

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	EBI/EMI, I ² C, IrDA, SmartCard, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	50
Program Memory Size	128KB (128K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 28x12b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/sim3u156-b-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Typical Connection Diagrams

This section provides typical connection diagrams for SiM3C1xx devices.

2.1. Power

Figure 2.1 shows a typical connection diagram for the power pins of the SiM3C1xx devices when the internal regulator is in use.

Figure 2.1. Connection Diagram with Voltage Regulator Used

Figure 2.2 shows a typical connection diagram for the power pins of the SiM3C1xx devices when the internal regulator is not used.

Figure 2.2. Connection Diagram with Voltage Regulator Not Used

3. Electrical Specifications

3.1. Electrical Characteristics

All electrical parameters in all tables are specified under the conditions listed in Table 3.1, unless stated otherwise.

 Table 3.1. Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Operating Supply Voltage on VDD	V _{DD}		1.8		3.6	V
Operating Supply Voltage on VREGIN	V _{REGIN}	EXTVREG0 Not Used	4		5.5	V
		EXTVREG0 Used	3.0	_	3.6	V
Operating Supply Voltage on VIO	V _{IO}		1.8		V _{DD}	V
Operating Supply Voltage on VIOHD	V _{IOHD}	HV Mode (default)	2.7		6.0	V
		LV Mode	1.8		3.6	V
Voltage on I/O pins, Port Bank 0, 1 and 2 I/O	V _{IN}		V _{SS}		V _{IO}	V
Volta <u>ge on I</u> /O pins, Port Bank 3 I/O and RESET	V _{IN}	SiM3C1x7 PB3.0–PB3.7 and RESET	V _{SS}		V _{IO} +2.0	V
		SiM3C1x7 PB3.8 - PB3.11	V _{SS}	_	Lowest of V _{IO} +2.0 or V _{REGIN}	V
		SiM3C1x6 PB3.0–PB3.5 and RESET	V _{SS}		V _{IO} +2.0	V
		SiM3C1x6 PB3.6–PB3.9	V _{SS}	_	Lowest of V _{IO} +2.0 or V _{REGIN}	V
		SiM3C1x4 RESET	V _{SS}		V _{IO} +2.0	V
		SiM3C1x4 PB3.0–PB3.3	V _{SS}	_	Lowest of V _{IO} +2.0 or V _{REGIN}	V
Voltage on I/O pins, Port Bank 4 I/O	V _{IN}		V _{SSHD}	_	V _{IOHD}	V
System Clock Frequency (AHB)	f _{AHB}		0		80	MHz
Peripheral Clock Frequency (APB)	f _{APB}		0	_	50	MHz
Operating Ambient Temperature	T _A		-40	_	85	°C
Operating Junction Temperature	TJ		-40		105	°C
Note: All voltages with respect to V_{SS} .		+				

Table 3.2. Power Consumption

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Digital Core Supply Current	<u> </u>		-			
Normal Mode ^{2,3,4,5} —Full speed with code executing from Flash,	I _{DD}	F _{AHB} = 80 MHz, F _{APB} = 40 MHz	-	33	36.5	mA
peripheral clocks ON		$F_{AHB} = F_{APB} = 20 \text{ MHz}$	_	10.5	13.3	mA
		$F_{AHB} = F_{APB} = 2.5 \text{ MHz}$		2.0	3.8	mA
Normal Mode ^{2,3,4,5} —Full speed with code executing from Flash,	I _{DD}	F _{AHB} = 80 MHz, F _{APB} = 40 MHz	<u> </u>	22	24.9	mA
peripheral clocks OFF		$F_{AHB} = F_{APB} = 20 \text{ MHz}$		7.8	10	mA
		$F_{AHB} = F_{APB} = 2.5 \text{ MHz}$	<u> </u>	1.2	3	mA
Power Mode 1 ^{2,3,4,6} —Full speed with code executing from RAM,	I _{DD}	F _{AHB} = 80 MHz, F _{APB} = 40 MHz	—	30.5	35.5	mA
peripheral clocks UN		$F_{AHB} = F_{APB} = 20 \text{ MHz}$	_	8.5	_	mA
		$F_{AHB} = F_{APB} = 2.5 \text{ MHz}$	_	1.7	_	mA
Power Mode 1 ^{2,3,4,6} —Full speed with code executing from RAM,	I _{DD}	F _{AHB} = 80 MHz, F _{APB} = 40 MHz	-	20	23	mA
peripheral clocks OFF		$F_{AHB} = F_{APB} = 20 \text{ MHz}$	—	5.3	_	mA
		F _{AHB} = F _{APB} = 2.5 MHz	—	1.0	_	mA
Power Mode 2 ^{2,3,4} —Core halted with peripheral clocks ON	I _{DD}	F _{AHB} = 80 MHz, F _{APB} = 40 MHz	-	19	22	mA
		$F_{AHB} = F_{APB} = 20 \text{ MHz}$	_	7.8	_	mA
		$F_{AHB} = F_{APB} = 2.5 \text{ MHz}$	_	1.3	_	mA
Power Mode 3 ^{2,3}	I _{DD}	V _{DD} = 1.8 V, T _A = 25 °C	_	175	_	μA
		V _{DD} = 3.0 V, T _A = 25 °C		250	_	μA

