E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	EBI/EMI, I ² C, IrDA, SmartCard, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	50
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 28x12b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/sim3u166-b-gm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 3.2. Power Consumption (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Power Mode 9 ^{2,3} —Low Power Shutdown with VREG0 disabled,	I _{DD}	RTC Disabled, V _{DD} = 1.8 V, T _A = 25 °C	_	85	_	nA
powered through VDD and VIO		RTC w/ 16.4 kHz LFO, V _{DD} = 1.8 V, T _A = 25 °C		350		nA
		RTC w/ 32.768 kHz Crystal, V _{DD} = 1.8 V, T _A = 25 °C		620		nA
		RTC Disabled, V _{DD} = 3.0 V, T _A = 25 °C	_	145	_	nA
		RTC w/ 16.4 kHz LFO, V _{DD} = 3.0 V, T _A = 25 °C		500	_	nA
		RTC w/ 32.768 kHz Crystal, V _{DD} = 3.0 V, T _A = 25 °C		800	_	nA
Power Mode 9 ^{2,3} —Low Power Shutdown with VREG0 in Iow-	I _{VREGIN}	RTC Disabled, VREGIN = 5 V, T _A = 25 °C	_	300		nA
ered through VREG0 (Includes VREG0 current)		RTC w/ 16.4 kHz LFO, VREGIN = 5 V, T _A = 25 °C		650		nA
		RTC w/ 32.768 kHz Crystal, VREGIN = 5 V, T _A = 25 °C		950	_	nA
VIOHD Current (High-drive I/O dis-	I _{VIOHD}	HV Mode (default)	_	2.5	5	μA
abled)		LV Mode	_	2	_	nA

Notes:

1. Perhipheral currents drop to zero when peripheral clock and peripheral are disabled, unless otherwise noted.

 Currents are additive. For example, where I_{DD} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

3. Includes all peripherals that cannot have clocks gated in the Clock Control module.

- 4. Includes supply current from internal regulator and PLL0OSC (>20 MHz) or LPOSC0 (<=20 MHz).
- 5. Flash execution numbers use 2 wait states for 80 MHz and 0 wait states at 20 MHz or less.
- 6. RAM execution numbers use 0 wait states for all frequencies.
- 7. IDAC output current and IVC input current not included.

8. Bias current only. Does not include dynamic current from oscillator running at speed.

Table 3.2. Power Consumption (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
External Oscillator (EXTOSC0) ⁸	IEXTOSC	FREQCN = 111		3.8	4.7	mA
		FREQCN = 110		840	950	μA
		FREQCN = 101		185	220	μA
		FREQCN = 100		65	80	μA
		FREQCN = 011		25	30	μA
		FREQCN = 010		10	15	μA
		FREQCN = 001		5	10	μA
		FREQCN = 000		3	8	μA
SARADC0, SARADC1	I _{SARADC}	Sampling at 1 Msps, highest power mode settings.	_	1.2	1.5	mA
		Sampling at 250 ksps, lowest power mode settings.		390	510	μA
Temperature Sensor	I _{TSENSE}			75	105	μA
Internal SAR Reference	IREFFS	Normal Power Mode		680	750	μA
		Low Power Mode		160	190	μA
VREF0	I _{REFP}			75	100	μA
Comparator 0 (CMP0),	I _{CMP}	CMPMD = 11		0.5		μA
Comparator 1 (CMP1)		CMPMD = 10		3		μA
		CMPMD = 01		10		μA
		CMPMD = 00		25	_	μA
Capacitive Sensing (CAPSENSE0)	I _{CS}	Continuous Conversions		55	80	μA
IDAC0 ⁷ , IDAC1 ⁷	I _{IDAC}		—	75	90	μΑ
IVC0 ⁷	I _{IVC}	$I_{IN} = 0$		1.5	2.5	μA
Voltage Supply Monitor (VMON0)	I _{VMON}			15	25	μA

Notes:

1. Perhipheral currents drop to zero when peripheral clock and peripheral are disabled, unless otherwise noted.

 Currents are additive. For example, where I_{DD} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

- 3. Includes all peripherals that cannot have clocks gated in the Clock Control module.
- 4. Includes supply current from internal regulator and PLL0OSC (>20 MHz) or LPOSC0 (<=20 MHz).
- 5. Flash execution numbers use 2 wait states for 80 MHz and 0 wait states at 20 MHz or less.
- 6. RAM execution numbers use 0 wait states for all frequencies.
- 7. IDAC output current and IVC input current not included.
- 8. Bias current only. Does not include dynamic current from oscillator running at speed.

