with up to 16 inputs provide monitoring capability for external signals.
- Internal Pulse Generator Timer (PB2 only) to generate simple square waves.
- A subset of pins can also serve as inputs to the Port Mapped Level Shifters available on the High Drive Pins.

4.2.2. High Drive Pins (PB4)

The High Drive pins have the following additional features:

- Programmable safe state: high, low, or high impedance.
- Programmable drive strength and slew rates.
- Programmable hardware current limiting.
- Powered from a separate source (VIOHD, which can be up to 6 V) from the rest of the device.
- Supports various functions, including GPIO, UART1 pins, EPCA0 pins, or Port Mapped Level Shifting.

4.2.3. 5 V Tolerant Pins (PB3)

The 5 V tolerant pins can be connected to external circuitry operating at voltages above the device supply without needing extra components to shift the voltage level.

4.2.4. Crossbars

The SiM3C1xx devices have two Crossbars with the following features:

- Flexible peripheral assignment to port pins.
- Pins can be individually skipped to move peripherals as needed for design or layout considerations.

The Crossbars have a fixed priority for each I/O function and assign these functions to the port pins. When a digital resource is selected, the least-significant unassigned port pin is assigned to that resource. If a port pin is assigned, the Crossbars skip that pin when assigning the next selected resource. Additionally, the Crossbars will skip port pins whose associated bits in the PBSKIPEN registers are set. This provides some flexibility when designing a system: pins involved with sensitive analog measurements can be moved away from digital I/O and peripherals can be moved around the chip as needed to ease layout constraints.

4.5. Counters/Timers and PWM

4.5.1. Programmable Counter Array (EPCA0, PCA0, PCA1)

The SiM3C1xx devices include two types of PCA module: Enhanced and Standard.

The Enhanced Programmable Counter Array (EPCA0) and Standard Programmable Counter Array (PCA0, PCA1) modules are timer/counter systems allowing for complex timing or waveform generation. Multiple modules run from the same main counter, allowing for synchronous output waveforms.

The Enhanced PCA module is multi-purpose, but is optimized for motor control applications. The EPCA module includes the following features:

- Three sets of channel pairs (six channels total) capable of generating complementary waveforms.
- Center- and edge-aligned waveform generation.
- Programmable dead times that ensure channel pairs are never both active at the same time.
- Programmable clock divisor and multiple options for clock source selection.
- Waveform update scheduling.
- Option to function while the core is inactive.
- Multiple synchronization triggers and outputs.
- Pulse-Width Modulation (PWM) waveform generation.
- High-speed square wave generation.
- Input capture mode.
- DMA capability for both input capture and waveform generation.
- PWM generation halt input.

The Standard PCA module (PCA) includes the following features:

- Two independent channels.
- Center- and edge-aligned waveform generation.
- Programmable clock divisor and multiple options for clock source selection.
- Pulse-Width Modulation waveform generation.

4.5.2. 32-bit Timer (TIMER0, TIMER1)

Each timer module is independent, and includes the following features:

- Operation as a single 32-bit or two independent 16-bit timers.
- Clocking options include the APB clock, the APB clock scaled using an 8-bit prescaler, the external oscillator, or falling edges on an external input pin (synchronized to the APB clock).
- Auto-reload functionality in both 32-bit and 16-bit modes.
- Up/Down count capability, controlled by an external input pin.
- Rising and falling edge capture modes.
- Low or high pulse capture modes.
- Duty cycle capture mode.
- Square wave output mode, which is capable of toggling an external pin at a given rate with 50% duty cycle.
- 32- or 16-bit pulse-width modulation mode.

4.7. Analog

4.7.1. 12-Bit Analog-to-Digital Converters (SARADC0, SARADC1)

The SARADC0 and SARADC1 modules on SiM3C1xx devices are Successive Approximation Register (SAR) Analog to Digital Converters (ADCs). The key features of the SARADC module are:

- Single-ended 12-bit and 10-bit modes.
- Supports an output update rate of 250 k samples per second in 12-bit mode or 1 M samples per second in 10-bit mode.
- Operation in low power modes at lower conversion speeds.
- Selectable asynchronous hardware conversion trigger with hardware channel select.
- Output data window comparator allows automatic range checking.
- Support for Burst Mode, which produces one set of accumulated data per conversion-start trigger with programmable power-on settling and tracking time.
- Conversion complete, multiple conversion complete, and FIFO overflow and underflow flags and interrupts supported.
- Flexible output data formatting.
- Sequencer allows up to 8 sources to be automatically scanned using one of four channel characteristic profiles without software intervention.
- Eight-word conversion data FIFO for DMA operations.
- Multiple SARADC modules can work together synchronously or by interleaving samples.
- Includes two internal references (1.65 V fast-settling, 1.2/2.4 V precision), support for an external reference, and support for an external signal ground.