Notes:

1. Perhipheral currents drop to zero when peripheral clock and peripheral are disabled, unless otherwise noted.

2. Currents are additive. For example, where I_{DD} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

3. Includes all peripherals that cannot have clocks gated in the Clock Control module.

4. Includes supply current from internal regulator and PLL0OSC (>20 MHz) or LPOSC0 (<=20 MHz).

5. Flash execution numbers use 2 wait states for 80 MHz and 0 wait states at 20 MHz or less.

6. RAM execution numbers use 0 wait states for all frequencies.

7. IDAC output current and IVC input current not included.

8. Bias current only. Does not include dynamic current from oscillator running at speed.

	Table 3.2.	Power	Consum	ption ((Continued)
--	------------	-------	--------	---------	-------------

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Analog Peripheral Supply Current	is		L	· · · · ·		
Voltage Regulator (VREG0)	I _{VREGIN}	Normal Mode, $T_A = 25 \text{ °C}$ BGDIS = 0, SUSEN = 0		300	_	μA
		Normal Mode, $T_A = 85 \text{ °C}$ BGDIS = 0, SUSEN = 0	_	_	650	μA
		Suspend Mode, T _A = 25 °C BGDIS = 0, SUSEN = 1	_	75	—	μA
		Suspend Mode, T _A = 85 °C BGDIS = 0, SUSEN = 1	_	_	115	μA
		Sleep Mode, T _A = 25 °C BGDIS = 1, SUSEN = X	_	90	_	nA
		Sleep Mode, T _A = 85 °C BGDIS = 1, SUSEN = X			500	nA
Voltage Regulator (VREG0) Sense	I _{VRSENSE}	SENSEEN = 1		3		μA
External Regulator (EXTVREG0)	I _{EXTVREG}	Regulator		215	250	μA
		Current Sensor		7		μA
PLL0 Oscillator (PLL0OSC)	I _{PLLOSC}	Operating at 80 MHz		1.75	1.86	mA
Low-Power Oscillator (LPOSC0)	I _{LPOSC}	Operating at 20 MHz	—	190		μA
		Operating at 2.5 MHz	<u> </u>	40		μA
Low-Frequency Oscillator (LFOSC0)	I _{LFOSC}	Operating at 16.4 kHz, T _A = 25 °C		215		nA
		Operating at 16.4 kHz, T _A = 85 °C	_	_	500	nA

Notes:

1. Perhipheral currents drop to zero when peripheral clock and peripheral are disabled, unless otherwise noted.

 Currents are additive. For example, where I_{DD} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

