

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	EBI/EMI, I ² C, IrDA, SmartCard, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	65
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 32x12b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/sim3u157-b-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Related Documents and Conventions

1.1. Related Documents

This data sheet accompanies several documents to provide the complete description of the SiM3C1xx device family.

1.1.1. SiM3U1xx/SiM3C1xx Reference Manual

The Silicon Laboratories SiM3U1xx/SiM3C1xx Reference Manual provides detailed functional descriptions for the SiM3C1xx devices.

1.1.2. Hardware Access Layer (HAL) API Description

The Silicon Laboratories Hardware Access Layer (HAL) API provides C-language functions to modify and read each bit in the SiM3C1xx devices. This description can be found in the SiM3xxxx HAL API Reference Manual.

1.1.3. ARM Cortex-M3 Reference Manual

The ARM-specific features like the Nested Vector Interrupt Controller are described in the ARM Cortex-M3 reference documentation. The online reference manual can be found here: http://infocenter.arm.com/help/topic/com.arm.doc.subset.cortexm.m3/index.html#cortexm3.

1.2. Conventions

The block diagrams in this document use the following formatting conventions:

Figure 1.1. Block Diagram Conventions

Table 3.2. Power Consumption (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
External Oscillator (EXTOSC0) ⁸	IEXTOSC	FREQCN = 111		3.8	4.7	mA
		FREQCN = 110		840	950	μA
		FREQCN = 101		185	220	μA
		FREQCN = 100		65	80	μA
		FREQCN = 011		25	30	μA
		FREQCN = 010		10	15	μA
		FREQCN = 001		5	10	μA
		FREQCN = 000		3	8	μA
SARADC0, SARADC1	I _{SARADC}	Sampling at 1 Msps, highest power mode settings.	_	1.2	1.5	mA
		Sampling at 250 ksps, lowest power mode settings.		390	510	μA
Temperature Sensor	I _{TSENSE}			75	105	μA
Internal SAR Reference	IREFFS	Normal Power Mode		680	750	μA
		Low Power Mode		160	190	μA
VREF0	I _{REFP}			75	100	μA
Comparator 0 (CMP0),	I _{CMP}	CMPMD = 11		0.5		μA
Comparator 1 (CMP1)		CMPMD = 10		3		μA
		CMPMD = 01		10		μA
		CMPMD = 00		25	_	μA
Capacitive Sensing (CAPSENSE0)	I _{CS}	Continuous Conversions		55	80	μA
IDAC0 ⁷ , IDAC1 ⁷	I _{IDAC}		—	75	90	μΑ
IVC0 ⁷	I _{IVC}	I _{IN} = 0		1.5	2.5	μA
Voltage Supply Monitor (VMON0)	I _{VMON}			15	25	μA

Notes:

1. Perhipheral currents drop to zero when peripheral clock and peripheral are disabled, unless otherwise noted.

 Currents are additive. For example, where I_{DD} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

- 3. Includes all peripherals that cannot have clocks gated in the Clock Control module.
- 4. Includes supply current from internal regulator and PLL0OSC (>20 MHz) or LPOSC0 (<=20 MHz).
- 5. Flash execution numbers use 2 wait states for 80 MHz and 0 wait states at 20 MHz or less.
- 6. RAM execution numbers use 0 wait states for all frequencies.
- 7. IDAC output current and IVC input current not included.
- 8. Bias current only. Does not include dynamic current from oscillator running at speed.

Table 3.2. Power Consumption (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Flash Current on VDD						
Write Operation	I _{FLASH-W}		_		8	mA
Erase Operation	I _{FLASH-E}		_	_	15	mA
Netes						

Notes:

- 1. Perhipheral currents drop to zero when peripheral clock and peripheral are disabled, unless otherwise noted.
- Currents are additive. For example, where I_{DD} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.
- 3. Includes all peripherals that cannot have clocks gated in the Clock Control module.
- 4. Includes supply current from internal regulator and PLL0OSC (>20 MHz) or LPOSC0 (<=20 MHz).
- 5. Flash execution numbers use 2 wait states for 80 MHz and 0 wait states at 20 MHz or less.
- 6. RAM execution numbers use 0 wait states for all frequencies.
- 7. IDAC output current and IVC input current not included.
- 8. Bias current only. Does not include dynamic current from oscillator running at speed.