Table 3.4. Reset and Supply Monitor

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
V _{DD} High Supply Monitor Threshold	V _{VDDMH}	Early Warning	2.10	2.20	2.30	V
(VDDHITHEN = 1)		Reset	1.95	2.05	2.1	V
V _{DD} Low Supply Monitor Threshold	V_{VDDML}	Early Warning	1.81	1.85	1.88	V
(VDDHITHEN = 0)		Reset	1.70	1.74	1.77	V
V _{REGIN} Supply Monitor Threshold	V _{VREGM}	Early Warning	4.2	4.4	4.6	V
Power-On Reset (POR) Threshold	V _{POR}	Rising Voltage on V_{DD}		1.4	—	V
		Falling Voltage on V_{DD}	0.8	1	1.3	V
V _{DD} Ramp Time	t _{RMP}	Time to $V_{DD} \ge 1.8 V$	10		3000	μs
Reset Delay from POR	t _{POR}	Relative to V _{DD} ≥ V _{POR}	3		100	ms
Reset Delay from non-POR source	t _{RST}	Time between release of reset source and code execution	—	10		μs
RESET Low Time to Generate Reset	t _{RSTL}		50		_	ns
Missing Clock Detector Response Time (final rising edge to reset)	t _{MCD}	F _{AHB} > 1 MHz		0.4	1	ms
Missing Clock Detector Trigger Frequency	F _{MCD}			7.5	13	kHz
V _{DD} Supply Monitor Turn-On Time	t _{MON}		_	2		μs

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
3.3 V Regulator Characteristics (VRI	EG0, Supp	olied from VREGIN Pin)		•	•	-1
Output Voltage (at VDD pin)	V _{DDOUT}	$4 \le V_{\text{REGIN}} \le 5.5$ BGDIS = 0, SUSEN = 0	3.15	3.3	3.4	V
		$4 \le V_{REGIN} \le 5.5$ BGDIS = 0, SUSEN = 1	3.15	3.3	3.4	V
		$\begin{array}{l} 4 \leq V_{REGIN} \leq 5.5 \\ BGDIS = 1, SUSEN = X \\ I_{DDOUT} = 500 \; \mu A \end{array}$	2.3	2.8	3.6	V
		$4 \le V_{REGIN} \le 5.5$ BGDIS = 1, SUSEN = X I _{DDOUT} = 5 mA	2.1	2.65	3.3	V
Output Current (at VDD pin)*	IDDOUT	$4 \le V_{\text{REGIN}} \le 5.5$ BGDIS = 0, SUSEN = X	_		150	mA
		$4 \le V_{\text{REGIN}} \le 5.5$ BGDIS = 1, SUSEN = X	_		5	mA
Output Load Regulation	V _{DDLR}	BGDIS = 0	_	0.1	1	mV/mA
Output Capacitance	C _{VDD}		1		10	μF
*Note: Total current VREG0 is capable of p external devices powered from VDE	providing. A).	ny current consumed by the S	SiM3C1xx	reduces the	e current av	vailable to

Table 3.5. On-Chip Regulators

Table 3.7. Flash Memory

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Write Time ¹	t _{WRITE}	One 16-bit Half Word	20	21	22	μs
Erase Time ¹	t _{ERASE}	One Page	20	21	22	ms
	t _{ERALL}	Full Device	20	21	22	ms
V _{DD} Voltage During Programming	V _{PROG}		1.8		3.6	V
Endurance (Write/Erase Cycles)	N _{WE}		20k	100k	—	Cycles
Retention ²	t _{RET}	T _A = 25 °C, 1k Cycles	10	100	—	Years

Notes:

1. Does not include sequencing time before and after the write/erase operation, which may take up to 35 µs. During a sequential write operation, this extra time is only taken prior to the first write and after the last write.

