

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	EBI/EMI, I ² C, IrDA, SmartCard, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	65
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 32x12b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/sim3u167-b-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	4.6.5. I2C (I2C0, I2C1)	43
	4.6.6. I2S (I2S0)	44
	4.7. Analog	45
	4.7.1. 12-Bit Analog-to-Digital Converters (SARADC0, SARADC1)	45
	4.7.2. Sample Sync Generator (SSG0)	45
	4.7.3. 10-Bit Digital-to-Analog Converter (IDAC0, IDAC1)	45
	4.7.4. 16-Channel Capacitance-to-Digital Converter (CAPSENSE0)	46
	4.7.5. Low Current Comparators (CMP0, CMP1)	46
	4.7.6. Current-to-Voltage Converter (IVC0)	46
	4.8. Reset Sources	47
	4.9. Security	48
	4.10.On-Chip Debugging	48
5.	Ordering Information	49
6.	Pin Definitions and Packaging Information	51
	6.1. SiM3C1x7 Pin Definitions	51
	6.2. SiM3C1x6 Pin Definitions	59
	6.3. SiM3C1x4 Pin Definitions	66
	6.4. LGA-92 Package Specifications	70
	6.4.1. LGA-92 Solder Mask Design	72
	6.4.2. LGA-92 Stencil Design	72
	6.4.3. LGA-92 Card Assembly	72
	6.5. TQFP-80 Package Specifications	73
	6.5.1. TQFP-80 Solder Mask Design	76
	6.5.2. TQFP-80 Stencil Design	76
	6.5.3. TQFP-80 Card Assembly	76
	6.6. QFN-64 Package Specifications	77
	6.6.1. QFN-64 Solder Mask Design	79
	6.6.2. QFN-64 Stencil Design	79
	6.6.3. QFN-64 Card Assembly	79
	6.7. TQFP-64 Package Specifications	80
	6.7.1. TQFP-64 Solder Mask Design	83
	6.7.2. TQFP-64 Stencil Design	83
	6.7.3. TQFP-64 Card Assembly	83
	6.8. QFN-40 Package Specifications	84
	6.8.1. QFN-40 Solder Mask Design	86
	6.8.2. QFN-40 Stencil Design	86
	6.8.3. QFN-40 Card Assembly	86
7.	Revision Specific Behavior	87
	7.1. Revision Identification	87
	7.2. Comparator Rising/Falling Edge Flags in Debug Mode (CMP0, CMP1)	88
	7.2.1. Problem	88
	7.2.2. Impacts	88
	7.2.3. Workaround	88
-	7.2.4. Resolution	88
Do	cument Change List	89
Co	ntact Information	90

2. Typical Connection Diagrams

This section provides typical connection diagrams for SiM3C1xx devices.

2.1. Power

Figure 2.1 shows a typical connection diagram for the power pins of the SiM3C1xx devices when the internal regulator is in use.

Figure 2.1. Connection Diagram with Voltage Regulator Used

Figure 2.2 shows a typical connection diagram for the power pins of the SiM3C1xx devices when the internal regulator is not used.

Figure 2.2. Connection Diagram with Voltage Regulator Not Used

Table 3.2. Power Consumption (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Power Mode 9 ^{2,3} —Low Power Shutdown with VREG0 disabled,	I _{DD}	RTC Disabled, V _{DD} = 1.8 V, T _A = 25 °C	_	85	_	nA
powered through VDD and VIO		RTC w/ 16.4 kHz LFO, V _{DD} = 1.8 V, T _A = 25 °C		350		nA
		RTC w/ 32.768 kHz Crystal, V _{DD} = 1.8 V, T _A = 25 °C		620		nA
		RTC Disabled, V _{DD} = 3.0 V, T _A = 25 °C	_	145	_	nA
		RTC w/ 16.4 kHz LFO, V _{DD} = 3.0 V, T _A = 25 °C		500	_	nA
		RTC w/ 32.768 kHz Crystal, V _{DD} = 3.0 V, T _A = 25 °C		800	_	nA
Power Mode 9 ^{2,3} —Low Power Shutdown with VREG0 in Iow-	I _{VREGIN}	RTC Disabled, VREGIN = 5 V, T _A = 25 °C	_	300		nA
power mode, VDD and VIO pow- ered through VREG0 (Includes VREG0 current)		RTC w/ 16.4 kHz LFO, VREGIN = 5 V, T _A = 25 °C		650		nA
		RTC w/ 32.768 kHz Crystal, VREGIN = 5 V, T _A = 25 °C		950	_	nA
VIOHD Current (High-drive I/O dis-	I _{VIOHD}	HV Mode (default)	_	2.5	5	μA
abled)		LV Mode	_	2	_	nA