Table 3.3. Power Mode Wake Up Times

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Power Mode 2 Wake Time	t _{PM2}		4	—	5	clocks
Power Mode 3 Fast Wake Time	t _{PM3FW}		—	425	—	μs
Power Mode 9 Wake Time	t _{PM9}		—	12		μs

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
3.3 V Regulator Characteristics (VRI	EG0, Supp	olied from VREGIN Pin)		•	•	-1
Output Voltage (at VDD pin)	V _{DDOUT}	$\begin{array}{c c} & 4 \leq V_{\text{REGIN}} \leq 5.5 \\ & \text{BGDIS} = 0, \text{ SUSEN} = 0 \end{array} $			3.4	V
		$4 \le V_{REGIN} \le 5.5$ BGDIS = 0, SUSEN = 1	3.15	3.3	3.4	V
		$\begin{array}{l} 4 \leq V_{REGIN} \leq 5.5 \\ BGDIS = 1, SUSEN = X \\ I_{DDOUT} = 500 \; \mu A \end{array}$	2.3	2.3 2.8		V
		$4 \le V_{REGIN} \le 5.5$ BGDIS = 1, SUSEN = X I _{DDOUT} = 5 mA	2.1	2.65	3.3	V
Output Current (at VDD pin)*	IDDOUT	$4 \le V_{\text{REGIN}} \le 5.5$ BGDIS = 0, SUSEN = X	_		150	mA
		$4 \le V_{\text{REGIN}} \le 5.5$ BGDIS = 1, SUSEN = X	_		5	mA
Output Load Regulation	V _{DDLR}	BGDIS = 0	_	0.1	1	mV/mA
Output Capacitance	C _{VDD}		1		10	μF
*Note: Total current VREG0 is capable of p external devices powered from VDE	providing. A).	ny current consumed by the S	SiM3C1xx	reduces the	e current av	vailable to

Table 3.5. On-Chip Regulators

Table 3.11. IDAC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Static Performance						
Resolution	N _{bits}		10			Bits
Integral Nonlinearity	INL			±0.5	<u>+2</u>	LSB
Differential Nonlinearity (Guaranteed Monotonic)	DNL		—	±0.5	±1	LSB
Output Compliance Range	V _{OCR}		—		V _{DD} – 1.0	V
Full Scale Output Current	I _{OUT}	2 mA Range	2.0	2.046	2.10	mA
		1 mA Range	0.99	1.023	1.05	mA
		0.5 mA Range	493	511.5	525	μA
Offset Error	E _{OFF}			250	—	nA
Full Scale Error Tempco	TC _{FS}	2 mA Range	—	100	—	ppm/°C
VDD Power Supply Rejection Ratio		2 mA Range		-220		ppm/V
Test Load Impedance (to V _{SS})	R _{TEST}		—	1	—	kΩ
Dynamic Performance						
Output Settling Time to 1/2 LSB		min output to max output	_	1.2	_	μs
Startup Time				3	—	μs

