

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	EBI/EMI, I ² C, IrDA, SmartCard, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	65
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 32x12b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/sim3u167-b-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. Electrical Specifications

3.1. Electrical Characteristics

All electrical parameters in all tables are specified under the conditions listed in Table 3.1, unless stated otherwise.

 Table 3.1. Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Operating Supply Voltage on VDD	V _{DD}		1.8		3.6	V
Operating Supply Voltage on VREGIN	V _{REGIN}	EXTVREG0 Not Used	4		5.5	V
		EXTVREG0 Used	3.0	_	3.6	V
Operating Supply Voltage on VIO	V _{IO}		1.8		V _{DD}	V
Operating Supply Voltage on VIOHD	V _{IOHD}	HV Mode (default)	2.7		6.0	V
		LV Mode	1.8		3.6	V
Voltage on I/O pins, Port Bank 0, 1 and 2 I/O	V _{IN}		V _{SS}		V _{IO}	V
Volta <u>ge on I</u> /O pins, Port Bank 3 I/O and RESET	V _{IN}	SiM3C1x7 PB3.0–PB3.7 and RESET	V _{SS}		V _{IO} +2.0	V
		SiM3C1x7 PB3.8 - PB3.11	V _{SS}	_	Lowest of V _{IO} +2.0 or V _{REGIN}	V
		SiM3C1x6 PB3.0–PB3.5 and RESET	V _{SS}		V _{IO} +2.0	V
		SiM3C1x6 PB3.6–PB3.9	V _{SS}	_	Lowest of V _{IO} +2.0 or V _{REGIN}	V
		SiM3C1x4 RESET	V _{SS}		V _{IO} +2.0	V
		SiM3C1x4 PB3.0–PB3.3	V _{SS}	_	Lowest of V _{IO} +2.0 or V _{REGIN}	V
Voltage on I/O pins, Port Bank 4 I/O	V _{IN}		V _{SSHD}	_	V _{IOHD}	V
System Clock Frequency (AHB)	f _{AHB}		0		80	MHz
Peripheral Clock Frequency (APB)	f _{APB}		0	_	50	MHz
Operating Ambient Temperature	T _A		-40	_	85	°C
Operating Junction Temperature	TJ		-40		105	°C
Note: All voltages with respect to V_{SS} .		+				

Table 3.2. Power Consumption (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Power Mode 9 ^{2,3} —Low Power Shutdown with VREG0 disabled,	I _{DD}	RTC Disabled, V _{DD} = 1.8 V, T _A = 25 °C	_	85	_	nA
powered through VDD and VIO		RTC w/ 16.4 kHz LFO, V _{DD} = 1.8 V, T _A = 25 °C		350		nA
		RTC w/ 32.768 kHz Crystal, V _{DD} = 1.8 V, T _A = 25 °C		620		nA
		RTC Disabled, V _{DD} = 3.0 V, T _A = 25 °C	_	145	_	nA
		RTC w/ 16.4 kHz LFO, V _{DD} = 3.0 V, T _A = 25 °C		500	_	nA
		RTC w/ 32.768 kHz Crystal, V _{DD} = 3.0 V, T _A = 25 °C		800	_	nA
Power Mode 9 ^{2,3} —Low Power Shutdown with VREG0 in Iow-	I _{VREGIN}	RTC Disabled, VREGIN = 5 V, T _A = 25 °C	_	300		nA
power mode, VDD and VIO pow- ered through VREG0 (Includes VREG0 current)		RTC w/ 16.4 kHz LFO, VREGIN = 5 V, T _A = 25 °C		650		nA
		RTC w/ 32.768 kHz Crystal, VREGIN = 5 V, T _A = 25 °C		950	_	nA
VIOHD Current (High-drive I/O dis-	I _{VIOHD}	HV Mode (default)	_	2.5	5	μA
abled)		LV Mode	_	2	_	nA

Notes:

1. Perhipheral currents drop to zero when peripheral clock and peripheral are disabled, unless otherwise noted.

 Currents are additive. For example, where I_{DD} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

3. Includes all peripherals that cannot have clocks gated in the Clock Control module.

- 4. Includes supply current from internal regulator and PLL0OSC (>20 MHz) or LPOSC0 (<=20 MHz).
- 5. Flash execution numbers use 2 wait states for 80 MHz and 0 wait states at 20 MHz or less.
- 6. RAM execution numbers use 0 wait states for all frequencies.
- 7. IDAC output current and IVC input current not included.