2. Additional Data Retention Information is published in the Quarterly Quality and Reliability Report.

Table 3.8. Internal Oscillators

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Phase-Locked Loop (PLL0OSC)						
Calibrated Output Frequency*	f _{PLL0OSC}	Full Temperature and Supply Range	77	79	80	MHz
Power Supply Sensitivity*	PSS _{PLL0OSC}	T _A = 25 °C, Fout = 79 MHz	_	430	_	ppm/V
Temperature Sensitivity*	TS _{PLL0OSC}	V _{DD} = 3.3 V, Fout = 79 MHz	_	95	_	ppm/°C
Adjustable Output Frequency Range	f _{PLL0OSC}		23	_	80	MHz
Lock Time	t _{PLLOLOCK}	f _{REF} = 20 MHz, f _{PLL0OSC} = 80 MHz, M=24, N=99, LOCKTH = 0	_	1.7		μs
		f _{REF} = 32 kHz, f _{PLL0OSC} = 80 MHz, M=0, N=2440, LOCKTH = 0	_	91	_	μs
*Note: PLL0OSC in free-running oscill	ator mode.			1		1

Table 3.8. Internal Oscillators (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Low Power Oscillator (LPOSC0)						
Oscillator Frequency	f _{LPOSC}	Full Temperature and Supply Range	19	20	21	MHz
		T _A = 25 °C, V _{DD} = 3.3 V	19.5	20	20.5	MHz
Divided Oscillator Frequency	f _{LPOSCD}	Full Temperature and Supply Range	2.375	2.5	2.625	MHz
Power Supply Sensitivity	PSS _{LPOSC}	T _A = 25 °C	_	0.5		%/V
Temperature Sensitivity	TS _{LPOSC}	V _{DD} = 3.3 V		55		ppm/°C
Low Frequency Oscillator (LFOS	C0)					
Oscillator Frequency	f _{LFOSC}	Full Temperature and Supply Range	13.4	16.4	19.7	kHz
		T _A = 25 °C, V _{DD} = 3.3 V	15.8	16.4	17.3	kHz
Power Supply Sensitivity	PSS _{LFOSC}	T _A = 25 °C		2.4	—	%/V
Temperature Sensitivity	TS _{LFOSC}	V _{DD} = 3.3 V		0.2		%/°C
RTC0 Oscillator (RTC0OSC)						
Missing Clock Detector Trigger Frequency	f _{RTCMCD}		_	8	15	kHz
RTC Robust Duty Cycle Range	DC _{RTC}		25	_	55	%
*Note: PLL0OSC in free-running oscill	ator mode.	·				

Table 3.9. External Oscillator

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
External Input CMOS Clock Frequency*	f _{CMOS}		0		50	MHz
External Input CMOS Clock High Time	t _{CMOSH}		9		—	ns
External Input CMOS Clock Low Time	t _{CMOSL}		9		—	ns
External Crystal Clock Frequency	f _{XTAL}		0.01		30	MHz
*Note: Minimum of 10 kHz during debug op	perations.					

Table 3.15. Temperature Sensor

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Offset	V _{OFF}	T _A = 0 °C	—	760		mV
Offset Error*	E _{OFF}	T _A = 0 °C	—	±14		mV
Slope	М			2.8		mV/°C
Slope Error*	E _M		—	±120		µV/°C
Linearity			—	1		°C
Turn-on Time			_	1.8		μs
*Note: Represents one standard deviation	from the mea	an.	•	•		•

Table 3.17. Port I/O (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output Fall Time	t _F	Slew Rate Mode 0, V _{IOHD} = 5 V	_	50	_	ns
		Slew Rate Mode 1, V _{IOHD} = 5 V	_	300	_	ns
		Slew Rate Mode 2, V _{IOHD} = 5 V	_	1	_	μs
		Slew Rate Mode 3, V _{IOHD} = 5 V	_	3		μs
Input High Voltage	V _{IH}	1.8 V <u>≤</u> V _{IOHD} <u>≤</u> 2.0 V	$0.7 ext{ x V}_{ ext{IOHD}}$		_	V
		2.0 V <u>≤</u> V _{IOHD} <u>≤</u> 6 V	$V_{IOHD} - 0.6$			V
Input Low Voltage	V _{IL}		—	—	0.6	V
N-Channel Sink Current Limit	I _{SINKL}	Mode 0		1.75	_	mA
$(2.7 \text{ V} \leq \text{V}_{\text{IOHD}} \leq 6 \text{ V},$		Mode 1	—	2.5	_	
V _{OL} = 0.8 V) See Figure 3.1		Mode 2	—	3.5	_	
See Figure 3.1		Mode 3	—	4.75	_	
		Mode 4		7	_	
		Mode 5	_	9.5		
		Mode 6		14		
		Mode 7		18.75	_	
		Mode 8	—	28.25	_	
		Mode 9	—	37.5	_	
		Mode 10		56.25	_	
		Mode 11		75		
		Mode 12		112.5		
		Mode 13		150	_	
		Mode 14	—	225	_	
		Mode 15	—	300	_	
Total N-Channel Sink Current on P4.0-P4.5 (DC)	I _{SINKLT}			—	400	mA
*Note: RESET does not drive to logic h	igh. Specifi	cations for $\overline{\text{RESET}} V_{OL}$ adhe	re to the low dri	ve setting.		

