

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	EBI/EMI, I ² C, IrDA, SmartCard, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	50
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 28x12b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/sim3u166-b-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. Electrical Specifications

3.1. Electrical Characteristics

All electrical parameters in all tables are specified under the conditions listed in Table 3.1, unless stated otherwise.

 Table 3.1. Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Operating Supply Voltage on VDD	V _{DD}		1.8		3.6	V
Operating Supply Voltage on VREGIN	V _{REGIN}	EXTVREG0 Not Used	4	_	5.5	V
		EXTVREG0 Used	3.0		3.6	V
Operating Supply Voltage on VIO	V _{IO}		1.8	—	V _{DD}	V
Operating Supply Voltage on VIOHD	V _{IOHD}	HV Mode (default)	2.7	—	6.0	V
		LV Mode	1.8		3.6	V
Voltage on I/O pins, Port Bank 0, 1 and 2 I/O	V _{IN}		V _{SS}	—	V _{IO}	V
Voltage on I/O pins, Port Bank 3 I/O and RESET	V _{IN}	SiM3C1x7 PB3.0–PB3.7 and RESET	V _{SS}	—	V _{IO} +2.0	V
		SiM3C1x7 PB3.8 - PB3.11	V _{SS}	_	Lowest of V _{IO} +2.0 or V _{REGIN}	V
		SiM3C1x6 PB3.0–PB3.5 and RESET	V _{SS}	_	V _{IO} +2.0	V
		SiM3C1x6 PB3.6–PB3.9	V _{SS}	_	Lowest of V _{IO} +2.0 or V _{REGIN}	V
		SiM3C1x4 RESET	V _{SS}	_	V _{IO} +2.0	V
		SiM3C1x4 PB3.0–PB3.3	V _{SS}	_	Lowest of V _{IO} +2.0 or V _{REGIN}	V
Voltage on I/O pins, Port Bank 4 I/O	V _{IN}		V _{SSHD}		V _{IOHD}	V
System Clock Frequency (AHB)	f _{AHB}		0		80	MHz
Peripheral Clock Frequency (APB)	f _{APB}		0		50	MHz
Operating Ambient Temperature	T _A		-40		85	°C
Operating Junction Temperature	TJ		-40		105	°C
Note: All voltages with respect to V_{SS} .	<u> </u>	,	ı		ļ.	

Table 3.2. Power Consumption (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
External Oscillator (EXTOSC0) ⁸	I _{EXTOSC}	FREQCN = 111		3.8	4.7	mA
		FREQCN = 110		840	950	μA
		FREQCN = 101		185	220	μA
		FREQCN = 100		65	80	μA
		FREQCN = 011		25	30	μA
		FREQCN = 010	_	10	15	μA
		FREQCN = 001		5	10	μA
		FREQCN = 000		3	8	μA
SARADC0, SARADC1	I _{SARADC}	Sampling at 1 Msps, highest power mode settings.		1.2	1.5	mA
		Sampling at 250 ksps, lowest power mode settings.		390	510	μA
Temperature Sensor	I _{TSENSE}			75	105	μA
Internal SAR Reference	I _{REFFS}	Normal Power Mode		680	750	μA
		Low Power Mode		160	190	μA
VREF0	I _{REFP}			75	100	μA
Comparator 0 (CMP0),	I _{CMP}	CMPMD = 11		0.5	—	μA
Comparator 1 (CMP1)		CMPMD = 10		3	_	μA
		CMPMD = 01	—	10	—	μA
		CMPMD = 00	—	25	—	μA
Capacitive Sensing (CAPSENSE0)	I _{CS}	Continuous Conversions		55	80	μA
IDAC0 ⁷ , IDAC1 ⁷	I _{IDAC}		—	75	90	μA
IVC0 ⁷	I _{IVC}	I _{IN} = 0	_	1.5	2.5	μA
Voltage Supply Monitor (VMON0)	I _{VMON}		_	15	25	μA

Notes:

1. Perhipheral currents drop to zero when peripheral clock and peripheral are disabled, unless otherwise noted.

 Currents are additive. For example, where I_{DD} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

- 3. Includes all peripherals that cannot have clocks gated in the Clock Control module.
- 4. Includes supply current from internal regulator and PLL0OSC (>20 MHz) or LPOSC0 (<=20 MHz).
- 5. Flash execution numbers use 2 wait states for 80 MHz and 0 wait states at 20 MHz or less.
- 6. RAM execution numbers use 0 wait states for all frequencies.
- 7. IDAC output current and IVC input current not included.
- 8. Bias current only. Does not include dynamic current from oscillator running at speed.