8. Bias current only. Does not include dynamic current from oscillator running at speed.

	Table 3.2.	Power	Consum	ption ((Continued)
--	------------	-------	--------	---------	-------------

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Analog Peripheral Supply Current	is		L	· · · · ·		
Voltage Regulator (VREG0)	I _{VREGIN}	Normal Mode, $T_A = 25 \text{ °C}$ BGDIS = 0, SUSEN = 0		300	_	μA
		Normal Mode, $T_A = 85 \text{ °C}$ BGDIS = 0, SUSEN = 0	_	_	650	μA
		Suspend Mode, T _A = 25 °C BGDIS = 0, SUSEN = 1	_	75	—	μA
		Suspend Mode, T _A = 85 °C BGDIS = 0, SUSEN = 1	_	_	115	μA
		Sleep Mode, T _A = 25 °C BGDIS = 1, SUSEN = X	_	90	_	nA
		Sleep Mode, T _A = 85 °C BGDIS = 1, SUSEN = X			500	nA
Voltage Regulator (VREG0) Sense	I _{VRSENSE}	SENSEEN = 1		3		μA
External Regulator (EXTVREG0)	I _{EXTVREG}	Regulator		215	250	μA
		Current Sensor		7		μA
PLL0 Oscillator (PLL0OSC)	I _{PLLOSC}	Operating at 80 MHz		1.75	1.86	mA
Low-Power Oscillator (LPOSC0)	I _{LPOSC}	Operating at 20 MHz	—	190		μA
		Operating at 2.5 MHz	<u> </u>	40		μA
Low-Frequency Oscillator (LFOSC0)	I _{LFOSC}	Operating at 16.4 kHz, T _A = 25 °C		215		nA
		Operating at 16.4 kHz, T _A = 85 °C	_	_	500	nA

Notes:

1. Perhipheral currents drop to zero when peripheral clock and peripheral are disabled, unless otherwise noted.

 Currents are additive. For example, where I_{DD} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

3. Includes all peripherals that cannot have clocks gated in the Clock Control module.

4. Includes supply current from internal regulator and PLL0OSC (>20 MHz) or LPOSC0 (<=20 MHz).

5. Flash execution numbers use 2 wait states for 80 MHz and 0 wait states at 20 MHz or less.

6. RAM execution numbers use 0 wait states for all frequencies.

7. IDAC output current and IVC input current not included.

8. Bias current only. Does not include dynamic current from oscillator running at speed.

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit		
3.3 V Regulator Characteristics (VRI	3.3 V Regulator Characteristics (VREG0, Supplied from VREGIN Pin)							
Output Voltage (at VDD pin)	V _{DDOUT}	$4 \le V_{\text{REGIN}} \le 5.5$ BGDIS = 0, SUSEN = 0	3.15	3.3	3.4	V		
		$4 \le V_{REGIN} \le 5.5$ BGDIS = 0, SUSEN = 1	3.15	3.3	3.4	V		
		$\begin{array}{l} 4 \leq V_{REGIN} \leq 5.5 \\ BGDIS = 1, SUSEN = X \\ I_{DDOUT} = 500 \; \muA \end{array}$	2.3	2.8	3.6	V		
		$4 \le V_{REGIN} \le 5.5$ BGDIS = 1, SUSEN = X I _{DDOUT} = 5 mA	2.1	2.65	3.3	V		
Output Current (at VDD pin)*	IDDOUT	$4 \le V_{\text{REGIN}} \le 5.5$ BGDIS = 0, SUSEN = X	_		150	mA		
		$4 \le V_{\text{REGIN}} \le 5.5$ BGDIS = 1, SUSEN = X	_		5	mA		
Output Load Regulation	V _{DDLR}	BGDIS = 0	_	0.1	1	mV/mA		
Output Capacitance	C _{VDD}		1		10	μF		
*Note: Total current VREG0 is capable of p external devices powered from VDE	providing. A).	ny current consumed by the S	SiM3C1xx	reduces the	e current av	vailable to		

