
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	EBI/EMI, I ² C, IrDA, SmartCard, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	65
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 32x12b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	92-VFLGA Dual Rows, Exposed Pad
Supplier Device Package	92-LGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/sim3u167-b-gm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Typical Connection Diagrams

This section provides typical connection diagrams for SiM3C1xx devices.

2.1. Power

Figure 2.1 shows a typical connection diagram for the power pins of the SiM3C1xx devices when the internal regulator is in use.

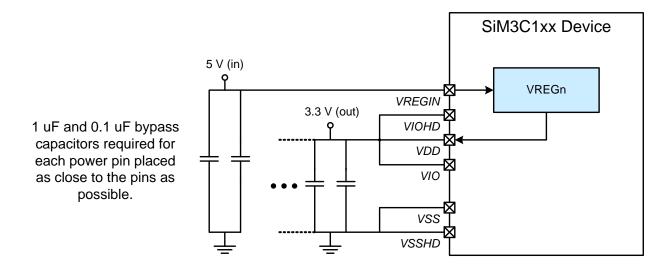


Figure 2.1. Connection Diagram with Voltage Regulator Used

Figure 2.2 shows a typical connection diagram for the power pins of the SiM3C1xx devices when the internal regulator is not used.

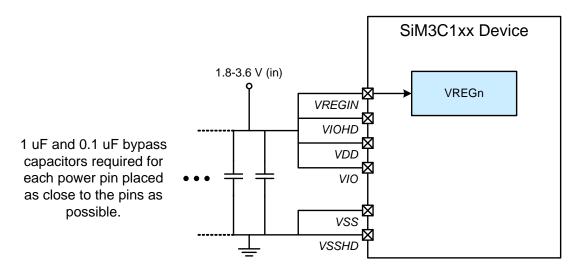


Figure 2.2. Connection Diagram with Voltage Regulator Not Used

Table 3.2. Power Consumption (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
External Oscillator (EXTOSC0) ⁸	I _{EXTOSC}	FREQCN = 111		3.8	4.7	mA
		FREQCN = 110		840	950	μA
		FREQCN = 101		185	220	μA
		FREQCN = 100		65	80	μA
		FREQCN = 011		25	30	μA
		FREQCN = 010	_	10	15	μA
		FREQCN = 001		5	10	μA
		FREQCN = 000		3	8	μA
SARADC0, SARADC1	ISARADC	Sampling at 1 Msps, highest power mode settings.		1.2	1.5	mA
		Sampling at 250 ksps, lowest power mode settings.		390	510	μA
Temperature Sensor	I _{TSENSE}			75	105	μA
Internal SAR Reference	I _{REFFS}	Normal Power Mode		680	750	μA
		Low Power Mode		160	190	μA
VREF0	I _{REFP}			75	100	μA
Comparator 0 (CMP0),	I _{CMP}	CMPMD = 11		0.5	—	μA
Comparator 1 (CMP1)		CMPMD = 10		3	_	μA
		CMPMD = 01	—	10	—	μA
		CMPMD = 00	—	25	—	μA
Capacitive Sensing (CAPSENSE0)	I _{CS}	Continuous Conversions		55	80	μA
IDAC0 ⁷ , IDAC1 ⁷	I _{IDAC}			75	90	μA
IVC0 ⁷	I _{IN} = 0	1.5	2.5	μA		
Voltage Supply Monitor (VMON0)	I _{VMON}		_	15	25	μA

Notes:

1. Perhipheral currents drop to zero when peripheral clock and peripheral are disabled, unless otherwise noted.

 Currents are additive. For example, where I_{DD} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

- 3. Includes all peripherals that cannot have clocks gated in the Clock Control module.
- 4. Includes supply current from internal regulator and PLL0OSC (>20 MHz) or LPOSC0 (<=20 MHz).
- 5. Flash execution numbers use 2 wait states for 80 MHz and 0 wait states at 20 MHz or less.
- 6. RAM execution numbers use 0 wait states for all frequencies.
- 7. IDAC output current and IVC input current not included.
- 8. Bias current only. Does not include dynamic current from oscillator running at speed.

Table 3.2. Power Consumption (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Flash Current on VDD						
Write Operation	I _{FLASH-W}		_	_	8	mA
Erase Operation	I _{FLASH-E}		_		15	mA
Notes:	· · ·			•	•	•

Notes:

- 1. Perhipheral currents drop to zero when peripheral clock and peripheral are disabled, unless otherwise noted.
- Currents are additive. For example, where I_{DD} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.
- 3. Includes all peripherals that cannot have clocks gated in the Clock Control module.
- 4. Includes supply current from internal regulator and PLL0OSC (>20 MHz) or LPOSC0 (<=20 MHz).
- 5. Flash execution numbers use 2 wait states for 80 MHz and 0 wait states at 20 MHz or less.
- 6. RAM execution numbers use 0 wait states for all frequencies.
- 7. IDAC output current and IVC input current not included.
- 8. Bias current only. Does not include dynamic current from oscillator running at speed.