Table 3.16. Comparator (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Positive Hysteresis	HYS _{CP+}	CMPHYP = 00		1.4	_	mV
Mode 3 (CPMD = 11)		CMPHYP = 01		4		mV
		CMPHYP = 10		8	—	mV
		CMPHYP = 11		16	—	mV
Negative Hysteresis	HYS _{CP-}	CMPHYN = 00		1.4		mV
Mode 3 (CPMD = 11)		CMPHYN = 01		-4	—	mV
		CMPHYN = 10		-8	—	mV
		CMPHYN = 11		-16	—	mV
Input Range (CP+ or CP-)	V _{IN}		-0.25	_	V _{DD} +0.25	V
Input Pin Capacitance	C _{CP}	PB2 Pins		7.5	—	pF
		PB3 Pins		10.5		pF
Common-Mode Rejection Ratio	CMRR _{CP}			75		dB
Power Supply Rejection Ratio	PSRR _{CP}		_	72	—	dB
Input Offset Voltage	V _{OFF}		-10	0	10	mV
Input Offset Tempco	TC _{OFF}		—	3.5	—	µV/°C
Reference DAC Resolution	N _{Bits}			6		bits

4.1. Power

4.1.1. LDO and Voltage Regulator (VREG0)

The SiM3C1xx devices include two internal regulators: the core LDO Regulator and the Voltage Regulator (VREG0).

The LDO Regulator converts a 1.8–3.6 V supply to the core operating voltage of 1.8 V. This LDO consumes little power and provides flexibility in choosing a power supply for the system.

The Voltage Regulator regulates from 5.5 to 2.7 V and can serve as an input to the LDO. This allows the device to be powered from up to a 5.5 V supply without any external components other than bypass capacitors.

4.1.2. Voltage Supply Monitor (VMON0)

The SiM3C1xx devices include a voltage supply monitor which allows devices to function in known, safe operating condition without the need for external hardware. The supply monitor includes additional circuitry that can monitor the main supply voltage and the VREGIN input voltage divided by 4 (VREGIN / 4).

The supply monitor module includes the following features:

- Main supply "VDD Low" (VDD below the early warning threshold) notification.
- Holds the device in reset if the main VDD supply drops below the VDD Reset threshold.
- VREGIN divided by 4 (VREGIN / 4) supply "VREGIN Low" notification.

4.1.3. External Regulator (EXTVREG0)

The External Regulator provides all the circuitry needed for a high-power regulator except the power transistor (NPN or PNP) and current sensing resistor (if current limiting is enabled).

The External Regulator module has the following features:

- Interfaces with either an NPN or PNP external transistor that serves as the pass device for the high current regulator.
- Automatic current limiting.
- Automatic foldback limiting.
- Sources up to 1 A for use by external circuitry.
- Variable output voltage from 1.8–3.6 V in 100 mV steps.

4.1.4. Power Management Unit (PMU)

The Power Management Unit on the SiM3C1xx manages the power systems of the device. On power-up, the PMU ensures the core voltages are a proper value before core instruction execution begins. It also recognizes and manages the various wake sources for low-power modes of the device.

The PMU module includes the following features:

- Up to 16 pin wake inputs can wake the device from Power Mode 9.
- The Low Power Timer, RTC0 (alarms and oscillator fail), Comparator 0, and the RESET pin can also serve as wake sources for Power Mode 9.
- All PM9 wake sources (except for the RESET pin) can also reset the Low Power Timer or RTC0 modules.
- Disables the level shifters to pins and peripherals to further reduce power usage in PM9. These level shifters must be re-enabed by firmware after exiting PM9.
- Provides a PMU_Asleep signal to a pin as an indicator that the device is in PM9.

4.2. I/O

4.2.1. General Features

The SiM3C1xx ports have the following features:

- Push-pull or open-drain output modes and analog or digital modes.
- Option for high or low output drive strength.
- Port Match allows the device to recognize a change on a port pin value.
- Internal pull-up resistors are enabled or disabled on a port-by-port basis.
- Two external interrupts with up to 16 inputs provide monitoring capability for external signals.
- Internal Pulse Generator Timer (PB2 only) to generate simple square waves.
- A subset of pins can also serve as inputs to the Port Mapped Level Shifters available on the High Drive Pins.