Table 3.5. On-Chip Regulators

Table 3.16. Comparator (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Positive Hysteresis	HYS _{CP+}	CMPHYP = 00	—	1.4	—	mV
Mode 3 (CPMD = 11)		CMPHYP = 01	—	4	—	mV
		CMPHYP = 10	—	8	—	mV
		CMPHYP = 11	_	16	_	mV
Negative Hysteresis	HYS _{CP-}	CMPHYN = 00	—	1.4	—	mV
Mode 3 (CPMD = 11)		CMPHYN = 01	—	-4	—	mV
		CMPHYN = 10	_	-8	_	mV
		CMPHYN = 11	_	-16	_	mV
Input Range (CP+ or CP-)	V _{IN}		-0.25	_	V _{DD} +0.25	V
Input Pin Capacitance	C _{CP}	PB2 Pins	_	7.5	_	pF
		PB3 Pins		10.5	—	pF
Common-Mode Rejection Ratio	CMRR _{CP}		—	75	—	dB
Power Supply Rejection Ratio	PSRR _{CP}		—	72	—	dB
Input Offset Voltage	V _{OFF}		-10	0	10	mV
Input Offset Tempco	TC _{OFF}		_	3.5	—	µV/°C
Reference DAC Resolution	N _{Bits}			6		bits

4.1.5. Device Power Modes

The SiM3C1xx devices feature four low power modes in addition to normal operating mode. Several peripherals provide wake up sources for these low power modes, including the Low-Power Timer (LPT0), RTC0 (alarms and oscillator failure notification), Comparator 0, and PMU Pin Wake.

In addition, all peripherals can have their clocks disabled to reduce power consumption whenever a peripheral is not being used using the clock control (CLKCTRL) registers.

4.1.5.1. Normal Mode (Power Mode 0)

Normal Mode is the default mode of the device. The core and peripherals are fully operational, and instructions are executed from flash memory.

4.1.5.2. Power Mode 1

In Power Mode 1 the core and peripherals are fully operational, with instructions executing from RAM. Compared with Normal Mode, the active power consumption of the device in PM1 is reduced. Additionally, at higher speeds in PM1, the core throughput can also be increased because RAM does not require additional wait states that reduce the instruction fetch speed.

4.1.5.3. Power Mode 2

In Power Mode 2 the core halts and any enabled peripherals continue to run at the selected clock speed. The power consumption in PM2 corresponds to the AHB and APB clocks left enabled, thus the power can be tuned to the optimal level for the needs of the application. To place the device in PM2, the core should execute a wait-for-interrupt (WFI) or wait-for-event (WFE) instruction. If the WFI instruction is called from an interrupt service routine, the interrupt that wakes the device from PM2 must be of a sufficient priority to be recognized by the core. It is recommended to perform both a DSB (Data Synchronization Barrier) and an ISB (Instruction Syncronization Barrier) operation prior to the WFI to ensure all bus accesses complete. When operating from the LFOSC0 with the DMACTRL0 AHB clock disabled, PM2 can achieve similar power consumption to PM3, but with the ability to wake on APB-clocked interrupts. For example, enabling only the APB clock to the Ports will allow the firmware to wake on a PMATCH0, PBEXT0 or PBEXT1 interrupt with minimal impact on the supply current.