Table 3.3. Power Mode Wake Up Times

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Power Mode 2 Wake Time	t _{PM2}		4		5	clocks
Power Mode 3 Fast Wake Time	t _{PM3FW}		_	425	—	μs
Power Mode 9 Wake Time	t _{PM9}			12		μs

Table 3.8. Internal Oscillators (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Low Power Oscillator (LPOSC0)			1	I		
Oscillator Frequency	f _{LPOSC}	Full Temperature and Supply Range	19	20	21	MHz
		T _A = 25 °C, V _{DD} = 3.3 V	19.5	20	20.5	MHz
Divided Oscillator Frequency	f _{LPOSCD}	Full Temperature and Supply Range	2.375	2.5	2.625	MHz
Power Supply Sensitivity	PSS _{LPOSC}	T _A = 25 °C		0.5	—	%/V
Temperature Sensitivity	TS _{LPOSC}	V _{DD} = 3.3 V —		55		ppm/°C
Low Frequency Oscillator (LFO	SCO)				1	
Oscillator Frequency	f _{LFOSC}	Full Temperature and Supply Range	13.4	16.4	19.7	kHz
		T _A = 25 °C, V _{DD} = 3.3 V	15.8	16.4	17.3	kHz
Power Supply Sensitivity	PSS _{LFOSC}	T _A = 25 °C	_	2.4		%/V
Temperature Sensitivity	TS _{LFOSC}	V _{DD} = 3.3 V	_	0.2		%/°C
RTC0 Oscillator (RTC0OSC)			I		1	4
Missing Clock Detector Trigger Frequency	f _{RTCMCD}			8	15	kHz
RTC Robust Duty Cycle Range	DC _{RTC}		25	_	55	%
*Note: PLL0OSC in free-running osci	llator mode.	1	1	1	1	1

Table 3.9. External Oscillator

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit				
External Input CMOS Clock Frequency*	f _{CMOS}		0	_	50	MHz				
External Input CMOS Clock High Time	t _{CMOSH}		9	_		ns				
External Input CMOS Clock Low Time	t _{CMOSL}		9			ns				
External Crystal Clock Frequency	f _{XTAL}		0.01	—	30	MHz				
*Note: Minimum of 10 kHz during debug operations.										

Table 3.10. SAR ADC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit		
Resolution	N _{bits}	12 Bit Mode		12				
		10 Bit Mode		Bits				
Supply Voltage Requirements	V _{ADC}	High Speed Mode	2.2	_	3.6	V		
(VDD)		Low Power Mode	1.8	_	3.6	V		
Throughput Rate	f _S	12 Bit Mode	_	_	250	ksps		
(High Speed Mode)		10 Bit Mode		_	1	Msps		
Throughput Rate	f _S	12 Bit Mode	_	_	62.5	ksps		
(Low Power Mode)		10 Bit Mode	_	_	250	ksps		
Tracking Time	t _{TRK}	High Speed Mode	230	_		ns		
		Low Power Mode	450	_		ns		
SAR Clock Frequency	f _{SAR}	High Speed Mode	_	_	16.24	MHz		
		Low Power Mode	_	_	4	MHz		
Conversion Time	t _{CNV}	10-Bit Conversion, SAR Clock = 16 MHz, APB Clock = 40 MHz		762.5				
Sample/Hold Capacitor	C _{SAR}	Gain = 1	_	5	_	pF		
		Gain = 0.5	_	2.5		pF		
Input Pin Capacitance	C _{IN}	High Quality Inputs	_	18		pF		
		Normal Inputs	_	20		pF		
Input Mux Impedance	R _{MUX}	High Quality Inputs	_	300		Ω		
		Normal Inputs	_	550		Ω		
Voltage Reference Range	V _{REF}		1	_	V _{DD}	V		
Input Voltage Range ¹	V _{IN}	Gain = 1	0	_	V _{REF}	V		
		Gain = 0.5	0	_	$2 x V_{REF}$	V		
Power Supply Rejection Ratio	PSRR _{ADC}		-	70	_	dB		
DC Performance	L		I		ıl			
				. 4	10	LSB		
Integral Nonlinearity	INL	12 Bit Mode ²		±1	±1.9	LOD		

1. Absolute input pin voltage is limited by the lower of the supply at VDD and VIO.

2. INL and DNL specifications for 12-bit mode do not include the first or last four ADC codes.

3. The maximum code in 12-bit mode is 0xFFFC. The Slope Error is referenced from the maximum code.

Table 3.12. Capacitive Sense

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Single Conversion Time	t _{single}	12-bit Mode		25	_	μs
(Default Configuration)		13-bit Mode	_	27		μs
		14-bit Mode	_	29		μs
		16-bit Mode	_	33		μs
Maximum External Capacitive Load	CL	Highest Gain Setting (default)	_	45		pF
		Lowest Gain Setting	_	500		pF
Maximum External Series Impedance	CL	Highest Gain Setting (default)	_	50		kΩ