Table 3.16. Comparator

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Response Time, CMPMD = 00	t _{RESP0}	+100 mV Differential	_	100		ns
(Highest Speed)		-100 mV Differential	_	150		ns
Response Time, CMPMD = 11	t _{RESP3}	+100 mV Differential		1.4	_	μs
(Lowest Power)		-100 mV Differential	_	3.5	—	μs
Positive Hysteresis	HYS _{CP+}	CMPHYP = 00	_	0.4	—	mV
Mode 0 (CPMD = 00)		CMPHYP = 01		8	_	mV
		CMPHYP = 10	_	16	—	mV
		CMPHYP = 11		33		mV
Negative Hysteresis	HYS _{CP-}	CMPHYN = 00		0.4	_	mV
Mode 0 (CPMD = 00)		CMPHYN = 01		-8		mV
		CMPHYN = 10		-16		mV
		CMPHYN = 11		-33		mV
Positive Hysteresis Mode 1 (CPMD = 01)	HYS _{CP+}	CMPHYP = 00		0.5		mV
		CMPHYP = 01		6		mV
		CMPHYP = 10	_	12		mV
		CMPHYP = 11	_	24		mV
Negative Hysteresis	HYS _{CP-}	CMPHYN = 00		0.5		mV
Mode 1 (CPMD = 01)		CMPHYN = 01		-6.0		mV
		CMPHYN = 10	_	-12	—	mV
		CMPHYN = 11	_	-24	—	mV
Positive Hysteresis	HYS _{CP+}	CMPHYP = 00		0.6		mV
Mode 2 (CPMD = 10)		CMPHYP = 01	_	4.5	—	mV
		CMPHYP = 10		9.5		mV
		CMPHYP = 11	_	19		mV
Negative Hysteresis	HYS _{CP-}	CMPHYN = 00	_	0.6		mV
Mode 2 (CPMD = 10)		CMPHYN = 01	_	-4.5		mV
		CMPHYN = 10		-9.5		mV
		CMPHYN = 11	_	-19	—	mV

Table 3.16. Comparator (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Positive Hysteresis	HYS _{CP+}	CMPHYP = 00	—	1.4	—	mV
Mode 3 (CPMD = 11)		CMPHYP = 01	—	4	—	mV
		CMPHYP = 10	—	8	—	mV
		CMPHYP = 11	_	16	_	mV
Negative Hysteresis	HYS _{CP-}	CMPHYN = 00	—	1.4	—	mV
Mode 3 (CPMD = 11)		CMPHYN = 01	—	-4	—	mV
		CMPHYN = 10	_	-8	_	mV
		CMPHYN = 11	_	-16	_	mV
Input Range (CP+ or CP-)	V _{IN}		-0.25	_	V _{DD} +0.25	V
Input Pin Capacitance	C _{CP}	PB2 Pins	_	7.5	_	pF
		PB3 Pins		10.5	_	pF
Common-Mode Rejection Ratio	CMRR _{CP}		—	75	—	dB
Power Supply Rejection Ratio	PSRR _{CP}		—	72	—	dB
Input Offset Voltage	V _{OFF}		-10	0	10	mV
Input Offset Tempco	TC _{OFF}		_	3.5	—	µV/°C
Reference DAC Resolution	N _{Bits}			6		bits

Table 3.17. Port I/O (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit			
Output Fall Time	t _F	Slew Rate Mode 0, V _{IOHD} = 5 V	_	50	_	ns			
		Slew Rate Mode 1, V _{IOHD} = 5 V	_	300	_	ns			
		Slew Rate Mode 2, V _{IOHD} = 5 V	_	1	_	μs			
		Slew Rate Mode 3, V _{IOHD} = 5 V	_	3		μs			
Input High Voltage	V _{IH}	1.8 V <u>≤</u> V _{IOHD} <u>≤</u> 2.0 V	$0.7 ext{ x V}_{ ext{IOHD}}$		_	V			
		2.0 V <u><</u> V _{IOHD} ≤ 6 V	$V_{IOHD} - 0.6$			V			
Input Low Voltage	V _{IL}		—	—	0.6	V			
N-Channel Sink Current Limit	I _{SINKL}	Mode 0		1.75	_	mA			
$(2.7 \text{ V} \leq \text{V}_{\text{IOHD}} \leq 6 \text{ V},$		Mode 1	—	2.5	_				
V _{OL} = 0.8 V) See Figure 3.1		Mode 2	—	3.5	_				
		Mode 3	—	4.75	_				
		Mode 4 —		7	_				
		Mode 5	_	9.5					
		Mode 6		14					
		Mode 7		18.75	_				
		Mode 8	—	28.25	_				
		Mode 9	—	37.5	_				
		Mode 10		56.25	_				
		Mode 11		75					
		Mode 12		112.5					
		Mode 13		150	_				
		Mode 14 — 225			_				
		Mode 15	Mode 15 —						
Total N-Channel Sink Current on P4.0-P4.5 (DC)	Total N-Channel Sink Current on I _{SINKLT} — — 400 r								
*Note: RESET does not drive to logic h	igh. Specifi	cations for $\overline{\text{RESET}} V_{OL}$ adhe	re to the low dri	ve setting.					