4.1.5.4. Power Mode 3

In Power Mode 3, the AHB and APB clocks are halted. The device may only wake from enabled interrupt sources which do not require the APB clock (RTC0ALRM, RTC0FAIL, LPTIMER0, VDDLOW and VREGLOW). A special fast wake option allows the device to operate at a very low level from the RTC0TCLK or LFOSC0 oscillator while in PM3, but quickly switch to the faster LPOSC0 when the wake event occurs. Because the current consumption of these blocks is minimal, it is recommended to use the fast wake option.

The device will enter PM3 on a WFI or WFE instruction. Because all AHB master clocks are disabled, the LPOSC will automatically halt and go into a low-power suspended state. If the WFI instruction is called from an interrupt service routine, the interrupt that wakes the device from PM3 must be of a sufficient priority to be recognized by the core. It is recommended to perform both a DSB (Data Synchronization Barrier) and an ISB (Instruction Synchronization Barrier) operation prior to the WFI to ensure all bus access is complete.

4.1.5.5. Power Mode 9

In Power Mode 9, the core and all peripherals are halted, all clocks are stopped, and the pins and peripherals are set to a lower power mode. In addition, standard RAM contents are not preserved, though retention RAM contents are still available after exiting the power mode. This mode provides the lowest power consumption for the device, but requires an appropriate reset to exit. The available reset sources to wake from PM9 are controlled by the Power Management Unit (PMU).

Before entering PM9, the desired reset source(s) should be configured in the PMU. The SLEEPDEEP bit in the ARM System Control Register should be set, and the PMSEL bit in the RSTSRC0_CONFIG register must be set to indicate that PM9 is the desired power mode.

The device will enter PM9 on a WFI or WFE instruction, and remain in PM9 until a reset configured by the PMU occurs. It is recommended to perform both a DSB (Data Synchronization Barrier) and an ISB (Instruction Synchronization Barrier) operation prior to the WFI to ensure all bus access is complete.

4.3. Clocking

The SiM3C1xx devices have two system clocks: AHB and APB. The AHB clock services memory peripherals and is derived from one of seven sources: the RTC0 timer clock (RTC0TCLK), the Low Frequency Oscillator, the Low Power Oscillator, the divided Low Power Oscillator, the External Oscillator, and the PLL0 Oscillator. In addition, a divider for the AHB clock provides flexible clock options for the device. The APB clock services data peripherals and is synchronized with the AHB clock. The APB clock can be equal to the AHB clock (if AHB is less than or equal to 50 MHz) or set to the AHB clock divided by two.

Clock Control allows the AHB and APB clocks to be turned off to unused peripherals to save system power. Any registers in a peripheral with disabled clocks will be unable to be accessed until the clocks are enabled. Most peripherals have clocks off by default after a power-on reset.

4.5. Counters/Timers and PWM

4.5.1. Programmable Counter Array (EPCA0, PCA0, PCA1)

The SiM3C1xx devices include two types of PCA module: Enhanced and Standard.

The Enhanced Programmable Counter Array (EPCA0) and Standard Programmable Counter Array (PCA0, PCA1) modules are timer/counter systems allowing for complex timing or waveform generation. Multiple modules run from the same main counter, allowing for synchronous output waveforms.

The Enhanced PCA module is multi-purpose, but is optimized for motor control applications. The EPCA module includes the following features:

- Three sets of channel pairs (six channels total) capable of generating complementary waveforms.
- Center- and edge-aligned waveform generation.
- Programmable dead times that ensure channel pairs are never both active at the same time.
- Programmable clock divisor and multiple options for clock source selection.
- Waveform update scheduling.
- Option to function while the core is inactive.
- Multiple synchronization triggers and outputs.
- Pulse-Width Modulation (PWM) waveform generation.
- High-speed square wave generation.
- Input capture mode.
- DMA capability for both input capture and waveform generation.
- PWM generation halt input.