3. Includes all peripherals that cannot have clocks gated in the Clock Control module.

4. Includes supply current from internal regulator and PLL0OSC (>20 MHz) or LPOSC0 (<=20 MHz).

5. Flash execution numbers use 2 wait states for 80 MHz and 0 wait states at 20 MHz or less.

6. RAM execution numbers use 0 wait states for all frequencies.

7. IDAC output current and IVC input current not included.

8. Bias current only. Does not include dynamic current from oscillator running at speed.

Table 3.10. SAR ADC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
Resolution	N _{bits}	12 Bit Mode		12		Bits	
		10 Bit Mode		10		Bits	
Supply Voltage Requirements	V _{ADC}	High Speed Mode	2.2		3.6	V	
(VDD)		Low Power Mode	1.8	_	3.6	V	
Throughput Rate	f _S	12 Bit Mode	-		250	ksps	
(High Speed Mode)		10 Bit Mode	-	_	1	Msps	
Throughput Rate	f _S	12 Bit Mode	-	—	62.5	ksps	
(Low Power Mode)		10 Bit Mode	_		250	ksps	
Tracking Time	t _{TRK}	High Speed Mode	230	_	_	ns	
		Low Power Mode	450		_	ns	
SAR Clock Frequency	f _{SAR}	High Speed Mode	_	_	16.24	MHz	
		Low Power Mode	_	_	4	MHz	
Conversion Time	t _{CNV}	10-Bit Conversion, SAR Clock = 16 MHz, APB Clock = 40 MHz		762.5			
Sample/Hold Capacitor	C _{SAR}	Gain = 1	-	5	_	pF	
		Gain = 0.5	-	2.5	_	pF	
Input Pin Capacitance	C _{IN}	High Quality Inputs	_	18	_	pF	
		Normal Inputs	-	20	_	pF	
Input Mux Impedance	R _{MUX}	High Quality Inputs	_	300	_	Ω	
		Normal Inputs	-	550	_	Ω	
Voltage Reference Range	V _{REF}		1	_	V _{DD}	V	
Input Voltage Range ¹	V _{IN}	Gain = 1	0		V _{REF}	V	
		Gain = 0.5	0		$2 \mathrm{xV}_{REF}$	V	
Power Supply Rejection Ratio	PSRR _{ADC}		-	70	_	dB	
DC Performance					·		
Integral Nonlinearity	INL	12 Bit Mode ²	_	±1	±1.9	LSB	
		10 Bit Mode	_	±0.2	±0.5	LSB	
	·		l.	1	1u		

Notes:

1. Absolute input pin voltage is limited by the lower of the supply at VDD and VIO.

2. INL and DNL specifications for 12-bit mode do not include the first or last four ADC codes.

3. The maximum code in 12-bit mode is 0xFFFC. The Slope Error is referenced from the maximum code.

Table 3.17. Port I/O (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output Fall Time	t _F	Slew Rate Mode 0, V _{IOHD} = 5 V	_	50	_	ns
		Slew Rate Mode 1, V _{IOHD} = 5 V	_	300	_	ns
		Slew Rate Mode 2, V _{IOHD} = 5 V	_	1	_	μs
		Slew Rate Mode 3, V _{IOHD} = 5 V	_	3		μs
Input High Voltage	V _{IH}	1.8 V <u>≤</u> V _{IOHD} <u>≤</u> 2.0 V	$0.7 ext{ x V}_{ ext{IOHD}}$		_	V
		2.0 V <u>≤</u> V _{IOHD} <u>≤</u> 6 V	$V_{IOHD} - 0.6$		_	V
Input Low Voltage	V _{IL}		—	—	0.6	V
N-Channel Sink Current Limit	I _{SINKL}	Mode 0		1.75	_	mA
$(2.7 \text{ V} \leq \text{V}_{\text{IOHD}} \leq 6 \text{ V},$		Mode 1	—	2.5	_	
V _{OL} = 0.8 V) See Figure 3.1		Mode 2	—	3.5	_	
See Figure 3.1		Mode 3	—	4.75	_	
		Mode 4		7	_	
		Mode 5	_	9.5		
		Mode 6		14		
		Mode 7		18.75	_	
		Mode 8	—	28.25	_	
		Mode 9	—	37.5	_	
		Mode 10		56.25	_	
		Mode 11		75		
		Mode 12		112.5		
		Mode 13		150	_	
		Mode 14	—	225	_	
		Mode 15	—	300	_	
Total N-Channel Sink Current on P4.0-P4.5 (DC)	I _{SINKLT}			—	400	mA
*Note: RESET does not drive to logic h	igh. Specifi	cations for $\overline{\text{RESET}} V_{OL}$ adhe	re to the low dri	ve setting.		