Table 3.13. Current-to-Voltage Converter (IVC)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supply Voltage (VDD)	V _{DDIVC}		2.2		3.6	V
Input Pin Voltage	V _{IN}		2.2		VDD	V
Minimum Input Current (source)	I _{IN}		100	_	_	μA
Integral Nonlinearity	INL _{IVC}		-0.6		0.6	%
Full Scale Output	V _{IVCOUT}		_	1.65	_	V
Slope	M _{IVC}	Input Range 1 mA (INxRANGE = 101)	1.55	1.65	1.75	V/mA
		Input Range 2 mA (INxRANGE = 100)	795	830	860	mV/mA
		Input Range 3 mA (INxRANGE = 011)	525	550	570	mV/mA
		Input Range 4 mA (INxRANGE = 010)	390	415	430	mV/mA
		Input Range 5 mA (INxRANGE = 001)	315	330	340	mV/mA
		Input Range 6 mA (INxRANGE = 000)	260	275	285	mV/mA
Settling Time to 0.1%	V _{IVCOUT}				500	ns

Table 3.17. Port I/O (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
P-Channel Source Current Limit	I _{SRCL}	Mode 0	_	0.8		mA
$(2.7 V \leq VIOHD \leq 6 V,$		Mode 1	_	1.25		
V _{OH} = VIOHD – 0.8 V) See Figure 3.2		Mode 2	_	1.75		
See Figure 5.2		Mode 3	_	2.5		
		Mode 4	_	3.5		
		Mode 5	_	4.75		
		Mode 6	_	7		
		Mode 7	_	9.5		
		Mode 8	_	14		
		Mode 9	_	18.75		
		Mode 10	_	28.25	_	
		Mode 11	_	37.5	_	
		Mode 12	_	56.25		
		Mode 13	_	75	_	
		Mode 14	_	112.5		
		Mode 15	_	150		
Total P-Channel Source Current on P4.0-P4.5 (DC)	I _{SRCLT}		-	—	400	mA
Pin Capacitance	C _{IO}		_	30		pF
Weak Pull-Up Current in Low Volt- age Mode	I _{PU}	V _{IOHD} = 1.8 V	-6	-3.5	-2	μA
		V _{IOHD} = 3.6 V	-30	-20	-10	μA
Weak Pull-Up Current in High Volt- age Mode	I _{PU}	V _{IOHD} = 2.7 V	-15	-10	-5	μA
		V _{IOHD} = 6 V	-30	-20	-10	μA
Input Leakage (Pullups off)	I _{LK}		-1		1	μA
*Note: RESET does not drive to logic h	igh. Specifica	itions for RESET V _{OL} adhe	ere to the low d	rive setting.		

4. Precision32[™] SiM3C1xx System Overview

The SiM3C1xx Precision32[™] devices are fully integrated, mixed-signal system-on-a-chip MCUs. Highlighted features are listed below. Refer to Table 5.1 for specific product feature selection and part ordering numbers.

- Core:
 - 32-bit ARM Cortex-M3 CPU.
 - 80 MHz maximum operating frequency.
 - Branch target cache and prefetch buffers to minimize wait states.
- Memory: 32–256 kB Flash; in-system programmable, 8–32 kB SRAM (including 4 kB retention SRAM, which preserves state in PM9 mode).
- Power:
 - Low drop-out (LDO) regulator for CPU core voltage.
 - Power-on reset circuit and brownout detectors.
 - 3.3 V output LDO for direct power from 5 V supplies.
 - External transistor regulator.
 - Power Management Unit (PMU).
- I/O: Up to 65 total multifunction I/O pins:
 - Up to six programmable high-power capable (5–300 mA with programmable current limiting, 1.8–5 V).
 - Up to twelve 5 V tolerant general purpose pins.
 - Two flexible peripheral crossbars for peripheral routing.
- Clock Sources:
 - Internal oscillator with PLL: 23–80 MHz with ± 1.5% accuracy in free-running mode.
 - Low-power internal oscillator: 20 MHz and 2.5 MHz modes.
 - Low-frequency internal oscillator: 16.4 kHz.
 - External RTC crystal oscillator: 32.768 kHz.
 - External oscillator: Crystal, RC, C, CMOS clock modes.
 - Programmable clock divider allows any oscillator source to be divided by binary factor from 1-128.
- Data Peripherals:
 - 16-Channel DMA Controller.
 - 128/192/256-bit Hardware AES Encryption.
 - 16/32-bit CRC.