3.2. Thermal Conditions

Table 3.18. Thermal Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Thermal Resistance*	θ_{JA}	LGA-92 Packages		35		°C/W
		TQFP-80 Packages		40		°C/W
		QFN-64 Packages		25		°C/W
		TQFP-64 Packages		30		°C/W
		QFN-40 Packages		30		°C/W
*Note: Thermal resistance assumes a	multi-layer F	CB with any exposed pad sc	ldered to a PC	B pad.		

3.3. Absolute Maximum Ratings

Stresses above those listed under Table 3.19 may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 3.19. Absolute Maximum Ratings

Parameter	Symbol	Test Condition	Min	Мах	Unit
Ambient Temperature Under Bias	T _{BIAS}		-55	125	°C
Storage Temperature	T _{STG}		-65	150	°C
Voltage on VDD	V _{DD}		V _{SS} –0.3	4.2	V
Voltage on VREGIN	V _{REGIN}	EXTVREG0 Not Used	V _{SS} –0.3	6.0	V
		EXTVREG0 Used	V _{SS} –0.3	3.6	V
Voltage on VIO	V _{IO}		V _{SS} –0.3	4.2	V
Voltage on VIOHD	V _{IOHD}		V _{SS} –0.3	6.5	V
Voltage on I/O pins,	V _{IN}	RESET, V _{IO} ≥ 3.3 V	V _{SS} –0.3	5.8	V
non Port Bank 3 1/0		RESET, V _{IO} < 3.3 V	V _{SS} –0.3	V _{IO} +2.5	V
		Port Bank 0, 1, and 2 I/O	V _{SS} -0.3	V _{IO} +0.3	V
		Port Bank 4 I/O	V _{SSHD} -0.3	V _{IOHD} +0.3	V
	4	·			-

*Note: VSS and VSSHD provide separate return current paths for device supplies, but are not isolated. They must always be connected to the same potential on board.

Parameter	Symbol	Test Condition	Min	Max	Unit
Voltage on I/O pins, Port Bank 3 I/O	V _{IN}	SiM3C1x7, PB3.0– PB3.7, V _{IO} ≥ 3.3 V	V _{SS} -0.3	5.8	V
		SiM3C1x7, PB3.0– PB3.7, V _{IO} < 3.3 V	V _{SS} -0.3	V _{IO} +2.5	V
		SiM3C1x7, PB3.8 - PB3.11	V _{SS} -0.3	Lowest of V _{IO} +2.5, V _{REGIN} +0.3, or 5.8	V
		SiM3C1x6, PB3.0– PB3.5, V _{IO} ≥ 3.3 V	V _{SS} -0.3	5.8	V
		SiM3C1x6, PB3.0– PB3.5, V _{IO} < 3.3 V	V _{SS} -0.3	V _{IO} +2.5	V
		SiM3C1x6, PB3.6– PB3.9	V _{SS} -0.3	Lowest of V _{IO} +2.5, V _{REGIN} +0.3, or 5.8	V
		SiM3C1x4, PB3.0– PB3.3	V _{SS} -0.3	Lowest of V _{IO} +2.5, V _{REGIN} +0.3, or 5.8	V
Total Current Sunk into Supply Pins	I _{SUPP}	$V_{DD}, V_{REGIN}, V_{IO}, V_{IOHD}$	_	400	mA
Total Current Sourced out of Ground Pins	I _{VSS}	V _{SS,} V _{SSHD}	400	_	mA
Current Sourced or Sunk by Any I/O Pin	I _{PIO}	PB0, PB1 <u>, PB2,</u> PB3, and RESET	-100	100	mA
		PB4	-300	300	mA
Current Injected on Any I/O Pin	I _{INJ}	PB0, PB1 <u>, PB2,</u> PB3, and RESET	-100	100	mA
		PB4	-300	300	mA
Total Injected Current on I/O Pins	ΣΙ _{INJ}	Sum <u>of all I/O</u> and RESET	-400	400	mA
*Note: VSS and VSSHD provide separate connected to the same potential on	return curr board.	ent paths for device supplies,	but are not isol	ated. They must al	ways be