3.2. Thermal Conditions

Table 3.18. Thermal Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Thermal Resistance*	θ_{JA}	LGA-92 Packages		35		°C/W
		TQFP-80 Packages		40		°C/W
		QFN-64 Packages		25		°C/W
		TQFP-64 Packages		30		°C/W
		QFN-40 Packages		30		°C/W
*Note: Thermal resistance assumes a	multi-layer F	CB with any exposed pad sc	ldered to a PC	B pad.		

3.3. Absolute Maximum Ratings

Stresses above those listed under Table 3.19 may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 3.19. Absolute Maximum Ratings

Parameter	Symbol	Test Condition	Min	Max	Unit
Ambient Temperature Under Bias	T _{BIAS}		-55	125	°C
Storage Temperature	T _{STG}		-65	150	°C
Voltage on VDD	V _{DD}		V _{SS} –0.3	4.2	V
Voltage on VREGIN	V _{REGIN}	EXTVREG0 Not Used	V _{SS} –0.3	6.0	V
		EXTVREG0 Used	V _{SS} –0.3	3.6	V
Voltage on VIO	V _{IO}		V _{SS} –0.3	4.2	V
Voltage on VIOHD	V _{IOHD}		V _{SS} –0.3	6.5	V
Voltage on I/O pins,	V _{IN}	RESET, V _{IO} ≥ 3.3 V	V _{SS} –0.3	5.8	V
		RESET, V _{IO} < 3.3 V	V _{SS} –0.3	V _{IO} +2.5	V
		Port Bank 0, 1, and 2 I/O	V _{SS} -0.3	V _{IO} +0.3	V
		Port Bank 4 I/O	V _{SSHD} -0.3	V _{IOHD} +0.3	V
	4	·	· · · · · ·		·

*Note: VSS and VSSHD provide separate return current paths for device supplies, but are not isolated. They must always be connected to the same potential on board.

4.6. Communications Peripherals

4.6.1. External Memory Interface (EMIF0)

The External Memory Interface (EMIF0) allows external parallel asynchronous devices, like SRAMs and LCD controllers, to appear as part of the system memory map. The EMIF0 module includes the following features:

- Provides a memory mapped view of multiple external devices.
- Support for byte, half-word and word accesses regardless of external device data-width.
- Error indicator for certain invalid transfers.
- Minimum external timing allows for 3 clocks per write or 4 clocks per read.
- Output bus can be shared between non-muxed and muxed devices.
- Available extended address output allows for up to 24-bit address with 8-bit parallel devices.
- Support for 8-bit and 16-bit (muxed-mode only) devices with up to two chip-select signals.
- Support for internally muxed devices with dynamic address shifting.
- Fully programmable control signal waveforms.

4.6.2. USART (USART0, USART1)

The USART uses two signals (TX and RX) and a predetermined fixed baud rate to communicate with a single device. In addition to these signals, the USART0 module can optionally use a clock (UCLK) or hardware handshaking (RTS and CTS).

The USART module provides the following features:

- Independent transmitter and receiver configurations with separate 16-bit baud rate generators.
- Synchronous or asynchronous transmissions and receptions.
- Clock master or slave operation with programmable polarity and edge controls.
- Up to 5 Mbaud (synchronous or asynchronous, TX or RX, and master or slave) or 1 Mbaud Smartcard (TX or RX).
- Individual enables for generated clocks during start, stop, and idle states.
- Internal transmit and receive FIFOs with flush capability and support for byte, half-word, and word reads and writes.
- Data bit lengths from 5 to 9 bits.
- Programmable inter-packet transmit delays.
- Auto-baud detection with support for the LIN SYNC byte.
- Automatic parity generation (with enable).
- Automatic start and stop generation (with separate enables).
- Transmit and receive hardware flow-control.
- Independent inversion correction for TX, RX, RTS, and CTS signals.
- IrDA modulation and demodulation with programmable pulse widths.
- Smartcard ACK/NACK support.
- Parity error, frame error, overrun, and underrun detection.
- Multi-master and half-duplex support.
- Multiple loop-back modes supported.
- Multi-processor communications support.