4.2.2. High Drive Pins (PB4)

The High Drive pins have the following additional features:

- Programmable safe state: high, low, or high impedance.
- Programmable drive strength and slew rates.
- Programmable hardware current limiting.
- Powered from a separate source (VIOHD, which can be up to 6 V) from the rest of the device.
- Supports various functions, including GPIO, UART1 pins, EPCA0 pins, or Port Mapped Level Shifting.

4.2.3. 5 V Tolerant Pins (PB3)

The 5 V tolerant pins can be connected to external circuitry operating at voltages above the device supply without needing extra components to shift the voltage level.

4.2.4. Crossbars

The SiM3C1xx devices have two Crossbars with the following features:

- Flexible peripheral assignment to port pins.
- Pins can be individually skipped to move peripherals as needed for design or layout considerations.

The Crossbars have a fixed priority for each I/O function and assign these functions to the port pins. When a digital resource is selected, the least-significant unassigned port pin is assigned to that resource. If a port pin is assigned, the Crossbars skip that pin when assigning the next selected resource. Additionally, the Crossbars will skip port pins whose associated bits in the PBSKIPEN registers are set. This provides some flexibility when designing a system: pins involved with sensitive analog measurements can be moved away from digital I/O and peripherals can be moved around the chip as needed to ease layout constraints.

4.4. Data Peripherals

4.4.1. 16-Channel DMA Controller

The DMA facilitates autonomous peripheral operation, allowing the core to finish tasks more quickly without spending time polling or waiting for peripherals to interrupt. This helps reduce the overall power consumption of the system, as the device can spend more time in low-power modes.

The DMA controller has the following features:

- Utilizes ARM PrimeCell uDMA architecture.
- Implements 16 channels.
- DMA crossbar supports SARADC0, SARADC1, IDAC0, IDAC1, I2C0, I2S0, SPI0, SPI1, USART0, USART1, AES0, EPCA0, external pin triggers, and timers.
- Supports primary, alternate, and scatter-gather data structures to implement various types of transfers.
- Access allowed to all AHB and APB memory space.

4.4.2. 128/192/256-bit Hardware AES Encryption (AES0)

The basic AES block cipher is implemented in hardware. The integrated hardware support for Cipher Block Chaining (CBC) and Counter (CTR) algorithms results in identical performance, memory bandwidth, and memory footprint between the most basic Electronic Codebook (ECB) algorithm and these more complex algorithms. This hardware accelerator translates to more core bandwidth available for other functions or a power savings for low-power applications.

The AES module includes the following features:

- Operates on 4-word (16-byte) blocks.
- Supports key sizes of 128, 192, and 256 bits for both encryption and decryption.
- Generates the round key for decryption operations.
- All cipher operations can be performed without any firmware intervention for a set of 4-word blocks (up to 32 kB).
- Support for various chained and stream-ciphering configurations with XOR paths on both the input and output.
- Internal 4-word FIFOs to facilitate DMA operations.
- Integrated key storage.
- Hardware acceleration for Cipher-Block Chaining (CBC) and Counter (CTR) algorithms utilizing integrated counterblock generation and previous-block caching.

4.4.3. 16/32-bit CRC (CRC0)

The CRC module is designed to provide hardware calculations for Flash memory verification and communications protocols.

The CRC module supports four common polynomials. The supported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3). The three supported 16-bit polynomials are 0x1021 (CCITT-16), 0x3D65 (IEC16-MBus), and 0x8005 (ZigBee, 802.15.4, and USB).

The CRC module includes the following features:

- Support for four common polynomials (one 32-bit and three 16-bit options).
- Byte-level bit reversal for the CRC input.
- Byte-order reorientation of words for the CRC input.
- Word or half-word bit reversal of the CRC result.
- Ability to configure and seed an operation in a single register write.
- Support for single-cycle parallel (unrolled) CRC computation for 32- or 8-bit blocks.
- Capability to CRC 32 bits of data per peripheral bus (APB) clock.
- Support for DMA writes using firmware request mode.