4.7.2. Sample Sync Generator (SSG0)

The SSG module includes a phase counter and a pulse generator. The phase counter is a 4-bit free-running counter clocked from the SARADC module clock. Counting-up from zero, the phase counter marks sixteen equally-spaced events for any number of SARADC modules. The ADCs can use this phase counter to start a conversion. The programmable pulse generator creates a 50% duty cycle pulse with a period of 16 phase counter ticks. Up to four programmable outputs available to external devices can be driven by the pulse generator with programmable polarity and a defined output setting when the pulse generator is stopped.

The Sample Sync Generator module has the following features:

- Connects multiple modules together to perform synchronized actions.
- Outputs a clock synchronized to the internal sampling clock used by any number of SARADC modules to pins for use by external devices.
- Includes a phase counter, pulse generator, and up to four programmable outputs.

4.7.3. 10-Bit Digital-to-Analog Converter (IDAC0, IDAC1)

The IDAC takes a digital value as an input and outputs a proportional constant current on a pin. The IDAC module includes the following features:

- 10-bit current DAC with support for four timer, up to seven external I/O, on demand, and SSG0 output update triggers.
- Ability to update on rising, falling, or both edges for any of the external I/O trigger sources (DACnTx).
- Supports an output update rate greater than 600 k samples per second.
- Support for three full-scale output modes: 0.5 mA, 1.0 mA and 2.0 mA.
- Four-word FIFO to aid with high-speed waveform generation or DMA interactions.
- Individual FIFO overrun, underrun, and went-empty interrupt status sources.
- Support for multiple data packing formats, including: single 10-bit sample per word, dual 10-bit samples per word, or four 8-bit samples per word.
- Support for left- and right-justified data.

Table 6.1. Pin Definitions and alternate	e functions for SiM3C1x7	(Continued)
--	--------------------------	-------------

Din Nama	Torre	Pin Numbers TQFP-80	Pin Numbers LGA-92	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
Pin Name PB1.9/ TRACECLK	Type Standard I/O /ETM	ä 46	ā A28	ن ق XBR0	<u>√</u>	ά£	Рс	õ	<u>ش</u>	ਪ ਛੋ ADC1.9
PB1.10	Standard I/O	43	A26	XBR0	~	A23m/ A15			DMA0T1	ADC1.8
PB1.11	Standard I/O	42	A25	XBR0	~	A22m/ A14			DMA0T0	ADC1.7
PB1.12	Standard I/O	41	D3	XBR0	~	A21m/ A13				ADC1.6
PB1.13	Standard I/O	40	A24	XBR0	~	A20m/ A12			ADC0T15 WAKE.0	ADC1.5 CS0.10
PB1.14	Standard I/O	39	A23	XBR0	~	A19m/ A11			ADC1T15 WAKE.1	ADC1.4 CS0.11
PB1.15	Standard I/O	38	A22	XBR0	~	A18m/ A10			WAKE.2	ADC1.3 CS0.12
PB2.0	Standard I/O	37	B17	XBR1	V	A17m/ A9	LSI0	Yes	INT0.0 INT1.0 WAKE.3	ADC1.2 CS0.13
PB2.1	Standard I/O	36	A21	XBR1	~	A16m/ A8	LSI1	Yes	INT0.1 INT1.1 WAKE.4	ADC1.1 CS0.14
PB2.2	Standard I/O	35	B16	XBR1	~	AD15m/ A7	LSI2	Yes	INT0.2 INT1.2 WAKE.5	ADC1.0 CS0.15 PMU_Asleep
PB2.3	Standard I/O	34	A20	XBR1	~	AD14m/ A6	LSI3	Yes	INT0.3 INT1.3 WAKE.6	
PB2.4	Standard I/O	31	B14	XBR1	~	AD13m/ A5	LSI4	Yes	INT0.4 INT1.4 WAKE.7	
PB2.5	Standard I/O	30	A18	XBR1	\checkmark	AD12m / A4	LSI5	Yes	INT0.5 INT1.5	