Timers/Counters and PWM:

- 6-channel Enhanced Programmable Counter Array (EPCAn) supporting advanced PWM and capture/compare.
- 2 x 2-channel Standard Programmable Counter Array (PCAn) supporting PWM and capture/compare.
- 2 x 32-bit Timers can be split into 4 x 16-bit Timers, support PWM and capture/compare.
- Real Time Clock (RTCn).
- Low Power Timer.
- Watchdog Timer.
- Communications Peripherals:
 - External Memory Interface.
 - 2 x USARTs and 2 x UARTs with IrDA and ISO7816 SmartCard support.
 - 3 x SPIs.
 - 2 x I2C.
 - I²S (receive and transmit).
- Analog:
 - 2 x 12-Bit Analog-to-Digital Converters (SARADC).
 - 2 x 10-Bit Digital-to-Analog Converter (IDAC).
 - 16-Channel Capacitance-to-Digital Converter (CAPSENSE).
 - 2 x Low-Current Comparators (CMP).
 - 1 x Current-to-Voltage Converter (IVC) module with two channels.

On-Chip Debugging

With on-chip power-on reset, voltage supply monitor, watchdog timer, and clock oscillator, the SiM3C1xx devices are truly standalone system-on-a-chip solutions. The Flash memory is reprogrammable in-circuit, providing non-

4.1.5. Device Power Modes

The SiM3C1xx devices feature four low power modes in addition to normal operating mode. Several peripherals provide wake up sources for these low power modes, including the Low-Power Timer (LPT0), RTC0 (alarms and oscillator failure notification), Comparator 0, and PMU Pin Wake.

In addition, all peripherals can have their clocks disabled to reduce power consumption whenever a peripheral is not being used using the clock control (CLKCTRL) registers.

4.1.5.1. Normal Mode (Power Mode 0)

Normal Mode is the default mode of the device. The core and peripherals are fully operational, and instructions are executed from flash memory.

4.1.5.2. Power Mode 1

In Power Mode 1 the core and peripherals are fully operational, with instructions executing from RAM. Compared with Normal Mode, the active power consumption of the device in PM1 is reduced. Additionally, at higher speeds in PM1, the core throughput can also be increased because RAM does not require additional wait states that reduce the instruction fetch speed.

4.1.5.3. Power Mode 2

In Power Mode 2 the core halts and any enabled peripherals continue to run at the selected clock speed. The power consumption in PM2 corresponds to the AHB and APB clocks left enabled, thus the power can be tuned to the optimal level for the needs of the application. To place the device in PM2, the core should execute a wait-for-interrupt (WFI) or wait-for-event (WFE) instruction. If the WFI instruction is called from an interrupt service routine, the interrupt that wakes the device from PM2 must be of a sufficient priority to be recognized by the core. It is recommended to perform both a DSB (Data Synchronization Barrier) and an ISB (Instruction Syncronization Barrier) operation prior to the WFI to ensure all bus accesses complete. When operating from the LFOSC0 with the DMACTRL0 AHB clock disabled, PM2 can achieve similar power consumption to PM3, but with the ability to wake on APB-clocked interrupts. For example, enabling only the APB clock to the Ports will allow the firmware to wake on a PMATCH0, PBEXT0 or PBEXT1 interrupt with minimal impact on the supply current.

4.1.5.4. Power Mode 3

In Power Mode 3, the AHB and APB clocks are halted. The device may only wake from enabled interrupt sources which do not require the APB clock (RTC0ALRM, RTC0FAIL, LPTIMER0, VDDLOW and VREGLOW). A special fast wake option allows the device to operate at a very low level from the RTC0TCLK or LFOSC0 oscillator while in PM3, but quickly switch to the faster LPOSC0 when the wake event occurs. Because the current consumption of these blocks is minimal, it is recommended to use the fast wake option.

The device will enter PM3 on a WFI or WFE instruction. Because all AHB master clocks are disabled, the LPOSC will automatically halt and go into a low-power suspended state. If the WFI instruction is called from an interrupt service routine, the interrupt that wakes the device from PM3 must be of a sufficient priority to be recognized by the core. It is recommended to perform both a DSB (Data Synchronization Barrier) and an ISB (Instruction Synchronization Barrier) operation prior to the WFI to ensure all bus access is complete.

4.1.5.5. Power Mode 9

In Power Mode 9, the core and all peripherals are halted, all clocks are stopped, and the pins and peripherals are set to a lower power mode. In addition, standard RAM contents are not preserved, though retention RAM contents are still available after exiting the power mode. This mode provides the lowest power consumption for the device, but requires an appropriate reset to exit. The available reset sources to wake from PM9 are controlled by the Power Management Unit (PMU).

Before entering PM9, the desired reset source(s) should be configured in the PMU. The SLEEPDEEP bit in the ARM System Control Register should be set, and the PMSEL bit in the RSTSRC0_CONFIG register must be set to indicate that PM9 is the desired power mode.