4.1. Power

4.1.1. LDO and Voltage Regulator (VREG0)

The SiM3C1xx devices include two internal regulators: the core LDO Regulator and the Voltage Regulator (VREG0).

The LDO Regulator converts a 1.8–3.6 V supply to the core operating voltage of 1.8 V. This LDO consumes little power and provides flexibility in choosing a power supply for the system.

The Voltage Regulator regulates from 5.5 to 2.7 V and can serve as an input to the LDO. This allows the device to be powered from up to a 5.5 V supply without any external components other than bypass capacitors.

4.1.2. Voltage Supply Monitor (VMON0)

The SiM3C1xx devices include a voltage supply monitor which allows devices to function in known, safe operating condition without the need for external hardware. The supply monitor includes additional circuitry that can monitor the main supply voltage and the VREGIN input voltage divided by 4 (VREGIN / 4).

The supply monitor module includes the following features:

- Main supply "VDD Low" (VDD below the early warning threshold) notification.
- Holds the device in reset if the main VDD supply drops below the VDD Reset threshold.
- VREGIN divided by 4 (VREGIN / 4) supply "VREGIN Low" notification.

4.1.3. External Regulator (EXTVREG0)

The External Regulator provides all the circuitry needed for a high-power regulator except the power transistor (NPN or PNP) and current sensing resistor (if current limiting is enabled).

The External Regulator module has the following features:

- Interfaces with either an NPN or PNP external transistor that serves as the pass device for the high current regulator.
- Automatic current limiting.
- Automatic foldback limiting.
- Sources up to 1 A for use by external circuitry.
- Variable output voltage from 1.8–3.6 V in 100 mV steps.

4.1.4. Power Management Unit (PMU)

The Power Management Unit on the SiM3C1xx manages the power systems of the device. On power-up, the PMU ensures the core voltages are a proper value before core instruction execution begins. It also recognizes and manages the various wake sources for low-power modes of the device.

The PMU module includes the following features:

- Up to 16 pin wake inputs can wake the device from Power Mode 9.
- The Low Power Timer, RTC0 (alarms and oscillator fail), Comparator 0, and the RESET pin can also serve as wake sources for Power Mode 9.
- All PM9 wake sources (except for the RESET pin) can also reset the Low Power Timer or RTC0 modules.
- Disables the level shifters to pins and peripherals to further reduce power usage in PM9. These level shifters must be re-enabed by firmware after exiting PM9.
- Provides a PMU_Asleep signal to a pin as an indicator that the device is in PM9.

4.2. I/O

4.2.1. General Features

The SiM3C1xx ports have the following features:

- Push-pull or open-drain output modes and analog or digital modes.
- Option for high or low output drive strength.
- Port Match allows the device to recognize a change on a port pin value.
- Internal pull-up resistors are enabled or disabled on a port-by-port basis.
- Two external interrupts with up to 16 inputs provide monitoring capability for external signals.
- Internal Pulse Generator Timer (PB2 only) to generate simple square waves.
- A subset of pins can also serve as inputs to the Port Mapped Level Shifters available on the High Drive Pins.

4.2.2. High Drive Pins (PB4)

The High Drive pins have the following additional features:

- Programmable safe state: high, low, or high impedance.
- Programmable drive strength and slew rates.
- Programmable hardware current limiting.
- Powered from a separate source (VIOHD, which can be up to 6 V) from the rest of the device.
- Supports various functions, including GPIO, UART1 pins, EPCA0 pins, or Port Mapped Level Shifting.

4.2.3. 5 V Tolerant Pins (PB3)

The 5 V tolerant pins can be connected to external circuitry operating at voltages above the device supply without needing extra components to shift the voltage level.

4.2.4. Crossbars

The SiM3C1xx devices have two Crossbars with the following features:

- Flexible peripheral assignment to port pins.
- Pins can be individually skipped to move peripherals as needed for design or layout considerations.