4.6.3. UART (UART0, UART1)

The USART uses two signals (TX and RX) and a predetermined fixed baud rate to communicate with a single device.

The UART module provides the following features:

- Independent transmitter and receiver configurations with separate 16-bit baud-rate generators.
- Asynchronous transmissions and receptions.
- Up to 5 Mbaud (TX or RX) or 1 Mbaud Smartcard (TX or RX).

• Spike suppression up to 2 times the APB period.

4.6.6. I²S (I2S0)

The I²S module receives digital data from an external source over a data line in the standard I²S, left-justified, rightjustified, or time domain multiplexing format, de-serializes the data, and generates requests to transfer the data using the DMA. The module also reads stereo audio samples from the DMA, serializes the data, and sends it out of the chip on a data line in the same standard serial format for digital audio. The I²S receive interface consists of 3 signals: SCK (bit clock), WS (word select or frame sync), and SD (data input). The block's transmit interface consists of 3 signals: SCK (bit clock), WS (word select or frame sync) and SD (data output).

The I²S module includes the following features:

- Master or slave capability.
- Flexible 10-bit clock divider with 8-bit fractional clock divider provides support for various common sampling frequencies (16 kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, and 48 kHz) for up to two 32-bit channels.
- Support for DMA data transfers.
- Support for various data formats.
- Time Division Multiplexing

*Noted pins are listed in the pinout table and 80-pin TQFP package figure with additional names. These alternate functions are also present on the 92-pin LGA package and are identical to those on the 80-pin TQFP package.

Figure 6.2. SiM3C1x7-GM Pinout

SiM3C1xx

Pin Name	Туре	Pin Numbers TQFP-80	Pin Numbers LGA-92	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
VSS	Ground	33 75	B15 B34							
VDD	Power (Core)	74	A44							
VIO	Power (I/O)	32 49 73	A19 A29 A43							
VREGIN	Power (Regulator)	76	A45							
VSSHD	Ground (High Drive)	4	B2							
VIOHD	Power (High Drive)	5	A3							
RESET	Active-low Reset	80	A48							
SWCLK/TCK	Serial Wire/JTAG	45	B20							
SWDIO/TMS	Serial Wire/JTAG	44	A27							
PB0.0	Standard I/O	72	B33	XBR0	\checkmark					ADC0.0
PB0.1	Standard I/O	71	B32	XBR0	\checkmark					ADC0.1 CS0.0
PB0.2	Standard I/O	70	A42	XBR0	\checkmark					ADC0.2 CS0.1
PB0.3	Standard I/O	69	B31	XBR0	\checkmark					ADC0.3 CS0.2
PB0.4	Standard I/O	68	A41	XBR0	~					ADC0.4 CS0.3
PB0.5	Standard I/O	67	B30	XBR0	\checkmark					ADC0.5 CS0.4
PB0.6	Standard I/O	66	A40	XBR0	\checkmark					CS0.5
PB0.7	Standard I/O	65	B29	XBR0	\checkmark					ADC0.6 CS0.6 IVC0.0

Table 6.1. Pin Definitions and alternate functions for SiM3C1x7

Table 6.1. Pin Definitions and alternate	e functions for SiM3C1x7	(Continued)
--	--------------------------	-------------