4.5.3. Real-Time Clock (RTC0)

The RTC0 module includes a 32-bit timer that allows up to 36 hours of independent time-keeping when used with a 32.768 kHz watch crystal. The RTC0 provides three alarm events in addition to a missing clock event, which can also function as interrupt, reset, or wakeup sources on SiM3C1xx devices.

The RTC0 module includes internal loading capacitors that are programmable to 16 discrete levels, allowing compatibility with a wide range of crystals.

The RTC0 output can be buffered and routed to a port bank pin to provide an accurate, low frequency clock to other devices while the core is in its lowest power down mode. The module also includes a low power internal low frequency oscillator that reduces low power mode current and is available for other modules to use as a clock source.

The RTC module includes the following features:

- 32-bit timer (supports up to 36 hours) with three separate alarms.
- Option for one alarm to automatically reset the RTC timer.
- Missing clock detector.
- Can be used with the internal low frequency oscillator (LFOSC0), an external 32.768 kHz crystal (no additional resistors or capacitors necessary), or with an external CMOS clock.
- Programmable internal loading capacitors support a wide range of external 32.768 kHz crystals.
- Operates directly from VDD and remains operational even when the device goes into its lowest power down mode.
- The RTC timer clock (RTC0TCLK) can be buffered and routed to an I/O pin to provide an accurate, low frequency clock to other devices while the core is in its lowest power down mode.

4.5.4. Low Power Timer (LPTIMER0)

The Low Power Timer (LPTIMER0) module runs from the clock selected by the RTC0 module, allowing the LPTIMER0 to operate even if the AHB and APB clocks are disabled. The LPTIMER0 counter can increment using one of two clock sources: the clock selected by the RTC0 module, or rising or falling edges of an external signal.

The Low Power Timer includes the following features:

- Runs on a low-frequency clock (RTC0TCLK)
- The LPTIMER counter can increment using one of two clock sources: the RTC0TCLK or rising or falling edges of an external signal.
- Overflow and threshold-match detection, which can generate an interrupt, reset the timer, or wake some devices from low power modes.
- Timer reset on threshold-match allows square-wave generation at a variable output frequency.

4.5.5. Watchdog Timer (WDTIMER0)

The WDTIMER0 module includes a 16-bit timer, a programmable early warning interrupt, and a programmable reset period. The timer registers are protected from inadvertent access by an independent lock and key interface.

The watchdog timer runs from the low frequency oscillator (LFOSC0).

The Watchdog Timer has the following features:

- Programmable timeout interval.
- Optional interrupt to warn when the Watchdog Timer is nearing the reset trip value.
- Lock-out feature to prevent any modification until a system reset.

4.7.4. 16-Channel Capacitance-to-Digital Converter (CAPSENSE0)

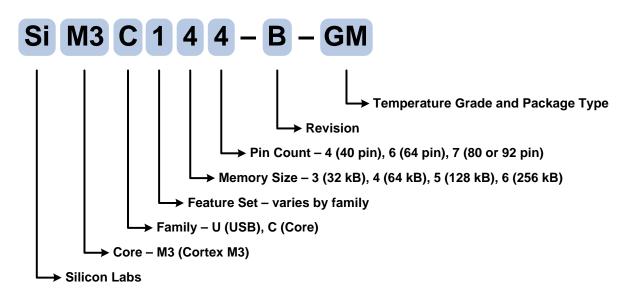
The Capacitance Sensing module measures capacitance on external pins and converts it to a digital value. The CAPSENSE module has the following features:

- Multiple start-of-conversion sources (CSnTx).
- Option to convert to 12, 13, 14, or 16 bits.
- Automatic threshold comparison with programmable polarity ("less than or equal" or "greater than").
- Four operation modes: single conversion, single scan, continuous single conversion, and continuous scan.
- Auto-accumulate mode that will take and average multiple samples together from a single start of conversion signal.
- Single bit retry options available to reduce the effect of noise during a conversion.
- Supports channel bonding to monitor multiple channels connected together with a single conversion.
- Scanning option allows the module to convert a single or series of channels and compare against the threshold while the AHB clock is stopped and the core is in a low power mode.

4.7.5. Low Current Comparators (CMP0, CMP1)

The Comparators take two analog input voltages and output the relationship between these voltages (less than or greater than) as a digital signal. The Low Power Comparator module includes the following features:

- Multiple sources for the positive and negative poles, including VDD, VREF, and 8 I/O pins.
- Two outputs are available: a digital synchronous latched output and a digital asynchronous raw output.
- Programmable hysteresis and response time.
- Falling or rising edge interrupt options on the comparator output.