The Crossbars have a fixed priority for each I/O function and assign these functions to the port pins. When a digital resource is selected, the least-significant unassigned port pin is assigned to that resource. If a port pin is assigned, the Crossbars skip that pin when assigning the next selected resource. Additionally, the Crossbars will skip port pins whose associated bits in the PBSKIPEN registers are set. This provides some flexibility when designing a system: pins involved with sensitive analog measurements can be moved away from digital I/O and peripherals can be moved around the chip as needed to ease layout constraints.

*Noted pins are listed in the pinout table and 80-pin TQFP package figure with additional names. These alternate functions are also present on the 92-pin LGA package and are identical to those on the 80-pin TQFP package.

Figure 6.2. SiM3C1x7-GM Pinout

SiM3C1xx

Pin Name	Туре	Pin Numbers TQFP-80	Pin Numbers LGA-92	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
VSS	Ground	33 75	B15 B34							
VDD	Power (Core)	74	A44							
VIO	Power (I/O)	32 49 73	A19 A29 A43							
VREGIN	Power (Regulator)	76	A45							
VSSHD	Ground (High Drive)	4	B2							
VIOHD	Power (High Drive)	5	A3							
RESET	Active-low Reset	80	A48							
SWCLK/TCK	Serial Wire/JTAG	45	B20							
SWDIO/TMS	Serial Wire/JTAG	44	A27							
PB0.0	Standard I/O	72	B33	XBR0	\checkmark					ADC0.0
PB0.1	Standard I/O	71	B32	XBR0	\checkmark					ADC0.1 CS0.0
PB0.2	Standard I/O	70	A42	XBR0	\checkmark					ADC0.2 CS0.1
PB0.3	Standard I/O	69	B31	XBR0	\checkmark					ADC0.3 CS0.2
PB0.4	Standard I/O	68	A41	XBR0	~					ADC0.4 CS0.3
PB0.5	Standard I/O	67	B30	XBR0	\checkmark					ADC0.5 CS0.4
PB0.6	Standard I/O	66	A40	XBR0	\checkmark					CS0.5
PB0.7	Standard I/O	65	B29	XBR0	\checkmark					ADC0.6 CS0.6 IVC0.0

Table 6.1. Pin Definitions and alternate functions for SiM3C1x7

Table 6.1. Pin Definitions and alter	nate functions for SiM3C1x7 (Continued)
--------------------------------------	---

Pin Name	Туре	Pin Numbers TQFP-80	Pin Numbers LGA-92	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB0.8	Standard I/O	64	A39	XBR0	>					ADC0.7 CS0.7 IVC0.1
PB0.9	Standard I/O	63	A38	XBR0	\checkmark					ADC0.8 RTC1
PB0.10	Standard I/O	62	A37	XBR0	\checkmark					RTC2
PB0.11	Standard I/O	61	D4	XBR0	~					ADC0.9 VREFGND
PB0.12	Standard I/O	60	A36	XBR0	~					ADC0.10 VREF
PB0.13	Standard I/O	59	A35	XBR0	\checkmark					IDAC0
PB0.14	Standard I/O	58	B27	XBR0	\checkmark					IDAC1
PB0.15	Standard I/O	57	A34	XBR0	\checkmark					XTAL1
PB1.0	Standard I/O	56	A33	XBR0	\checkmark					XTAL2
PB1.1	Standard I/O	55	B25	XBR0	\checkmark					ADC0.11
PB1.2/TRST	Standard I/O /JTAG	54	A32	XBR0	\checkmark					
PB1.3/TDO/ SWV	Standard I/O /JTAG/ Serial Wire Viewer	53	B24	XBR0	\checkmark					ADC0.12 ADC1.12
PB1.4/TDI	Standard I/O /JTAG	52	A31	XBR0	~					ADC0.13 ADC1.13
PB1.5/ETM0	Standard I/O /ETM	51	B23	XBR0	~					ADC0.14 ADC1.14
PB1.6/ETM1	Standard I/O /ETM	50	A30	XBR0	~					ADC0.15 ADC1.15
PB1.7/ETM2	Standard I/O /ETM	48	B22	XBR0	~					ADC1.11 CS0.8
PB1.8/ETM3	Standard I/O /ETM	47	B21	XBR0	~					ADC1.10 CS0.9

Table 6.1. Pin Definitions and alternate	e functions for SiM3C1x7	(Continued)
--	--------------------------	-------------