Pin Name	Туре	Pin Numbers TQFP-80	Pin Numbers LGA-92	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB1.9/ TRACECLK	Standard I/O /ETM	46	A28	XBR0	\checkmark					ADC1.9
PB1.10	Standard I/O	43	A26	XBR0	\checkmark	A23m/ A15			DMA0T1	ADC1.8
PB1.11	Standard I/O	42	A25	XBR0	\checkmark	A22m/ A14			DMA0T0	ADC1.7
PB1.12	Standard I/O	41	D3	XBR0	~	A21m/ A13				ADC1.6
PB1.13	Standard I/O	40	A24	XBR0	~	A20m/ A12			ADC0T15 WAKE.0	ADC1.5 CS0.10
PB1.14	Standard I/O	39	A23	XBR0	~	A19m/ A11			ADC1T15 WAKE.1	ADC1.4 CS0.11
PB1.15	Standard I/O	38	A22	XBR0	~	A18m/ A10			WAKE.2	ADC1.3 CS0.12
PB2.0	Standard I/O	37	B17	XBR1	~	A17m/ A9	LSI0	Yes	INT0.0 INT1.0 WAKE.3	ADC1.2 CS0.13
PB2.1	Standard I/O	36	A21	XBR1	\checkmark	A16m/ A8	LSI1	Yes	INT0.1 INT1.1 WAKE.4	ADC1.1 CS0.14
PB2.2	Standard I/O	35	B16	XBR1	~	AD15m/ A7	LSI2	Yes	INT0.2 INT1.2 WAKE.5	ADC1.0 CS0.15 PMU_Asleep
PB2.3	Standard I/O	34	A20	XBR1	\checkmark	AD14m/ A6	LSI3	Yes	INT0.3 INT1.3 WAKE.6	
PB2.4	Standard I/O	31	B14	XBR1	~	AD13m/ A5	LSI4	Yes	INT0.4 INT1.4 WAKE.7	
PB2.5	Standard I/O	30	A18	XBR1	\checkmark	AD12m / A4	LSI5	Yes	INT0.5 INT1.5	

Pin Name	Туре	Pin Numbers TQFP-80	Pin Numbers LGA-92	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB3.4	5 V Tolerant I/O	16	A9	XBR1	~	ŌĒ			INT0.9 INT1.9 WAKE.8	CMP0P.4 CMP1P.4
PB3.5	5 V Tolerant I/O	15	B7	XBR1	~	ALEm			DAC0T2 DAC1T2 INT0.10 INT1.10 WAKE.9	CMP0N.4 CMP1N.4
PB3.6	5 V Tolerant I/O	14	A8	XBR1	<	CS0			DAC0T3 DAC1T3 INT0.11 INT1.11 WAKE.10	CMP0P.5 CMP1P.5
PB3.7	5 V Tolerant I/O	13	B6	XBR1	<	BE1			DAC0T4 DAC1T4 LPT0T1 INT0.12 INT1.12 WAKE.11	CMP0N.5 CMP1N.5
PB3.8	5 V Tolerant I/O	12	A7	XBR1	<	CS1			DAC0T5 DAC1T5 LPT0T2 INT0.13 INT1.13 WAKE.12	CMP0P.6 CMP1P.6 EXREGSP
PB3.9	5 V Tolerant I/O	11	B5	XBR1	~	BEO			DAC0T6 DAC1T6 INT0.14 INT1.14 WAKE.13	CMP0N.6 CMP1N.6 EXREGSN
PB3.10	5 V Tolerant I/O	10	B4	XBR1	~				INT0.15 INT1.15 WAKE.14	CMP0P.7 CMP1P.7 EXREGOUT
PB3.11	5 V Tolerant I/O	9	B3	XBR1	\checkmark				WAKE.15	CMP0N.7 CMP1N.7 EXREGBD

Table 6.1. Pin Definitions and alternate functions for SiM3C1x7 (Continued)

Figure 6.7. LGA-92 Landing Diagram

ension	Typical	Мах					
21	6.50	_					
22	6.50	_					
e	0.50						
f	—	0.35					
P1	—	3.20					
2	—	3.20					
 Notes: All dimensions shown are in millimeters (mm) unless otherwise noted. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed. 							
	ension 21 22 e f 21 22 dimensions shed. eature sizes s a card fabric: onsionica on	Image: sensionTypicalC16.50C26.50e0.50f—P1—P2—dimensions shown are in millimeters (med.eature sizes shown are at Maximum Ma card fabrication tolerance of 0.05 monsigning and Telerancing is part to A					

- Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
- 4. This land pattern design is based on the IPC-7351 guidelines.