The Standard PCA module (PCA) includes the following features:

- Two independent channels.
- Center- and edge-aligned waveform generation.
- Programmable clock divisor and multiple options for clock source selection.
- Pulse-Width Modulation waveform generation.

4.5.2. 32-bit Timer (TIMER0, TIMER1)

Each timer module is independent, and includes the following features:

- Operation as a single 32-bit or two independent 16-bit timers.
- Clocking options include the APB clock, the APB clock scaled using an 8-bit prescaler, the external oscillator, or falling edges on an external input pin (synchronized to the APB clock).
- Auto-reload functionality in both 32-bit and 16-bit modes.
- Up/Down count capability, controlled by an external input pin.
- Rising and falling edge capture modes.
- Low or high pulse capture modes.
- Duty cycle capture mode.
- Square wave output mode, which is capable of toggling an external pin at a given rate with 50% duty cycle.
- 32- or 16-bit pulse-width modulation mode.

• Spike suppression up to 2 times the APB period.

4.6.6. I²S (I2S0)

The I²S module receives digital data from an external source over a data line in the standard I²S, left-justified, rightjustified, or time domain multiplexing format, de-serializes the data, and generates requests to transfer the data using the DMA. The module also reads stereo audio samples from the DMA, serializes the data, and sends it out of the chip on a data line in the same standard serial format for digital audio. The I²S receive interface consists of 3 signals: SCK (bit clock), WS (word select or frame sync), and SD (data input). The block's transmit interface consists of 3 signals: SCK (bit clock), WS (word select or frame sync) and SD (data output).

The I²S module includes the following features:

- Master or slave capability.
- Flexible 10-bit clock divider with 8-bit fractional clock divider provides support for various common sampling frequencies (16 kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, and 48 kHz) for up to two 32-bit channels.
- Support for DMA data transfers.
- Support for various data formats.
- Time Division Multiplexing

4.7. Analog

4.7.1. 12-Bit Analog-to-Digital Converters (SARADC0, SARADC1)

The SARADC0 and SARADC1 modules on SiM3C1xx devices are Successive Approximation Register (SAR) Analog to Digital Converters (ADCs). The key features of the SARADC module are:

- Single-ended 12-bit and 10-bit modes.
- Supports an output update rate of 250 k samples per second in 12-bit mode or 1 M samples per second in 10-bit mode.
- Operation in low power modes at lower conversion speeds.
- Selectable asynchronous hardware conversion trigger with hardware channel select.
- Output data window comparator allows automatic range checking.
- Support for Burst Mode, which produces one set of accumulated data per conversion-start trigger with programmable power-on settling and tracking time.
- Conversion complete, multiple conversion complete, and FIFO overflow and underflow flags and interrupts supported.
- Flexible output data formatting.
- Sequencer allows up to 8 sources to be automatically scanned using one of four channel characteristic profiles without software intervention.
- Eight-word conversion data FIFO for DMA operations.
- Multiple SARADC modules can work together synchronously or by interleaving samples.
- Includes two internal references (1.65 V fast-settling, 1.2/2.4 V precision), support for an external reference, and support for an external signal ground.

4.7.2. Sample Sync Generator (SSG0)

The SSG module includes a phase counter and a pulse generator. The phase counter is a 4-bit free-running counter clocked from the SARADC module clock. Counting-up from zero, the phase counter marks sixteen equally-spaced events for any number of SARADC modules. The ADCs can use this phase counter to start a conversion. The programmable pulse generator creates a 50% duty cycle pulse with a period of 16 phase counter ticks. Up to four programmable outputs available to external devices can be driven by the pulse generator with programmable polarity and a defined output setting when the pulse generator is stopped.

The Sample Sync Generator module has the following features:

- Connects multiple modules together to perform synchronized actions.
- Outputs a clock synchronized to the internal sampling clock used by any number of SARADC modules to pins for use by external devices.
- Includes a phase counter, pulse generator, and up to four programmable outputs.