The device will enter PM9 on a WFI or WFE instruction, and remain in PM9 until a reset configured by the PMU occurs. It is recommended to perform both a DSB (Data Synchronization Barrier) and an ISB (Instruction Synchronization Barrier) operation prior to the WFI to ensure all bus access is complete.

4.5. Counters/Timers and PWM

4.5.1. Programmable Counter Array (EPCA0, PCA0, PCA1)

The SiM3C1xx devices include two types of PCA module: Enhanced and Standard.

The Enhanced Programmable Counter Array (EPCA0) and Standard Programmable Counter Array (PCA0, PCA1) modules are timer/counter systems allowing for complex timing or waveform generation. Multiple modules run from the same main counter, allowing for synchronous output waveforms.

The Enhanced PCA module is multi-purpose, but is optimized for motor control applications. The EPCA module includes the following features:

- Three sets of channel pairs (six channels total) capable of generating complementary waveforms.
- Center- and edge-aligned waveform generation.
- Programmable dead times that ensure channel pairs are never both active at the same time.
- Programmable clock divisor and multiple options for clock source selection.
- Waveform update scheduling.
- Option to function while the core is inactive.
- Multiple synchronization triggers and outputs.
- Pulse-Width Modulation (PWM) waveform generation.
- High-speed square wave generation.
- Input capture mode.
- DMA capability for both input capture and waveform generation.
- PWM generation halt input.

The Standard PCA module (PCA) includes the following features:

- Two independent channels.
- Center- and edge-aligned waveform generation.
- Programmable clock divisor and multiple options for clock source selection.
- Pulse-Width Modulation waveform generation.

4.5.2. 32-bit Timer (TIMER0, TIMER1)

Each timer module is independent, and includes the following features:

- Operation as a single 32-bit or two independent 16-bit timers.
- Clocking options include the APB clock, the APB clock scaled using an 8-bit prescaler, the external oscillator, or falling edges on an external input pin (synchronized to the APB clock).
- Auto-reload functionality in both 32-bit and 16-bit modes.
- Up/Down count capability, controlled by an external input pin.
- Rising and falling edge capture modes.
- Low or high pulse capture modes.
- Duty cycle capture mode.
- Square wave output mode, which is capable of toggling an external pin at a given rate with 50% duty cycle.
- 32- or 16-bit pulse-width modulation mode.

- Internal transmit and receive FIFOs with flush capability and support for byte, half-word, and word reads and writes.
- Data bit lengths from 5 to 9 bits.
- Programmable inter-packet transmit delays.
- Auto-baud detection with support for the LIN SYNC byte.
- Automatic parity generation (with enable).
- Automatic start and stop generation.
- Transmit and receive hardware flow-control.
- Independent inversion correction for TX, RX, RTS, and CTS signals.
- IrDA modulation and demodulation with programmable pulse widths.
- Smartcard ACK/NACK support.
- Parity error, frame error, overrun, and underrun detection.
- Multi-master and half-duplex support.
- Multiple loop-back modes supported.

4.6.4. SPI (SPI0, SPI1)

SPI is a 3- or 4-wire communication interface that includes a clock, input data, output data, and an optional select signal.

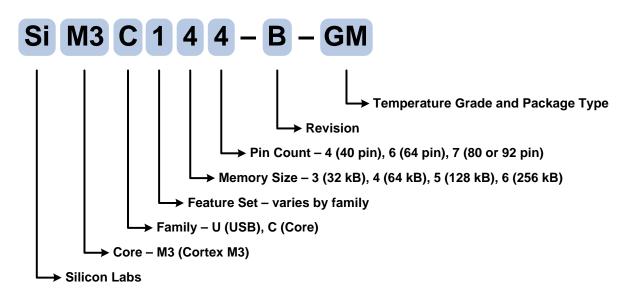
The SPI module includes the following features:

- Supports 3- or 4-wire master or slave modes.
- Supports up to 10 MHz clock in master mode and 5 MHz clock in slave mode.
- Support for all clock phase and slave select (NSS) polarity modes.
- 16-bit programmable clock rate.
- Programmable MSB-first or LSB-first shifting.
- 8-byte FIFO buffers for both transmit and receive data paths to support high speed transfers.
- Programmable FIFO threshold level to request data service for DMA transfers.
- Support for multiple masters on the same data lines.

4.6.5. I2C (I2C0, I2C1)

The I2C interface is a two-wire, bi-directional serial bus. The two clock and data signals operate in open-drain mode with external pull-ups to support automatic bus arbitration.

Reads and writes to the interface are byte oriented with the I2C interface autonomously controlling the serial transfer of the data. Data can be transferred at up to 1/8th of the APB clock as a master or slave, which can be faster than allowed by the I2C specification, depending on the clock source used. A method of extending the clock-low duration is available to accommodate devices with different speed capabilities on the same bus.


The I2C interface may operate as a master and/or slave, and may function on a bus with multiple masters. The I2C provides control of SDA (serial data), SCL (serial clock) generation and synchronization, arbitration logic, and start/ stop control and generation.