Notes:

1. Perhipheral currents drop to zero when peripheral clock and peripheral are disabled, unless otherwise noted.

 Currents are additive. For example, where I_{DD} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

3. Includes all peripherals that cannot have clocks gated in the Clock Control module.

- 4. Includes supply current from internal regulator and PLL0OSC (>20 MHz) or LPOSC0 (<=20 MHz).
- 5. Flash execution numbers use 2 wait states for 80 MHz and 0 wait states at 20 MHz or less.
- 6. RAM execution numbers use 0 wait states for all frequencies.
- 7. IDAC output current and IVC input current not included.

8. Bias current only. Does not include dynamic current from oscillator running at speed.

Table 3.2. Power Consumption (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
External Oscillator (EXTOSC0) ⁸	IEXTOSC	FREQCN = 111		3.8	4.7	mA
		FREQCN = 110		840	950	μA
		FREQCN = 101		185	220	μA
		FREQCN = 100		65	80	μA
		FREQCN = 011		25	30	μA
		FREQCN = 010		10	15	μA
		FREQCN = 001		5	10	μA
		FREQCN = 000		3	8	μA
SARADC0, SARADC1	I _{SARADC}	Sampling at 1 Msps, highest power mode settings.	_	1.2	1.5	mA
		Sampling at 250 ksps, lowest power mode settings.		390	510	μA
Temperature Sensor	I _{TSENSE}			75	105	μA
Internal SAR Reference	IREFFS	Normal Power Mode		680	750	μA
		Low Power Mode		160	190	μA
VREF0	I _{REFP}			75	100	μA
Comparator 0 (CMP0),	I _{CMP}	CMPMD = 11		0.5		μA
Comparator 1 (CMP1)		CMPMD = 10		3		μA
		CMPMD = 01		10		μA
		CMPMD = 00		25	_	μA
Capacitive Sensing (CAPSENSE0)	I _{CS}	Continuous Conversions		55	80	μA
IDAC0 ⁷ , IDAC1 ⁷	I _{IDAC}		—	75	90	μΑ
IVC0 ⁷	I _{IVC}	$I_{IN} = 0$		1.5	2.5	μA
Voltage Supply Monitor (VMON0)	I _{VMON}			15	25	μA

Notes:

1. Perhipheral currents drop to zero when peripheral clock and peripheral are disabled, unless otherwise noted.

 Currents are additive. For example, where I_{DD} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

- 3. Includes all peripherals that cannot have clocks gated in the Clock Control module.
- 4. Includes supply current from internal regulator and PLL0OSC (>20 MHz) or LPOSC0 (<=20 MHz).
- 5. Flash execution numbers use 2 wait states for 80 MHz and 0 wait states at 20 MHz or less.
- 6. RAM execution numbers use 0 wait states for all frequencies.
- 7. IDAC output current and IVC input current not included.
- 8. Bias current only. Does not include dynamic current from oscillator running at speed.

Table 3.2. Power Consumption (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Flash Current on VDD						
Write Operation	I _{FLASH-W}		_		8	mA
Erase Operation	I _{FLASH-E}		_	_	15	mA
Netes						

Notes:

- 1. Perhipheral currents drop to zero when peripheral clock and peripheral are disabled, unless otherwise noted.
- Currents are additive. For example, where I_{DD} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.
- 3. Includes all peripherals that cannot have clocks gated in the Clock Control module.
- 4. Includes supply current from internal regulator and PLL0OSC (>20 MHz) or LPOSC0 (<=20 MHz).
- 5. Flash execution numbers use 2 wait states for 80 MHz and 0 wait states at 20 MHz or less.
- 6. RAM execution numbers use 0 wait states for all frequencies.
- 7. IDAC output current and IVC input current not included.
- 8. Bias current only. Does not include dynamic current from oscillator running at speed.