Pin Name	Туре	Pin Numbers TQFP-80	Pin Numbers LGA-92	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB1.9/ TRACECLK	Standard I/O /ETM	46	A28	XBR0	\checkmark					ADC1.9
PB1.10	Standard I/O	43	A26	XBR0	\checkmark	A23m/ A15			DMA0T1	ADC1.8
PB1.11	Standard I/O	42	A25	XBR0	\checkmark	A22m/ A14			DMA0T0	ADC1.7
PB1.12	Standard I/O	41	D3	XBR0	~	A21m/ A13				ADC1.6
PB1.13	Standard I/O	40	A24	XBR0	~	A20m/ A12			ADC0T15 WAKE.0	ADC1.5 CS0.10
PB1.14	Standard I/O	39	A23	XBR0	~	A19m/ A11			ADC1T15 WAKE.1	ADC1.4 CS0.11
PB1.15	Standard I/O	38	A22	XBR0	~	A18m/ A10			WAKE.2	ADC1.3 CS0.12
PB2.0	Standard I/O	37	B17	XBR1	~	A17m/ A9	LSI0	Yes	INT0.0 INT1.0 WAKE.3	ADC1.2 CS0.13
PB2.1	Standard I/O	36	A21	XBR1	\checkmark	A16m/ A8	LSI1	Yes	INT0.1 INT1.1 WAKE.4	ADC1.1 CS0.14
PB2.2	Standard I/O	35	B16	XBR1	~	AD15m/ A7	LSI2	Yes	INT0.2 INT1.2 WAKE.5	ADC1.0 CS0.15 PMU_Asleep
PB2.3	Standard I/O	34	A20	XBR1	\checkmark	AD14m/ A6	LSI3	Yes	INT0.3 INT1.3 WAKE.6	
PB2.4	Standard I/O	31	B14	XBR1	V	AD13m/ A5	LSI4	Yes	INT0.4 INT1.4 WAKE.7	
PB2.5	Standard I/O	30	A18	XBR1	\checkmark	AD12m / A4	LSI5	Yes	INT0.5 INT1.5	

Pin Name	Туре	Pin Numbers TQFP-80	Pin Numbers LGA-92	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB4.0	High Drive I/O	8	A6				LSO0			
PB4.1	High Drive I/O	7	A5				LSO1			
PB4.2	High Drive I/O	6	A4				LSO2			
PB4.3	High Drive I/O	3	A2				LSO3			
PB4.4	High Drive I/O	2	A1				LSO4			
PB4.5	High Drive I/O	1	D1				LSO5			
Note: All unnamed pins on the LGA-92 package are no-connect pins. They should be soldered to the PCB for mechanical stabil- ity, but have no internal connections to the device.										

Table 6.1. Pin Definitions and alternate functions for SiM3C1x7 (Continued)

Pin Name	Туре	Pin Numbers	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB1.8	Standard I/O	30	XBR0	\checkmark	AD14m/ A6			WAKE.2	ADC1.3 CS0.12
PB1.9	Standard I/O	29	XBR0	$\mathbf{\mathbf{Y}}$	AD13m/ A5			WAKE.3	ADC1.2 CS0.13
PB1.10	Standard I/O	28	XBR0	~	AD12m/ A4			DMA0T1 WAKE.4	ADC1.1 CS0.14
PB1.11	Standard I/O	27	XBR0	~	AD11m/ A3			DMA0T0 WAKE.5	ADC1.0 CS0.15 PMU_Asleep
PB1.12	Standard I/O	26	XBR0	~	AD10m/ A2			WAKE.6	
PB1.13	Standard I/O	23	XBR0	~	AD9m/ A1				
PB1.14	Standard I/O	22	XBR0	~	AD8m/ A0				
PB1.15	Standard I/O	21	XBR0	~	AD7m/ D7				
PB2.0	Standard I/O	20	XBR1	$\mathbf{\mathbf{Y}}$	AD6m/ D6	LSI0	Yes	INT0.0 INT1.0	
PB2.1	Standard I/O	19	XBR1	\checkmark	AD5m/ D5	LSI1	Yes	INT0.1 INT1.1	
PB2.2	Standard I/O	18	XBR1	~	AD4m/ D4	LSI2	Yes	INT0.2 INT1.2	CMP0N.0 CMP1N.0 RTC0TCLK_OUT
PB2.3	Standard I/O	17	XBR1	\checkmark	AD3m/ D3	LSI3	Yes	INT0.3 INT1.3	CMP0P.0 CMP1P.0
PB3.0	5 V Tolerant I/O	16	XBR1	\checkmark	AD2m/ D2				CMP0P.1 CMP1P.1
PB3.1	5 V Tolerant I/O	15	XBR1	~	AD1m/ D1				CMP0N.1 CMP1N.1