4.7.3. 10-Bit Digital-to-Analog Converter (IDAC0, IDAC1)

The IDAC takes a digital value as an input and outputs a proportional constant current on a pin. The IDAC module includes the following features:

- 10-bit current DAC with support for four timer, up to seven external I/O, on demand, and SSG0 output update triggers.
- Ability to update on rising, falling, or both edges for any of the external I/O trigger sources (DACnTx).
- Supports an output update rate greater than 600 k samples per second.
- Support for three full-scale output modes: 0.5 mA, 1.0 mA and 2.0 mA.
- Four-word FIFO to aid with high-speed waveform generation or DMA interactions.
- Individual FIFO overrun, underrun, and went-empty interrupt status sources.
- Support for multiple data packing formats, including: single 10-bit sample per word, dual 10-bit samples per word, or four 8-bit samples per word.
- Support for left- and right-justified data.

4.9. Security

The peripherals on the SiM3C1xx devices have a register lock and key mechanism that prevents any undesired accesses of the peripherals from firmware. Each bit in the PERIPHLOCKx registers controls a set of peripherals. A key sequence must be written in order to the KEY register to modify any of the bits in PERIPHLOCKx. Any subsequent write to KEY will then inhibit any accesses of PERIPHLOCKx until it is unlocked again through KEY. Reading the KEY register indicates the current status of the PERIPHLOCKx lock state.

If a peripheral's registers are locked, all writes will be ignored. The registers can always be read, regardless of the peripheral's lock state.

4.10. On-Chip Debugging

The SiM3C1xx devices include JTAG and Serial Wire programming and debugging interfaces and ETM for instruction trace. The JTAG interface is supported on SiM3C1x7 and SiM3C1x6 devices only, and does not include boundary scan capabilites. The ETM interface is supported on SiM3C1x7 devices. The JTAG and ETM interfaces can be optionally enabled to provide more visibility while debugging at the cost of using several Port I/O pins. Additionally, if the core is configured for Serial Wire (SW) mode and not JTAG, then the Serial Wire Viewer (SWV) is available to provide a single pin to send out TPIU messages on SiM3C1x7 and SiM3C1x6 devices.

Most peripherals have the option to halt or continue functioning when the core halts in debug mode.

5. Ordering Information

Figure 5.1. SiM3C1xx Part Numbering

All devices in the SiM3C1xx family have the following features:

- Core: ARM Cortex-M3 with maximum operating frequency of 80 MHz.
- Flash Program Memory: 32-256 kB, in-system programmable.
- RAM: 8–32 kB SRAM, with 4 kB retention SRAM
- I/O: Up to 65 multifunction I/O pins, including high-drive and 5 V-tolerant pins.
- Clock Sources: Internal and external oscillator options.
- 16-Channel DMA Controller.
- 128/192/256-bit AES.
- 16/32-bit CRC.
- **Timers:** 2 x 32-bit (4 x 16-bit).
- Real-Time Clock.
- Low-Power Timer.
- PCA: 1 x 6 channels (Enhanced), 2 x 2 channels (Standard). PWM, capture, and clock generation capabilites.
- ADC: 2 x 12-bit 250 ksps (10-bit 1 Msps) SAR.
- **DAC:** 2 x 10-bit IDAC.
- Temperature Sensor.
- Internal VREF.
- 16-channel Capacitive Sensing (CAPSENSE).
- **Comparator:** 2 x low current.
- Current to Voltage Converter (IVC).
- Serial Buses: 2 x USART, 2 x UART, 3 x SPI, 2 x I2C, 1 x I²S.

The inclusion of some features varies across different members of the device family. The differences are detailed in Table 5.1.