4.2. I/O

4.2.1. General Features

The SiM3C1xx ports have the following features:

- Push-pull or open-drain output modes and analog or digital modes.
- Option for high or low output drive strength.
- Port Match allows the device to recognize a change on a port pin value.
- Internal pull-up resistors are enabled or disabled on a port-by-port basis.
- Two external interrupts with up to 16 inputs provide monitoring capability for external signals.
- Internal Pulse Generator Timer (PB2 only) to generate simple square waves.
- A subset of pins can also serve as inputs to the Port Mapped Level Shifters available on the High Drive Pins.

4.2.2. High Drive Pins (PB4)

The High Drive pins have the following additional features:

- Programmable safe state: high, low, or high impedance.
- Programmable drive strength and slew rates.
- Programmable hardware current limiting.
- Powered from a separate source (VIOHD, which can be up to 6 V) from the rest of the device.
- Supports various functions, including GPIO, UART1 pins, EPCA0 pins, or Port Mapped Level Shifting.

4.2.3. 5 V Tolerant Pins (PB3)

The 5 V tolerant pins can be connected to external circuitry operating at voltages above the device supply without needing extra components to shift the voltage level.

4.2.4. Crossbars

The SiM3C1xx devices have two Crossbars with the following features:

- Flexible peripheral assignment to port pins.
- Pins can be individually skipped to move peripherals as needed for design or layout considerations.

The Crossbars have a fixed priority for each I/O function and assign these functions to the port pins. When a digital resource is selected, the least-significant unassigned port pin is assigned to that resource. If a port pin is assigned, the Crossbars skip that pin when assigning the next selected resource. Additionally, the Crossbars will skip port pins whose associated bits in the PBSKIPEN registers are set. This provides some flexibility when designing a system: pins involved with sensitive analog measurements can be moved away from digital I/O and peripherals can be moved around the chip as needed to ease layout constraints.

4.7.4. 16-Channel Capacitance-to-Digital Converter (CAPSENSE0)

The Capacitance Sensing module measures capacitance on external pins and converts it to a digital value. The CAPSENSE module has the following features:

- Multiple start-of-conversion sources (CSnTx).
- Option to convert to 12, 13, 14, or 16 bits.
- Automatic threshold comparison with programmable polarity ("less than or equal" or "greater than").
- Four operation modes: single conversion, single scan, continuous single conversion, and continuous scan.
- Auto-accumulate mode that will take and average multiple samples together from a single start of conversion signal.
- Single bit retry options available to reduce the effect of noise during a conversion.
- Supports channel bonding to monitor multiple channels connected together with a single conversion.
- Scanning option allows the module to convert a single or series of channels and compare against the threshold while the AHB clock is stopped and the core is in a low power mode.

4.7.5. Low Current Comparators (CMP0, CMP1)

The Comparators take two analog input voltages and output the relationship between these voltages (less than or greater than) as a digital signal. The Low Power Comparator module includes the following features:

- Multiple sources for the positive and negative poles, including VDD, VREF, and 8 I/O pins.
- Two outputs are available: a digital synchronous latched output and a digital asynchronous raw output.
- Programmable hysteresis and response time.
- Falling or rising edge interrupt options on the comparator output.

4.7.6. Current-to-Voltage Converter (IVC0)

The IVC module provides inputs to the SARADCn modules so the input current can be measured. The IVC module has the following features:

- Two independent channels.
- Programmable input ranges (1–6 mA full-scale).

5. Ordering Information

Figure 5.1. SiM3C1xx Part Numbering

All devices in the SiM3C1xx family have the following features:

- Core: ARM Cortex-M3 with maximum operating frequency of 80 MHz.
- Flash Program Memory: 32-256 kB, in-system programmable.
- RAM: 8–32 kB SRAM, with 4 kB retention SRAM
- I/O: Up to 65 multifunction I/O pins, including high-drive and 5 V-tolerant pins.
- Clock Sources: Internal and external oscillator options.
- 16-Channel DMA Controller.
- 128/192/256-bit AES.
- 16/32-bit CRC.
- **Timers:** 2 x 32-bit (4 x 16-bit).
- Real-Time Clock.
- Low-Power Timer.
- PCA: 1 x 6 channels (Enhanced), 2 x 2 channels (Standard). PWM, capture, and clock generation capabilites.
- ADC: 2 x 12-bit 250 ksps (10-bit 1 Msps) SAR.
- **DAC:** 2 x 10-bit IDAC.
- Temperature Sensor.
- Internal VREF.
- 16-channel Capacitive Sensing (CAPSENSE).
- **Comparator:** 2 x low current.
- Current to Voltage Converter (IVC).
- Serial Buses: 2 x USART, 2 x UART, 3 x SPI, 2 x I2C, 1 x I²S.