4.7.6. Current-to-Voltage Converter (IVC0)

The IVC module provides inputs to the SARADCn modules so the input current can be measured. The IVC module has the following features:

- Two independent channels.
- Programmable input ranges (1–6 mA full-scale).

5. Ordering Information

Figure 5.1. SiM3C1xx Part Numbering

All devices in the SiM3C1xx family have the following features:

- Core: ARM Cortex-M3 with maximum operating frequency of 80 MHz.
- Flash Program Memory: 32-256 kB, in-system programmable.
- RAM: 8–32 kB SRAM, with 4 kB retention SRAM
- I/O: Up to 65 multifunction I/O pins, including high-drive and 5 V-tolerant pins.
- Clock Sources: Internal and external oscillator options.
- 16-Channel DMA Controller.
- 128/192/256-bit AES.
- 16/32-bit CRC.
- **Timers:** 2 x 32-bit (4 x 16-bit).
- Real-Time Clock.
- Low-Power Timer.
- PCA: 1 x 6 channels (Enhanced), 2 x 2 channels (Standard). PWM, capture, and clock generation capabilites.
- ADC: 2 x 12-bit 250 ksps (10-bit 1 Msps) SAR.
- **DAC:** 2 x 10-bit IDAC.
- Temperature Sensor.
- Internal VREF.
- 16-channel Capacitive Sensing (CAPSENSE).
- **Comparator:** 2 x low current.
- Current to Voltage Converter (IVC).
- Serial Buses: 2 x USART, 2 x UART, 3 x SPI, 2 x I2C, 1 x I²S.

The inclusion of some features varies across different members of the device family. The differences are detailed in Table 5.1.

r		1			-					1
Pin Name	Туре	Pin Numbers TQFP-80	Pin Numbers LGA-92	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB2.6	Standard I/O	29	B13	XBR1	~	AD11m/ A3		Yes	INT0.6 INT1.6	
PB2.7	Standard I/O	28	A17	XBR1	~	AD10m/ A2		Yes	INT0.7 INT1.7	
PB2.8	Standard I/O	27	B12	XBR1	\checkmark	AD9m/ A1		Yes		
PB2.9	Standard I/O	26	A16	XBR1	\checkmark	AD8m/ A0		Yes		
PB2.10	Standard I/O	25	B11	XBR1	~	AD7m/ D7		Yes		
PB2.11	Standard I/O	24	A15	XBR1	~	AD6m/ D6		Yes		CMP0P.0 CMP1P.0
PB2.12	Standard I/O	23	A14	XBR1	\checkmark	AD5m/ D5		Yes		CMP0N.0 CMP1N.0 RTC0TCLK_OUT
PB2.13	Standard I/O	22	A13	XBR1	\checkmark	AD4m/ D4		Yes		CMP0P.1 CMP1P.1
PB2.14	Standard I/O	21	D2	XBR1	~	AD3m/ D3		Yes		CMP0N.1 CMP1N.1
PB3.0	5 V Tolerant I/O	20	A12	XBR1	~	AD2m/ D2				CMP0P.2 CMP1P.2
PB3.1	5 V Tolerant I/O	19	A11	XBR1	\checkmark	AD1m/ D1				CMP0N.2 CMP1N.2
PB3.2	5 V Tolerant I/O	18	A10	XBR1	\checkmark	AD0m/ D0			DAC0T0 DAC1T0 LPT0T0	CMP0P.3 CMP1P.3
PB3.3	5 V Tolerant I/O	17	B8	XBR1	~	WR			DAC0T1 DAC1T1 INT0.8 INT1.8	CMP0N.3 CMP1N.3

Table 6.1. Pin Definitions and alternate functions for SiM3C1x7 (Continued)