The I2C module includes the following features:

- Standard (up to 100 kbps) and Fast (400 kbps) transfer speeds.
- Can operate down to APB clock divided by 32768 or up to APB clock divided by 8.
- Support for master, slave, and multi-master modes.
- Hardware synchronization and arbitration for multi-master mode.
- Clock low extending (clock stretching) to interface with faster masters.
- Hardware support for 7-bit slave and general call address recognition.
- Firmware support for 10-bit slave address decoding.
- Ability to disable all slave states.
- Programmable clock high and low period.
- Programmable data setup/hold times.

5. Ordering Information

Figure 5.1. SiM3C1xx Part Numbering

All devices in the SiM3C1xx family have the following features:

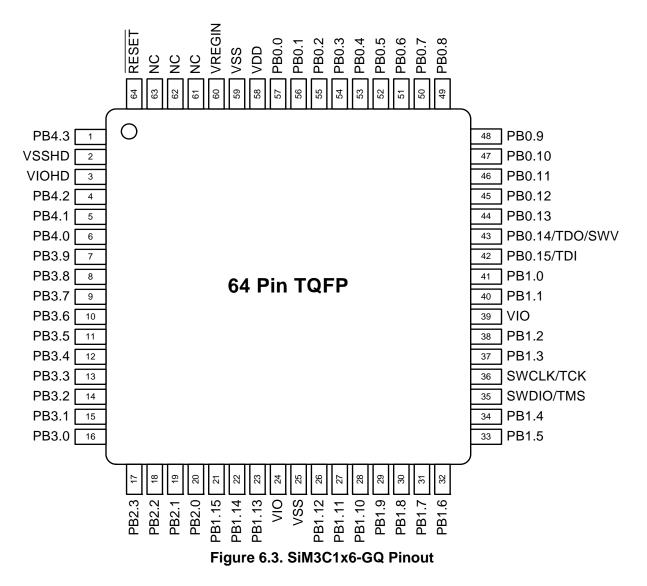
- Core: ARM Cortex-M3 with maximum operating frequency of 80 MHz.
- Flash Program Memory: 32-256 kB, in-system programmable.
- RAM: 8–32 kB SRAM, with 4 kB retention SRAM
- I/O: Up to 65 multifunction I/O pins, including high-drive and 5 V-tolerant pins.
- Clock Sources: Internal and external oscillator options.
- 16-Channel DMA Controller.
- 128/192/256-bit AES.
- 16/32-bit CRC.
- **Timers:** 2 x 32-bit (4 x 16-bit).
- Real-Time Clock.
- Low-Power Timer.
- PCA: 1 x 6 channels (Enhanced), 2 x 2 channels (Standard). PWM, capture, and clock generation capabilites.
- ADC: 2 x 12-bit 250 ksps (10-bit 1 Msps) SAR.
- **DAC:** 2 x 10-bit IDAC.
- Temperature Sensor.
- Internal VREF.
- 16-channel Capacitive Sensing (CAPSENSE).
- **Comparator:** 2 x low current.
- Current to Voltage Converter (IVC).
- Serial Buses: 2 x USART, 2 x UART, 3 x SPI, 2 x I2C, 1 x I²S.

The inclusion of some features varies across different members of the device family. The differences are detailed in Table 5.1.