The inclusion of some features varies across different members of the device family. The differences are detailed in Table 5.1.

Pin Name	Туре	Pin Numbers	Crossbar Capability (see Port Config Section)	Port Match	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB3.1	5 V Tolerant I/O	9	XBR1	~		DAC0T1 DAC1T1 LPT0T1 INT0.1 INT1.1 WAKE.13	CMP0N.1 CMP1N.1 EXREGSN
PB3.2	5 V Tolerant I/O	8	XBR1	~		DAC0T2 DAC1T2 LPT0T2 INT0.2 INT1.3 WAKE.14	CMP0P.2 CMP1P.2 EXREGOUT
PB3.3	5 V Tolerant I/O	7	XBR1	 ✓ 		DAC0T3 DAC1T3 INT0.3 INT1.3 WAKE.15	CMP0N.2 CMP1N.2 EXREGBD
PB4.0	High Drive I/O	6					
PB4.1	High Drive I/O	5					
PB4.2	High Drive I/O	4					
PB4.3	High Drive I/O	1					

Table 6.3. Pin Definitions and Alternate Functions for SiM3C1x4 (Continued)

6.4. LGA-92 Package Specifications

Table	6.4. L	GA-92	Package	Dimensions
-------	--------	-------	---------	-------------------

Dimension	Min	Nominal	Max			
Α	0.74	0.84	0.94			
b	0.25	0.30	0.35			
C	3.15	3.20	3.25			
D		7.00 BSC				
D1		6.50 BSC				
D2		4.00 BSC				
e	0.50 BSC					
E	7.00 BSC					
E1	6.50 BSC					
E2	4.00 BSC					
aaa	—	—	0.10			
bbb	—	—	0.10			
CCC	— — 0.08					
ddd	— — 0.10					
eee	— — 0.10					
Notes:	•					

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Dimension	Min	Min Nominal			
L	0.45	0.45 0.60 0.7			
L1	1.00 Ref				
Θ	0°	3.5°	7°		
aaa	0.20				
bbb	0.20				
ccc	0.08				
ddd	0.08				
eee	0.05				
Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted.					

Table 6.6. TQFP-80 Package Dimensions (Continued)

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This package outline conforms to JEDEC MS-026, variant ADD.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

6.5.1. TQFP-80 Solder Mask Design

All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

6.5.2. TQFP-80 Stencil Design

- 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- 3. The ratio of stencil aperture to land pad size should be 1:1 for all pads.

6.5.3. TQFP-80 Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

6.7.1. TQFP-64 Solder Mask Design

All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

6.7.2. TQFP-64 Stencil Design

- 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- 3. The ratio of stencil aperture to land pad size should be 1:1 for all pads.

6.7.3. TQFP-64 Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Figure 6.15. QFN-40 Landing Diagram

Dimension	mm
C1	5.90
C2	5.90
E	0.50
X1	0.30
Y1	0.85
X2	4.65
Y2	4.65

Table 6.13. QFN-40 Landing Diagram Dimensions

Notes:

- 1. All dimensions shown are in millimeters (mm).
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- **3.** All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a
 - Fabrication Allowance of 0.05 mm.

7. Revision Specific Behavior

This chapter details any known differences from behavior as stated in the device datasheet and reference manual. All known errata for the current silicon revision are rolled into this section at the time of publication. Any errata found after publication of this document will initially be detailed in a separate errata document until this datasheet is revised.

7.1. Revision Identification

The Lot ID Code on the top side of the device package can be used for decoding device revision information. Figures 7.1, 7.2, 7.3, and 7.4 show how to find the Lot ID Code on the top side of the device package.

In addition, firmware can determine the revision of the device by checking the DEVICEID registers.

These characters identify the device revision

Figure 7.1. LGA-92 SiM3C1x7 Revision Information

Figure 7.2. TQFP-80 SiM3C1x7 Revision Information