Pin Name	Туре	Pin Numbers TQFP-80	Pin Numbers LGA-92	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB3.4	5 V Tolerant I/O	16	A9	XBR1	~	ŌĒ			INT0.9 INT1.9 WAKE.8	CMP0P.4 CMP1P.4
PB3.5	5 V Tolerant I/O	15	B7	XBR1	~	ALEm			DAC0T2 DAC1T2 INT0.10 INT1.10 WAKE.9	CMP0N.4 CMP1N.4
PB3.6	5 V Tolerant I/O	14	A8	XBR1	~	CS0			DAC0T3 DAC1T3 INT0.11 INT1.11 WAKE.10	CMP0P.5 CMP1P.5
PB3.7	5 V Tolerant I/O	13	B6	XBR1	~	BE1			DAC0T4 DAC1T4 LPT0T1 INT0.12 INT1.12 WAKE.11	CMP0N.5 CMP1N.5
PB3.8	5 V Tolerant I/O	12	A7	XBR1	~	CS1			DAC0T5 DAC1T5 LPT0T2 INT0.13 INT1.13 WAKE.12	CMP0P.6 CMP1P.6 EXREGSP
PB3.9	5 V Tolerant I/O	11	B5	XBR1	\checkmark	BE0			DAC0T6 DAC1T6 INT0.14 INT1.14 WAKE.13	CMP0N.6 CMP1N.6 EXREGSN
PB3.10	5 V Tolerant I/O	10	B4	XBR1	\checkmark				INT0.15 INT1.15 WAKE.14	CMP0P.7 CMP1P.7 EXREGOUT
PB3.11	5 V Tolerant I/O	9	B3	XBR1	\checkmark				WAKE.15	CMP0N.7 CMP1N.7 EXREGBD

Table 6.1. Pin Definitions and alternate functions for SiM3C1x7 (Continued)

Pin Name	Туре	Pin Numbers TQFP-80	Pin Numbers LGA-92	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB4.0	High Drive I/O	8	A6				LSO0			
PB4.1	High Drive I/O	7	A5				LSO1			
PB4.2	High Drive I/O	6	A4				LSO2			
PB4.3	High Drive I/O	3	A2				LSO3			
PB4.4	High Drive I/O	2	A1				LSO4			
PB4.5	High Drive I/O	1	D1				LSO5			
Note: All unnamed pins on the LGA-92 package are no-connect pins. They should be soldered to the PCB for mechanical stabil- ity, but have no internal connections to the device.										

Table 6.1. Pin Definitions and alternate functions for SiM3C1x7 (Continued)

SiM3C1xx

Pin Name	Туре	Pin Numbers	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
VSS	Ground	25 59							
VDD	Power (Core)	58							
VIO	Power (I/O)	24 39							
VREGIN	Power (Regulator)	60							
VSSHD	Ground (High Drive)	2							
VIOHD	Power (High Drive)	3							
RESET	Active-low Reset	64							
SWCLK/TCK	Serial Wire / JTAG	36							
SWDIO/TMS	Serial Wire / JTAG	35							
PB0.0	Standard I/O	57	XBR0	~					ADC0.2 CS0.1
PB0.1	Standard I/O	56	XBR0	\checkmark					ADC0.3 CS0.2
PB0.2	Standard I/O	55	XBR0	$\mathbf{\mathbf{Y}}$					ADC0.4 CS0.3
PB0.3	Standard I/O	54	XBR0	\checkmark					ADC0.5 CS0.4
PB0.4	Standard I/O	53	XBR0	\checkmark					ADC0.6 CS0.5 IVC0.0
PB0.5	Standard I/O	52	XBR0	~					ADC0.7 CS0.6 IVC0.1
PB0.6	Standard I/O	51	XBR0	\checkmark					ADC0.8 CS0.7 RTC1

 Table 6.2. Pin Definitions and alternate functions for SiM3C1x6

	1		1		1	1	1		,
Pin Name	Туре	Pin Numbers	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB0.7	Standard I/O	50	XBR0	\checkmark					RTC2
PB0.8	Standard I/O	49	XBR0	\checkmark					ADC0.9 VREFGND
PB0.9	Standard I/O	48	XBR0	\checkmark					ADC0.10 VREF
PB0.10	Standard I/O	47	XBR0	\checkmark					ADC1.6 IDAC0
PB0.11	Standard I/O	46	XBR0	\checkmark					IDAC1
PB0.12	Standard I/O	45	XBR0	\checkmark					XTAL1
PB0.13	Standard I/O	44	XBR0	\checkmark					XTAL2
PB0.14/TDO/ SWV	Standard I/O / JTAG / Serial Wire Viewer	43	XBR0	~					ADC0.12 ADC1.12
PB0.15/TDI	Standard I/O / JTAG	42	XBR0	~					ADC0.13 ADC1.13
PB1.0	Standard I/O	41	XBR0	~					ADC0.14 ADC1.14
PB1.1	Standard I/O	40	XBR0	~					ADC0.15 ADC1.15
PB1.2	Standard I/O	38	XBR0	~					ADC1.11 CS0.8
PB1.3	Standard I/O	37	XBR0	~					ADC1.10 CS0.9
PB1.4	Standard I/O	34	XBR0	\checkmark					ADC1.8
PB1.5	Standard I/O	33	XBR0	\checkmark					ADC1.7
PB1.6	Standard I/O	32	XBR0	~				ADC0T15 WAKE.0	ADC1.5 CS0.10
PB1.7	Standard I/O	31	XBR0	\checkmark	AD15m/ A7			ADC1T15 WAKE.1	ADC1.4 CS0.11