SiM3C1xx

Ordering Part Number	Flash Memory (kB)	RAM (kB)	External Memory Interface (EMIF)	Maximum Number of EMIF Address/Data Pins	Digital Port I/Os (Total)	Digital Port I/Os with High Drive Capability	Number of SARADC0 Channels	Number of SARADC1 Channels	Number of CAPSENSE0 Channels	Number of Comparator 0/1 Inputs (+/-)	Number of PMU Pin Wake Sources	JTAG Debugging Interface	ETM Debugging Interface	Serial Wire Debugging Interface	Lead-free (RoHS Compliant)	Package
SiM3C167-B-GM	256	32	\checkmark	24	65	6	16	16	16	8/8	16	\checkmark	\checkmark	\checkmark	\checkmark	LGA-92
SiM3C167-B-GQ	256	32	\checkmark	24	65	6	16	16	16	8/8	16	\checkmark	\checkmark	\checkmark	\checkmark	TQFP-80
SiM3C166-B-GM	256	32	\checkmark	16	50	4	13	15	15	6/6	15	\checkmark		\checkmark	\checkmark	QFN-64
SiM3C166-B-GQ	256	32	\checkmark	16	50	4	13	15	15	6/6	15	\checkmark		\checkmark	\checkmark	TQFP-64
SiM3C164-B-GM	256	32			28	4	7	11	12	3/3	10			\checkmark	\checkmark	QFN-40
SiM3C157-B-GM	128	32	\checkmark	24	65	6	16	16	16	8/8	16	\checkmark	\checkmark	~	\checkmark	LGA-92
SiM3C157-B-GQ	128	32	\checkmark	24	65	6	16	16	16	8/8	16	\checkmark	~	\checkmark	\checkmark	TQFP-80
SiM3C156-B-GM	128	32	\checkmark	16	50	4	13	15	15	6/6	15	\checkmark		\checkmark	\checkmark	QFN-64
SiM3C156-B-GQ	128	32	\checkmark	16	50	4	13	15	15	6/6	15	\checkmark		V	\checkmark	TQFP-64
SiM3C154-B-GM	128	32			28	4	7	11	12	3/3	10			\checkmark	\checkmark	QFN-40
SiM3C146-B-GM	64	16	\checkmark	16	50	4	13	15	15	6/6	15	\checkmark		~	\checkmark	QFN-64
SiM3C146-B-GQ	64	16	\checkmark	16	50	4	13	15	15	6/6	15	\checkmark		~	\checkmark	TQFP-64
SiM3C144-B-GM	64	16			28	4	7	11	12	3/3	10			~	\checkmark	QFN-40
SiM3C136-B-GM	32	8	\checkmark	16	50	4	13	15	15	6/6	15	\checkmark		~	\checkmark	QFN-64
SiM3C136-B-GQ	32	8	\checkmark	16	50	4	13	15	15	6/6	15	\checkmark		V	\checkmark	TQFP-64
SiM3C134-B-GM	32	8			28	4	7	11	12	3/3	10			\checkmark	\checkmark	QFN-40

Table 5.1. Product Selection Guide



Pin Name	Туре	Pin Numbers TQFP-80	Pin Numbers LGA-92	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB3.4	5 V Tolerant I/O	16	A9	XBR1	\checkmark	ŌĒ			INT0.9 INT1.9 WAKE.8	CMP0P.4 CMP1P.4
PB3.5	5 V Tolerant I/O	15	B7	XBR1	~	ALEm			DAC0T2 DAC1T2 INT0.10 INT1.10 WAKE.9	CMP0N.4 CMP1N.4
PB3.6	5 V Tolerant I/O	14	A8	XBR1	~	CS0			DAC0T3 DAC1T3 INT0.11 INT1.11 WAKE.10	CMP0P.5 CMP1P.5
PB3.7	5 V Tolerant I/O	13	B6	XBR1	~	BE1			DAC0T4 DAC1T4 LPT0T1 INT0.12 INT1.12 WAKE.11	CMP0N.5 CMP1N.5
PB3.8	5 V Tolerant I/O	12	A7	XBR1	~	CS1			DAC0T5 DAC1T5 LPT0T2 INT0.13 INT1.13 WAKE.12	CMP0P.6 CMP1P.6 EXREGSP
PB3.9	5 V Tolerant I/O	11	B5	XBR1	\checkmark	BE0			DAC0T6 DAC1T6 INT0.14 INT1.14 WAKE.13	CMP0N.6 CMP1N.6 EXREGSN
PB3.10	5 V Tolerant I/O	10	B4	XBR1	\checkmark				INT0.15 INT1.15 WAKE.14	CMP0P.7 CMP1P.7 EXREGOUT
PB3.11	5 V Tolerant I/O	9	B3	XBR1	\checkmark				WAKE.15	CMP0N.7 CMP1N.7 EXREGBD

Table 6.1. Pin Definitions and alternate functions for SiM3C1x7 (Continued)

6.2. SiM3C1x6 Pin Definitions

Pin Name	Туре	Pin Numbers	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB1.8	Standard I/O	30	XBR0	~	AD14m/ A6			WAKE.2	ADC1.3 CS0.12
PB1.9	Standard I/O	29	XBR0	\checkmark	AD13m/ A5			WAKE.3	ADC1.2 CS0.13
PB1.10	Standard I/O	28	XBR0	\checkmark	AD12m/ A4			DMA0T1 WAKE.4	ADC1.1 CS0.14
PB1.11	Standard I/O	27	XBR0	~	AD11m/ A3			DMA0T0 WAKE.5	ADC1.0 CS0.15 PMU_Asleep
PB1.12	Standard I/O	26	XBR0	~	AD10m/ A2			WAKE.6	
PB1.13	Standard I/O	23	XBR0	~	AD9m/ A1				
PB1.14	Standard I/O	22	XBR0	~	AD8m/ A0				
PB1.15	Standard I/O	21	XBR0	\checkmark	AD7m/ D7				
PB2.0	Standard I/O	20	XBR1	$\mathbf{\mathbf{Y}}$	AD6m/ D6	LSI0	Yes	INT0.0 INT1.0	
PB2.1	Standard I/O	19	XBR1	\checkmark	AD5m/ D5	LSI1	Yes	INT0.1 INT1.1	
PB2.2	Standard I/O	18	XBR1	>	AD4m/ D4	LSI2	Yes	INT0.2 INT1.2	CMP0N.0 CMP1N.0 RTC0TCLK_OUT
PB2.3	Standard I/O	17	XBR1	\checkmark	AD3m/ D3	LSI3	Yes	INT0.3 INT1.3	CMP0P.0 CMP1P.0
PB3.0	5 V Tolerant I/O	16	XBR1	\checkmark	AD2m/ D2				CMP0P.1 CMP1P.1
PB3.1	5 V Tolerant I/O	15	XBR1	~	AD1m/ D1				CMP0N.1 CMP1N.1