Table 3.3. Power Mode Wake Up Times

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Power Mode 2 Wake Time	t _{PM2}		4	—	5	clocks
Power Mode 3 Fast Wake Time	t _{PM3FW}		—	425	—	μs
Power Mode 9 Wake Time	t _{PM9}		—	12		μs

Table 3.10. SAR ADC (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit		
Differential Nonlinearity	DNL	12 Bit Mode ²	-1	±0.7	1.8	LSB		
(Guaranteed Monotonic)		10 Bit Mode	_	±0.2	±0.5	LSB		
Offset Error (using VREFGND)	E _{OFF}	12 Bit Mode, VREF =2.4 V	-2	0	2	LSB		
		10 Bit Mode, VREF =2.4 V	-1	0	1	LSB		
Offset Temperatue Coefficient	TC _{OFF}		_	0.004		LSB/°C		
Slope Error ³	E _M	12 Bit Mode	-0.07	-0.02	0.02	%		
Dynamic Performance with 10 kHz Sine Wave Input 1 dB below full scale, Max throughput								
Signal-to-Noise	SNR	12 Bit Mode	62	66		dB		
		10 Bit Mode	58	60		dB		
Signal-to-Noise Plus Distortion	SNDR	12 Bit Mode	62	66		dB		
		10 Bit Mode	58	60		dB		
Total Harmonic Distortion	THD	12 Bit Mode	_	78		dB		
(Up to 5th Harmonic)		10 Bit Mode	_	77	_	dB		
Spurious-Free Dynamic Range	SFDR	12 Bit Mode	_	-79		dB		
		10 Bit Mode	-	-74		dB		
	1	<u>.</u>						

Notes:

1. Absolute input pin voltage is limited by the lower of the supply at VDD and VIO.

2. INL and DNL specifications for 12-bit mode do not include the first or last four ADC codes.

3. The maximum code in 12-bit mode is 0xFFFC. The Slope Error is referenced from the maximum code.

3.2. Thermal Conditions

Table 3.18. Thermal Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Thermal Resistance*	θ_{JA}	LGA-92 Packages		35		°C/W
		TQFP-80 Packages		40		°C/W
		QFN-64 Packages		25		°C/W
		TQFP-64 Packages		30		°C/W
		QFN-40 Packages		30		°C/W
*Note: Thermal resistance assumes a	multi-layer F	CB with any exposed pad sc	ldered to a PC	B pad.		

3.3. Absolute Maximum Ratings

Stresses above those listed under Table 3.19 may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 3.19. Absolute Maximum Ratings

Parameter	Symbol	Test Condition	Min	Max	Unit
Ambient Temperature Under Bias	T _{BIAS}		-55	125	°C
Storage Temperature	T _{STG}		-65	150	°C
Voltage on VDD	V _{DD}		V _{SS} –0.3	4.2	V
Voltage on VREGIN	V _{REGIN}	EXTVREG0 Not Used	V _{SS} –0.3	6.0	V
		EXTVREG0 Used	V _{SS} –0.3	3.6	V
Voltage on VIO	V _{IO}		V _{SS} –0.3	4.2	V
Voltage on VIOHD	V _{IOHD}		V _{SS} –0.3	6.5	V
Voltage on I/O pins,	V _{IN}	RESET, V _{IO} ≥ 3.3 V	V _{SS} –0.3	5.8	V
		RESET, V _{IO} < 3.3 V	V _{SS} –0.3	V _{IO} +2.5	V
		Port Bank 0, 1, and 2 I/O	V _{SS} -0.3	V _{IO} +0.3	V
		Port Bank 4 I/O	V _{SSHD} -0.3	V _{IOHD} +0.3	V
	4	·			·

*Note: VSS and VSSHD provide separate return current paths for device supplies, but are not isolated. They must always be connected to the same potential on board.

volatile data storage and allowing field upgrades of the firmware. User firmware has complete control of all peripherals and may individually shut down and gate the clocks of any or all peripherals for power savings.