r		1			-					1
Pin Name	Туре	Pin Numbers TQFP-80	Pin Numbers LGA-92	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB2.6	Standard I/O	29	B13	XBR1	~	AD11m/ A3		Yes	INT0.6 INT1.6	
PB2.7	Standard I/O	28	A17	XBR1	~	AD10m/ A2		Yes	INT0.7 INT1.7	
PB2.8	Standard I/O	27	B12	XBR1	\checkmark	AD9m/ A1		Yes		
PB2.9	Standard I/O	26	A16	XBR1	\checkmark	AD8m/ A0		Yes		
PB2.10	Standard I/O	25	B11	XBR1	~	AD7m/ D7		Yes		
PB2.11	Standard I/O	24	A15	XBR1	~	AD6m/ D6		Yes		CMP0P.0 CMP1P.0
PB2.12	Standard I/O	23	A14	XBR1	\checkmark	AD5m/ D5		Yes		CMP0N.0 CMP1N.0 RTC0TCLK_OUT
PB2.13	Standard I/O	22	A13	XBR1	\checkmark	AD4m/ D4		Yes		CMP0P.1 CMP1P.1
PB2.14	Standard I/O	21	D2	XBR1	~	AD3m/ D3		Yes		CMP0N.1 CMP1N.1
PB3.0	5 V Tolerant I/O	20	A12	XBR1	~	AD2m/ D2				CMP0P.2 CMP1P.2
PB3.1	5 V Tolerant I/O	19	A11	XBR1	\checkmark	AD1m/ D1				CMP0N.2 CMP1N.2
PB3.2	5 V Tolerant I/O	18	A10	XBR1	\checkmark	AD0m/ D0			DAC0T0 DAC1T0 LPT0T0	CMP0P.3 CMP1P.3
PB3.3	5 V Tolerant I/O	17	B8	XBR1	~	WR			DAC0T1 DAC1T1 INT0.8 INT1.8	CMP0N.3 CMP1N.3

Table 6.1. Pin Definitions and alternate functions for SiM3C1x7 (Continued)

Pin Name	Туре	Pin Numbers TQFP-80	Pin Numbers LGA-92	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB4.0	High Drive I/O	8	A6				LSO0			
PB4.1	High Drive I/O	7	A5				LSO1			
PB4.2	High Drive I/O	6	A4				LSO2			
PB4.3	High Drive I/O	3	A2				LSO3			
PB4.4	High Drive I/O	2	A1				LSO4			
PB4.5	High Drive I/O	1	D1				LSO5			
Note: All unnamed pins on the LGA-92 package are no-connect pins. They should be soldered to the PCB for mechanical stabil- ity, but have no internal connections to the device.										

Table 6.1. Pin Definitions and alternate functions for SiM3C1x7 (Continued)

	1		r		1	1	1		,
Pin Name	Туре	Pin Numbers	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB0.7	Standard I/O	50	XBR0	\checkmark					RTC2
PB0.8	Standard I/O	49	XBR0	\checkmark					ADC0.9 VREFGND
PB0.9	Standard I/O	48	XBR0	\checkmark					ADC0.10 VREF
PB0.10	Standard I/O	47	XBR0	\checkmark					ADC1.6 IDAC0
PB0.11	Standard I/O	46	XBR0	\checkmark					IDAC1
PB0.12	Standard I/O	45	XBR0	\checkmark					XTAL1
PB0.13	Standard I/O	44	XBR0	\checkmark					XTAL2
PB0.14/TDO/ SWV	Standard I/O / JTAG / Serial Wire Viewer	43	XBR0	~					ADC0.12 ADC1.12
PB0.15/TDI	Standard I/O / JTAG	42	XBR0	~					ADC0.13 ADC1.13
PB1.0	Standard I/O	41	XBR0	\checkmark					ADC0.14 ADC1.14
PB1.1	Standard I/O	40	XBR0	\checkmark					ADC0.15 ADC1.15
PB1.2	Standard I/O	38	XBR0	~					ADC1.11 CS0.8
PB1.3	Standard I/O	37	XBR0	~					ADC1.10 CS0.9
PB1.4	Standard I/O	34	XBR0	\checkmark					ADC1.8
PB1.5	Standard I/O	33	XBR0	\checkmark					ADC1.7
PB1.6	Standard I/O	32	XBR0	~				ADC0T15 WAKE.0	ADC1.5 CS0.10
PB1.7	Standard I/O	31	XBR0	\checkmark	AD15m/ A7			ADC1T15 WAKE.1	ADC1.4 CS0.11