Pin Name	Туре	Pin Numbers	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB3.2	5 V Tolerant I/O	14	XBR1	~	AD0m/ D0			DAC0T0 DAC1T0 LPT0T0 WAKE.8	CMP0P.2 CMP1P.2
PB3.3	5 V Tolerant I/O	13	XBR1	V	WR			DAC0T1 DAC1T1 INT0.4 INT1.4 WAKE.9	CMP0N.2 CMP1N.2
PB3.4	5 V Tolerant I/O	12	XBR1	V	ŌĒ			INT0.5 INT1.5 WAKE.10	CMP0P.3 CMP1P.3
PB3.5	5 V Tolerant I/O	11	XBR1	V	ALEm			DAC0T2 DAC1T2 INT0.6 INT1.6 WAKE.11	CMP0N.3 CMP1N.3
PB3.6	5 V Tolerant I/O	10	XBR1	~	CS0			DAC0T3 DAC1T3 INT0.7 INT1.7 WAKE.12	CMP0P.4 CMP1P.4 EXREGSP
PB3.7	5 V Tolerant I/O	9	XBR1	~	BE1			DAC0T4 DAC1T4 INT0.8 INT1.8 WAKE.13	CMP0N.4 CMP1N.4 EXREGSN
PB3.8	5 V Tolerant I/O	8	XBR1	~	CS1			DAC0T5 DAC1T5 LPT0T1 INT0.9 INT1.9 WAKE.14	CMP0P.5 CMP1P.5 EXREGOUT

Table 6.2. Pin Definitions and alternate functions for SiM3C1x6 (Continued)

SiM3C1xx

6.3. SiM3C1x4 Pin Definitions

Figure 6.5. SiM3C1x4-GM Pinout

6.5.1. TQFP-80 Solder Mask Design

All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

6.5.2. TQFP-80 Stencil Design

- 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- 3. The ratio of stencil aperture to land pad size should be 1:1 for all pads.

6.5.3. TQFP-80 Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

D	imension	Min	Nominal	Max			
aaa		—	—	0.20			
bbb		—	—	0.20			
	CCC	—	—	0.08			
ddd		—	—	0.08			
 Notes: All dimensions shown are in millimeters (mm) unless otherwise noted. Dimensioning and Tolerancing per ANSI Y14.5M-1994. This package outline conforms to JEDEC MS-026, variant ACD. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. 							

Table 6.10. TQFP-64 Package Dimensions (Continued)

SILICON LABS

Figure 6.13. TQFP-64 Landing Diagram

 Table 6.11. TQFP-64 Landing Diagram Dimensions

Dimension	Min	Мах					
C1	11.30	11.40					
C2	11.30	11.40					
E	0.50 BSC						
X	0.20	0.30					
Y	1.40	1.50					
 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This land pattern design is based on the IPC-7351 guidelines. 							

Figure 7.3. SiM3C1x6 Revision Information

7.2. Comparator Rising/Falling Edge Flags in Debug Mode (CMP0, CMP1)

7.2.1. Problem

On Revision A and Revision B devices, if the comparator output is high, the comparator rising and falling edge flags will both be set to 1 upon single-step or exit from debug mode.

7.2.2. Impacts

Firmware using the rising and falling edge flags to make decisions may see a false trigger of the comparator if the output of the comparator is high during a debug session. This does not impact the non-debug operation of the device.

7.2.3. Workaround

There is not a system-agnostic workaround for this issue.

7.2.4. Resolution

This issue exists on Revision A and Revision B devices. It may be corrected in a future device revision.