Pin Name	Туре	Pin Numbers	Crossbar Capability (see Port Config Section)	Port Match	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB0.8	Standard I/O	26	XBR0	~			ADC0.14 ADC1.14
PB0.9	Standard I/O	25	XBR0	~			ADC0.15 ADC1.15
PB0.10	Standard I/O	22	XBR0	\checkmark		DMA0T1	ADC1.8
PB0.11	Standard I/O	21	XBR0	\checkmark		DMA0T0	ADC1.7
PB0.12	Standard I/O	20	XBR0	~		ADC0T15 WAKE.0	ADC1.5 CS0.10
PB0.13	Standard I/O	19	XBR0	~		ADC1T15 WAKE.1	ADC1.4 CS0.11
PB0.14	Standard I/O	18	XBR0	~		WAKE.2	ADC1.3 CS0.12
PB0.15	Standard I/O	17	XBR0	~		WAKE.3	ADC1.2 CS0.13
PB1.0	Standard I/O	16	XBR0	V		WAKE.4	ADC1.1 CS0.14
PB1.1	Standard I/O	15	XBR0	\checkmark		WAKE.5	ADC1.0 CS0.15 PMU_Asleep
PB1.2	Standard I/O	12	XBR0	~			CMP0N.0 CMP1N.0 RTC0TCLK_OUT
PB1.3	Standard I/O	11	XBR0	V			CMP0P.0 CMP1P.0
PB3.0	5 V Tolerant I/O	10	XBR1	V		DAC0T0 DAC1T0 LPT0T0 INT0.0 INT1.0 WAKE.12	CMP0P.1 CMP1P.1 EXREGSP

Table 6.3. Pin Definitions and Alternate Functions for SiM3C1x4 (Continued)

6.4. LGA-92 Package Specifications

Table	6.4. L	GA-92	Package	Dimensions
-------	--------	-------	---------	-------------------

Dimension	Min	Nominal	Max			
Α	0.74	0.84	0.94			
b	0.25	0.30	0.35			
C	3.15	3.20	3.25			
D		7.00 BSC				
D1		6.50 BSC				
D2		4.00 BSC				
e		0.50 BSC				
E	7.00 BSC					
E1	6.50 BSC					
E2	4.00 BSC					
aaa	—	—	0.10			
bbb	—	— —				
CCC	— — 0.08					
ddd	— — 0.10					
eee	— — 0.10					
Notes:						

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Figure 6.7. LGA-92 Landing Diagram

ension	Typical	Мах			
21	6.50	_			
22	6.50	_			
e	0.50	—			
f	—	0.35			
P1	_	3.20			
2	—	3.20			
 Notes: All dimensions shown are in millimeters (mm) unless otherwise noted. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed. 					
	ension 21 22 e f 21 22 limensions sh ed. eature sizes s a card fabrica onsigning app	Image: space of the space of			

- Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
- 4. This land pattern design is based on the IPC-7351 guidelines.

6.5.1. TQFP-80 Solder Mask Design

All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

6.5.2. TQFP-80 Stencil Design

- 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- 3. The ratio of stencil aperture to land pad size should be 1:1 for all pads.

6.5.3. TQFP-80 Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Figure 6.11. QFN-64 Landing Diagram

Dimension	mm
C1	8.90
C2	8.90
E	0.50
X1	0.30
Y1	0.85
X2	4.25
Y2	4.25
Notes:	•

Table 6.9. QFN-64 Landing Diagram Dimensions

- 1. All dimensions shown are in millimeters (mm).
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.

6.6.1. QFN-64 Solder Mask Design

All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

6.6.2. QFN-64 Stencil Design

- 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- 3. The ratio of stencil aperture to land pad size should be 1:1 for all pads.
- 4. A 3x3 array of 1.0 mm square openings on a 1.5 mm pitch should be used for the center ground pad.

6.6.3. QFN-64 Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

6.7.1. TQFP-64 Solder Mask Design

All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

6.7.2. TQFP-64 Stencil Design

- 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- 3. The ratio of stencil aperture to land pad size should be 1:1 for all pads.

6.7.3. TQFP-64 Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Silicon Labs

Simplicity Studio⁴

Simplicity Studio

One-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!

www.silabs.com/quality

Support and Community community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com