Table 6.2. Pin Definitions and alternate functions for SiM3C1x6 (Continued)

Pin Name	Туре	Pin Numbers	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB3.9	5 V Tolerant I/O	7	XBR1	~	BE0			DAC0T6 DAC1T6 LPT0T2 INT0.10 INT1.10 WAKE.15	CMP0N.5 CMP1N.5 EXREGBD
PB4.0	High Drive I/O	6				LSO0			
PB4.1	High Drive I/O	5				LSO1			
PB4.2	High Drive I/O	4				LSO2			
PB4.3	High Drive I/O	1				LSO3			

Table 6.2. Pin Definitions and alternate functions for SiM3C1x6 (Continued)

SiM3C1xx

6.3. SiM3C1x4 Pin Definitions

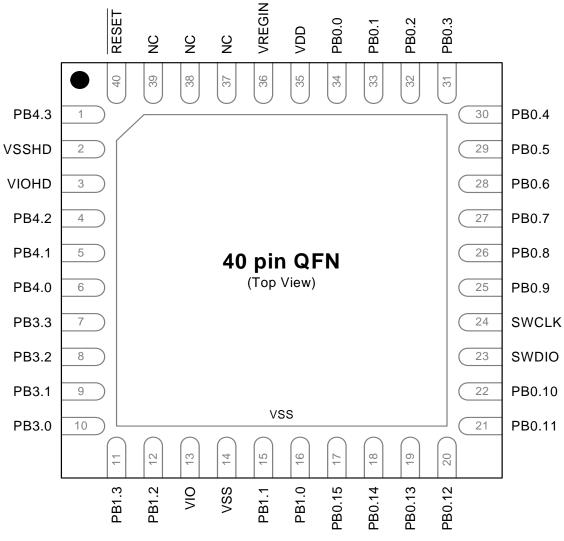


Figure 6.5. SiM3C1x4-GM Pinout

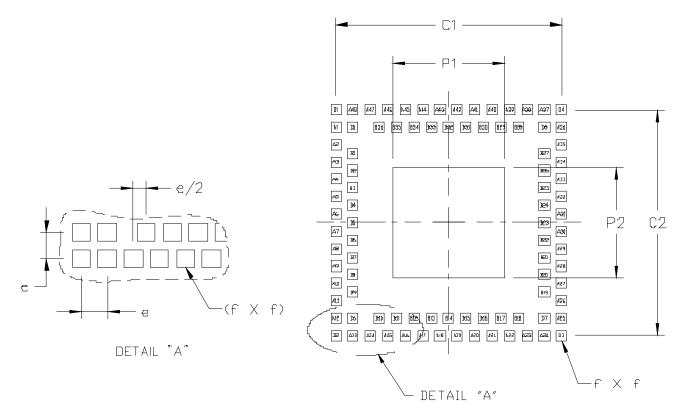


Figure 6.7. LGA-92 Landing Diagram

Dimension	Typical	Max					
C1	6.50	—					
C2	6.50	_					
e	0.50	—					
f	—	0.35					
P1	—	3.20					
P2	—	3.20					
 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed. 							
 Dimensioning an 	3. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994						

- Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
- 4. This land pattern design is based on the IPC-7351 guidelines.

Dimension	Min	Nominal	Мах				
aaa		_	0.20				
bbb		_	0.20				
ccc	0.08						
ddd			0.08				
 Notes: All dimensions shown are in millimeters (mm) unless otherwise noted. Dimensioning and Tolerancing per ANSI Y14.5M-1994. This package outline conforms to JEDEC MS-026, variant ACD. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. 							