Table 6.2. Pin Definitions and alternate functions for SiM3C1x6 (Continued)

		1	1		1			-	-
Pin Name	Туре	Pin Numbers	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB3.2	5 V Tolerant I/O	14	XBR1	V	AD0m/ D0			DAC0T0 DAC1T0 LPT0T0 WAKE.8	CMP0P.2 CMP1P.2
PB3.3	5 V Tolerant I/O	13	XBR1	V	WR			DAC0T1 DAC1T1 INT0.4 INT1.4 WAKE.9	CMP0N.2 CMP1N.2
PB3.4	5 V Tolerant I/O	12	XBR1	~	ŌĒ			INT0.5 INT1.5 WAKE.10	CMP0P.3 CMP1P.3
PB3.5	5 V Tolerant I/O	11	XBR1	V	ALEm			DAC0T2 DAC1T2 INT0.6 INT1.6 WAKE.11	CMP0N.3 CMP1N.3
PB3.6	5 V Tolerant I/O	10	XBR1	V	CS0			DAC0T3 DAC1T3 INT0.7 INT1.7 WAKE.12	CMP0P.4 CMP1P.4 EXREGSP
PB3.7	5 V Tolerant I/O	9	XBR1	~	BE1			DAC0T4 DAC1T4 INT0.8 INT1.8 WAKE.13	CMP0N.4 CMP1N.4 EXREGSN
PB3.8	5 V Tolerant I/O	8	XBR1	~	CS1			DAC0T5 DAC1T5 LPT0T1 INT0.9 INT1.9 WAKE.14	CMP0P.5 CMP1P.5 EXREGOUT

Table 6.2. Pin Definitions and alternate functions for SiM3C1x6 (Continued)