The on-chip debugging interface (SWJ-DP) allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional while debugging.

Each device is specified for 1.8 to 3.6 V operation over the industrial temperature range (-40 to +85 °C). The Port I/O and RESET pins are powered from the IO supply voltage. The SiM3C1xx devices are available in 40-pin or 64-pin QFN, 64-pin or 80-pin TQFP, or 92-pin LGA packages. All package options are lead-free and RoHS compliant. See Table 5.1 for ordering information. A block diagram is included in Figure 4.1.

Figure 4.1. Precision32[™] SiM3C1xx Family Block Diagram

4.1.5. Device Power Modes

The SiM3C1xx devices feature four low power modes in addition to normal operating mode. Several peripherals provide wake up sources for these low power modes, including the Low-Power Timer (LPT0), RTC0 (alarms and oscillator failure notification), Comparator 0, and PMU Pin Wake.

In addition, all peripherals can have their clocks disabled to reduce power consumption whenever a peripheral is not being used using the clock control (CLKCTRL) registers.

4.1.5.1. Normal Mode (Power Mode 0)

Normal Mode is the default mode of the device. The core and peripherals are fully operational, and instructions are executed from flash memory.

4.1.5.2. Power Mode 1

In Power Mode 1 the core and peripherals are fully operational, with instructions executing from RAM. Compared with Normal Mode, the active power consumption of the device in PM1 is reduced. Additionally, at higher speeds in PM1, the core throughput can also be increased because RAM does not require additional wait states that reduce the instruction fetch speed.

4.1.5.3. Power Mode 2

In Power Mode 2 the core halts and any enabled peripherals continue to run at the selected clock speed. The power consumption in PM2 corresponds to the AHB and APB clocks left enabled, thus the power can be tuned to the optimal level for the needs of the application. To place the device in PM2, the core should execute a wait-for-interrupt (WFI) or wait-for-event (WFE) instruction. If the WFI instruction is called from an interrupt service routine, the interrupt that wakes the device from PM2 must be of a sufficient priority to be recognized by the core. It is recommended to perform both a DSB (Data Synchronization Barrier) and an ISB (Instruction Syncronization Barrier) operation prior to the WFI to ensure all bus accesses complete. When operating from the LFOSC0 with the DMACTRL0 AHB clock disabled, PM2 can achieve similar power consumption to PM3, but with the ability to wake on APB-clocked interrupts. For example, enabling only the APB clock to the Ports will allow the firmware to wake on a PMATCH0, PBEXT0 or PBEXT1 interrupt with minimal impact on the supply current.

4.1.5.4. Power Mode 3

In Power Mode 3, the AHB and APB clocks are halted. The device may only wake from enabled interrupt sources which do not require the APB clock (RTC0ALRM, RTC0FAIL, LPTIMER0, VDDLOW and VREGLOW). A special fast wake option allows the device to operate at a very low level from the RTC0TCLK or LFOSC0 oscillator while in PM3, but quickly switch to the faster LPOSC0 when the wake event occurs. Because the current consumption of these blocks is minimal, it is recommended to use the fast wake option.

The device will enter PM3 on a WFI or WFE instruction. Because all AHB master clocks are disabled, the LPOSC will automatically halt and go into a low-power suspended state. If the WFI instruction is called from an interrupt service routine, the interrupt that wakes the device from PM3 must be of a sufficient priority to be recognized by the core. It is recommended to perform both a DSB (Data Synchronization Barrier) and an ISB (Instruction Synchronization Barrier) operation prior to the WFI to ensure all bus access is complete.

4.1.5.5. Power Mode 9

In Power Mode 9, the core and all peripherals are halted, all clocks are stopped, and the pins and peripherals are set to a lower power mode. In addition, standard RAM contents are not preserved, though retention RAM contents are still available after exiting the power mode. This mode provides the lowest power consumption for the device, but requires an appropriate reset to exit. The available reset sources to wake from PM9 are controlled by the Power Management Unit (PMU).