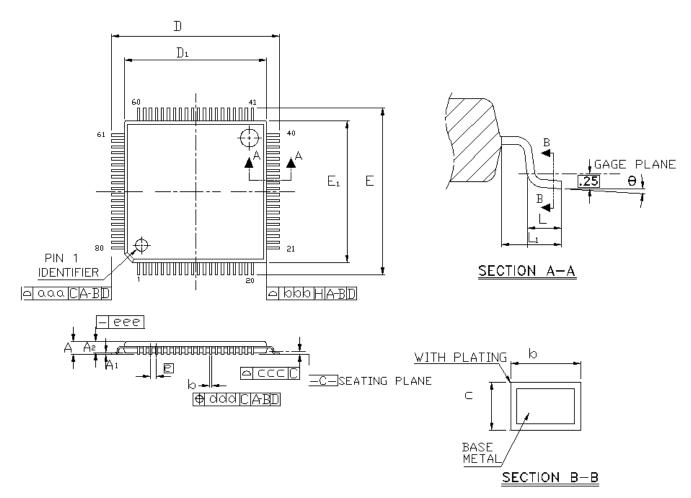


Figure 6.8. TQFP-80 Package Drawing

Dimension	Min	Nominal	Max		
A		—	1.20		
A1	0.05	—	0.15		
A2	0.95	1.00	1.05		
b	0.17	0.20	0.27		
С	0.09	—	0.20		
D	14.00 BSC				
D1	D1 12.00 BSC				
е	0.50 BSC				
E	14.00 BSC				
E1	12.00 BSC				

SiM3C1xx

6.8. QFN-40 Package Specifications

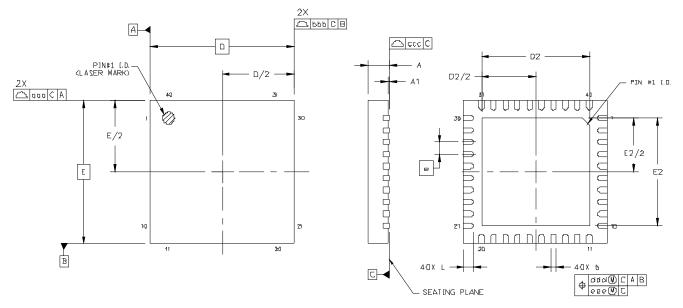


Figure 6.14. QFN-40 Package Drawing

Dimension	Min	Nominal	Max		
А	0.80	0.85	0.90		
A1	0.00	0.02	0.05		
b	0.18	0.25	0.30		
D	6.00 BSC				
D2	4.35	4.50	4.65		
е	0.50 BSC				
E	6.00 BSC				
E2	4.35	4.5	4.65		
L	0.30	0.40	0.50		
aaa	0.10				
bbb	0.10				
CCC	0.08				
ddd	0.10				
eee	0.05				

Table 6.12. QFN-40 Package Dimensions

Notes:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- 3. This package outline conforms to JEDEC MO-220.
- **4.** Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

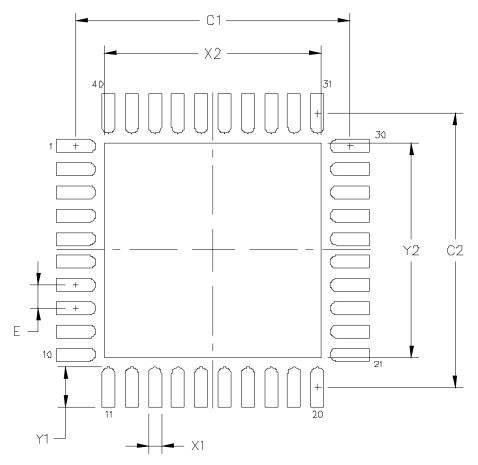


Figure 6.15. QFN-40 Landing Diagram

Dimension	mm
C1	5.90
C2	5.90
E	0.50
X1	0.30
Y1	0.85
X2	4.65
Y2	4.65
Notos	

Table 6.13. QFN-40 Landing Diagram Dimensions

Notes:

- 1. All dimensions shown are in millimeters (mm).
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- **3.** All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a
 - Fabrication Allowance of 0.05 mm.

Silicon Labs

Simplicity Studio⁴

Simplicity Studio

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!

Support and Community community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com