SiM3C1xx

6.3. SiM3C1x4 Pin Definitions

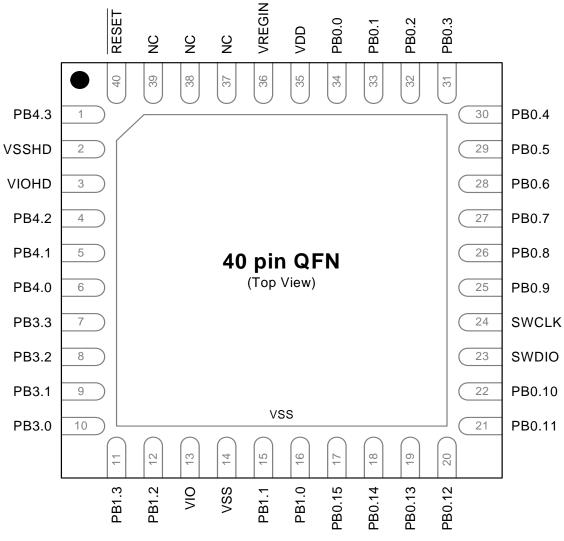


Figure 6.5. SiM3C1x4-GM Pinout

Pin Name	Туре	Pin Numbers	Crossbar Capability (see Port Config Section)	Port Match	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
VSS	Ground	14					
VDD	Power (Core)	35					
VIO	Power (I/O)	13					
VREGIN	Power (Regulator)	36					
VSSHD	Ground (High Drive)	2					
VIOHD	Power (High Drive)	3					
RESET	Active-low Reset	40					
SWCLK	Serial Wire	24					
SWDIO	Serial Wire	23					
PB0.0	Standard I/O	34	XBR0	~			ADC0.8 CS0.7 RTC1
PB0.1	Standard I/O	33	XBR0	\checkmark			RTC2
PB0.2	Standard I/O	32	XBR0	~			ADC0.9 CS0.0 VREFGND
PB0.3	Standard I/O	31	XBR0	~			ADC0.10 CS0.1 VREF
PB0.4	Standard I/O	30	XBR0	~			ADC1.6 CS0.2 IDAC0
PB0.5	Standard I/O	29					IDAC1
PB0.6	Standard I/O	28	XBR0	\checkmark			ADC0.0 CS0.3 XTAL1
PB0.7	Standard I/O	27	XBR0	\checkmark			ADC0.1 CS0.4 XTAL2

 Table 6.3. Pin Definitions and Alternate Functions for SiM3C1x4

· · · · · ·		1	r – – – – – – – – – – – – – – – – – – –				
Pin Name	Туре	Pin Numbers	Crossbar Capability (see Port Config Section)	Port Match	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB0.8	Standard I/O	26	XBR0	\checkmark			ADC0.14 ADC1.14
PB0.9	Standard I/O	25	XBR0	\checkmark			ADC0.15 ADC1.15
PB0.10	Standard I/O	22	XBR0	\checkmark		DMA0T1	ADC1.8
PB0.11	Standard I/O	21	XBR0	\checkmark		DMA0T0	ADC1.7
PB0.12	Standard I/O	20	XBR0	\checkmark		ADC0T15 WAKE.0	ADC1.5 CS0.10
PB0.13	Standard I/O	19	XBR0	\checkmark		ADC1T15 WAKE.1	ADC1.4 CS0.11
PB0.14	Standard I/O	18	XBR0	\checkmark		WAKE.2	ADC1.3 CS0.12
PB0.15	Standard I/O	17	XBR0	\checkmark		WAKE.3	ADC1.2 CS0.13
PB1.0	Standard I/O	16	XBR0	\checkmark		WAKE.4	ADC1.1 CS0.14
PB1.1	Standard I/O	15	XBR0	\checkmark		WAKE.5	ADC1.0 CS0.15 PMU_Asleep
PB1.2	Standard I/O	12	XBR0	~			CMP0N.0 CMP1N.0 RTC0TCLK_OUT
PB1.3	Standard I/O	11	XBR0	\checkmark			CMP0P.0 CMP1P.0
PB3.0	5 V Tolerant I/O	10	XBR1	~		DAC0T0 DAC1T0 LPT0T0 INT0.0 INT1.0 WAKE.12	CMP0P.1 CMP1P.1 EXREGSP

Table 6.3. Pin Definitions and Alternate Functions for SiM3C1x4 (Continued)

Dimension	Min	Nominal	Мах	
aaa		_	0.20	
bbb		_	0.20	
ccc		_	0.08	
ddd			0.08	
 Notes: All dimensions shown are in millimeters (mm) unless otherwise noted. Dimensioning and Tolerancing per ANSI Y14.5M-1994. This package outline conforms to JEDEC MS-026, variant ACD. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. 				

Table 6.10. TQFP-64 Package Dimensions (Continued)

SILICON LABS

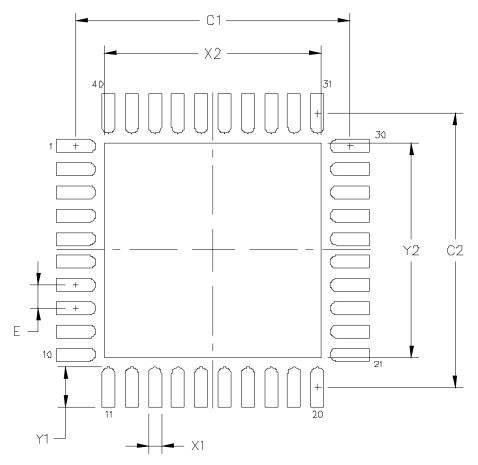


Figure 6.15. QFN-40 Landing Diagram

Dimension	mm	
C1	5.90	
C2	5.90	
E	0.50	
X1	0.30	
Y1	0.85	
X2	4.65	
Y2	4.65	
Notos		

Table 6.13. QFN-40 Landing Diagram Dimensions

Notes:

- 1. All dimensions shown are in millimeters (mm).
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- **3.** All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a
 - Fabrication Allowance of 0.05 mm.