6.6. QFN-64 Package Specifications

Dimension	Min	Nominal	Max				
Α	0.80	0.90					
A1	0.00	0.05					
b	0.18	0.30					
D	9.00 BSC						
D2	3.95	3.95 4.10 4.25					
е	0.50 BSC						
E	9.00 BSC						
E2	3.95 4.10 4.25						
L	0.30 0.40 0.50						
aaa	0.10						
bbb	0.10						
CCC	0.08						
ddd	0.10						
eee	0.05						
	·						

Table 6.8. QFN-64 Package Dimensions

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This package outline conforms to JEDEC MO-220.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

D	imension	Min	Nominal	Max					
	aaa	—	—	0.20					
	bbb	— — 0.20							
	CCC	— — 0.08							
	ddd	— — 0.08							
Notes 1. 2. 3. 4.	 Notes: All dimensions shown are in millimeters (mm) unless otherwise noted. Dimensioning and Tolerancing per ANSI Y14.5M-1994. This package outline conforms to JEDEC MS-026, variant ACD. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. 								

Table 6.10. TQFP-64 Package Dimensions (Continued)

SILICON LABS

6.7.1. TQFP-64 Solder Mask Design

All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

6.7.2. TQFP-64 Stencil Design

- 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- 3. The ratio of stencil aperture to land pad size should be 1:1 for all pads.

6.7.3. TQFP-64 Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

DOCUMENT CHANGE LIST

Revision 0.8 to Revision 1.0

- Added block diagram to front page; updated feature bullet lists.
- Electrical Specifications Tables Additions:
 - Voltage Regulator Current Sense Supply Current, Typ = $3 \mu A$ (Table 3.2)
 - Power Mode 2 Wake Time, Min = 4 clocks, Max = 5 clocks (Table 3.3)
 - External Crystal Clock Frequency, Min = 0.01 MHz, Max = 30 MHz (Table 3.9)
 - Added /RESET pin characteristics (Table 3.17)
- Electrical Specifications Tables Removals:
 - Power Mode 3 Wake Time (Table 3.3)
- Electrical Specifications Tables Corretions/Adjustments:
 - IVC Supply Current, Max = 2.5 μA (Table 3.2)
 - VREG0 Output Voltage Normal Mode, Min = 3.15 V (Table 3.5)
 - VREG0 Output Voltage Suspend Mode, Min = 3.15 V (Table 3.5)
 - External Regulator Internal Pull-Down, Typ = $5 \text{ k}\Omega$ (Table 3.6)
 - External Regulator Internal Pull-Up, Typ = 10 k Ω (Table 3.6)
 - Flash Memory Endurance, Typ = 100k write/erase cycles (Table 3.7)
 - Flash Memory Retention, Min = 10 Years, Typ = 100 Years (Table 3.7)
 - Low Power Oscillator Frequency, Min = 19.5 MHz, Max = 20.5 MHz (Table 3.8)
 - SAR Dynamic Performance : consolidated all specs. (Table 3.10)
 - IDAC Full Scale Output Current 1 mA Range, Min = 0.99 mA (Table 3.11)
 - IDAC Full Scale Output Current 0.5 mA Range, Min = 493 μA (Table 3.11)
 - IVC Slope @ 1 mA, Min = 1.55 V/mA, Max = 1.75 V/mA (Table 3.13)
 - IVC Slope @ 2 mA, Min = 795 mV/mA, Max = 860 mV/mA (Table 3.13)
 - IVC Slope @ 3 mA, Min = 525 mV/mA, Max = 570 mV/mA (Table 3.13)
 - IVC Slope @ 4 mA, Min = 390 mV/mA, Max = 430 mV/mA (Table 3.13)
 - IVC Slope @ 5 mA, Min = 315 mV/mA (Table 3.13)
 - IVC Slope @ 6 mA, Min = 260 mV/mA (Table 3.13)
 - Temperature Sensor Slope Error, Type = $\pm 120 \,\mu$ V/C (Table 3.15)
 - Comparator Input Offset Voltage, Min = -10 mV, Max = 10 mV (Table 3.16)
- "4. Precision32TM SiM3C1xx System Overview":
 - Updated Power Modes discussion.
 - Refined and updated feature bullet lists.
- Updated and clarified RTC timer clock output. The RTC output is now referred to as "RTC0TCLK".
- "6. Pin Definitions and Packaging Information": Renamed RTC0OSC_OUT function to RTC0TCLK_OUT for consistency.
- "7. Revision Specific Behavior": Updated revision identification drawings to better match physical appearance of packages.