Table 6.10. TQFP-64 Package Dimensions (Continued)

SILICON LABS

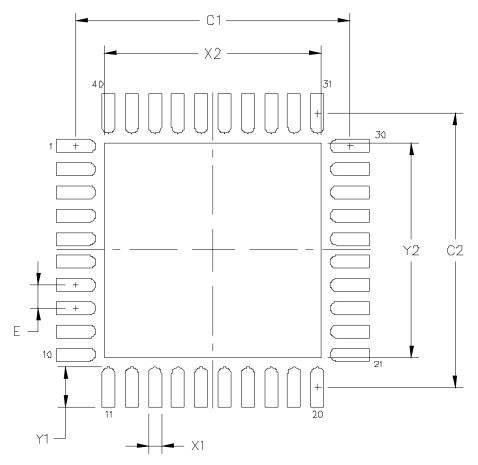


Figure 6.15. QFN-40 Landing Diagram

Dimension	mm
C1	5.90
C2	5.90
E	0.50
X1	0.30
Y1	0.85
X2	4.65
Y2	4.65
Notos	

Table 6.13. QFN-40 Landing Diagram Dimensions

Notes:

- 1. All dimensions shown are in millimeters (mm).
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- **3.** All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a
 - Fabrication Allowance of 0.05 mm.

DOCUMENT CHANGE LIST

Revision 0.8 to Revision 1.0

- Added block diagram to front page; updated feature bullet lists.
- Electrical Specifications Tables Additions:
 - Voltage Regulator Current Sense Supply Current, Typ = $3 \mu A$ (Table 3.2)
 - Power Mode 2 Wake Time, Min = 4 clocks, Max = 5 clocks (Table 3.3)
 - External Crystal Clock Frequency, Min = 0.01 MHz, Max = 30 MHz (Table 3.9)
 - Added /RESET pin characteristics (Table 3.17)
- Electrical Specifications Tables Removals:
 - Power Mode 3 Wake Time (Table 3.3)
- Electrical Specifications Tables Corretions/Adjustments:
 - IVC Supply Current, Max = 2.5 μA (Table 3.2)
 - VREG0 Output Voltage Normal Mode, Min = 3.15 V (Table 3.5)
 - VREG0 Output Voltage Suspend Mode, Min = 3.15 V (Table 3.5)
 - External Regulator Internal Pull-Down, Typ = 5 k Ω (Table 3.6)
 - External Regulator Internal Pull-Up, Typ = 10 k Ω (Table 3.6)
 - Flash Memory Endurance, Typ = 100k write/erase cycles (Table 3.7)
 - Flash Memory Retention, Min = 10 Years, Typ = 100 Years (Table 3.7)
 - Low Power Oscillator Frequency, Min = 19.5 MHz, Max = 20.5 MHz (Table 3.8)
 - SAR Dynamic Performance : consolidated all specs. (Table 3.10)
 - IDAC Full Scale Output Current 1 mA Range, Min = 0.99 mA (Table 3.11)
 - IDAC Full Scale Output Current 0.5 mA Range, Min = 493 μA (Table 3.11)
 - IVC Slope @ 1 mA, Min = 1.55 V/mA, Max = 1.75 V/mA (Table 3.13)
 - IVC Slope @ 2 mA, Min = 795 mV/mA, Max = 860 mV/mA (Table 3.13)
 - IVC Slope @ 3 mA, Min = 525 mV/mA, Max = 570 mV/mA (Table 3.13)
 - IVC Slope @ 4 mA, Min = 390 mV/mA, Max = 430 mV/mA (Table 3.13)
 - IVC Slope @ 5 mA, Min = 315 mV/mA (Table 3.13)
 - IVC Slope @ 6 mA, Min = 260 mV/mA (Table 3.13)
 - Temperature Sensor Slope Error, Type = $\pm 120 \,\mu$ V/C (Table 3.15)
 - Comparator Input Offset Voltage, Min = -10 mV, Max = 10 mV (Table 3.16)
- "4. Precision32TM SiM3C1xx System Overview":
 - Updated Power Modes discussion.
 - Refined and updated feature bullet lists.
- Updated and clarified RTC timer clock output. The RTC output is now referred to as "RTC0TCLK".
- "6. Pin Definitions and Packaging Information": Renamed RTC0OSC_OUT function to RTC0TCLK_OUT for consistency.
- "7. Revision Specific Behavior": Updated revision identification drawings to better match physical appearance of packages.