Before entering PM9, the desired reset source(s) should be configured in the PMU. The SLEEPDEEP bit in the ARM System Control Register should be set, and the PMSEL bit in the RSTSRC0_CONFIG register must be set to indicate that PM9 is the desired power mode.

The device will enter PM9 on a WFI or WFE instruction, and remain in PM9 until a reset configured by the PMU occurs. It is recommended to perform both a DSB (Data Synchronization Barrier) and an ISB (Instruction Synchronization Barrier) operation prior to the WFI to ensure all bus access is complete.

4.3.1. PLL (PLL0)

The PLL module consists of a dedicated Digitally-Controlled Oscillator (DCO) that can be used in Free-Running mode without a reference frequency, Frequency-Locked to a reference frequency, or Phase-Locked to a reference frequency. The reference frequency for Frequency-Lock and Phase-Lock modes can use one of multiple sources (including the external oscillator) to provide maximum flexibility for different application needs. Because the PLL module generates its own clock, the DCO can be locked to a particular reference frequency and then moved to Free-Running mode to reduce system power and noise.

The PLL module includes the following features:

- Five output ranges with output frequencies ranging from 23 to 80 MHz.
- Multiple reference frequency inputs.
- Three output modes: free-running DCO, frequency-locked, and phase-locked.
- Ability to sense the rising edge or falling edge of the reference source.
- DCO frequency LSB dithering to provide finer average output frequencies.
- Spectrum spreading to reduce generated system noise.
- Low jitter and fast lock times.
- Ability to suspend all output frequency updates (including dithering and spectrum spreading) using the STALL bit during jitter-sensitive operations.

4.3.2. Low Power Oscillator (LPOSC0)

The Low Power Oscillator is the default AHB oscillator on SiM3C1xx devices and enables or disables automatically, as needed.

The Low Power Oscillator has the following features:

- 20 MHz and divided 2.5 MHz frequencies available for the AHB clock.
- Automatically starts and stops as needed.

4.3.3. Low Frequency Oscillator (LFOSC0)

The low frequency oscillator (LFOSC0) provides a low power internal clock source running at approximately 16.4 kHz for the RTC0 timer and other peripherals on the device. No external components are required to use the low frequency oscillator

4.3.4. External Oscillators (EXTOSC0)

The EXTOSC0 external oscillator circuit may drive an external crystal, ceramic resonator, capacitor, or RC network. A CMOS clock may also provide a clock input. The external oscillator output may be selected as the AHB clock or used to clock other modules independent of the AHB clock selection.

The External Oscillator control has the following features:

- Support for external crystal, RC, C, or CMOS oscillators.
- Support external CMOS frequencies from 10 kHz to 50 MHz and external crystal frequencies from 10 kHz to 30 MHz.
- Various drive strengths for flexible crystal oscillator support.
- Internal frequency divide-by-two option available.

SiM3C1xx

Ordering Part Number	Flash Memory (kB)	RAM (kB)	External Memory Interface (EMIF)	Maximum Number of EMIF Address/Data Pins	Digital Port I/Os (Total)	Digital Port I/Os with High Drive Capability	Number of SARADC0 Channels	Number of SARADC1 Channels	Number of CAPSENSE0 Channels	Number of Comparator 0/1 Inputs (+/-)	Number of PMU Pin Wake Sources	JTAG Debugging Interface	ETM Debugging Interface	Serial Wire Debugging Interface	Lead-free (RoHS Compliant)	Package
SiM3C167-B-GM	256	32	\checkmark	24	65	6	16	16	16	8/8	16	\checkmark	~	\checkmark	\checkmark	LGA-92
SiM3C167-B-GQ	256	32	\checkmark	24	65	6	16	16	16	8/8	16	\checkmark	\checkmark	\checkmark	\checkmark	TQFP-80
SiM3C166-B-GM	256	32	\checkmark	16	50	4	13	15	15	6/6	15	\checkmark		\checkmark	\checkmark	QFN-64
SiM3C166-B-GQ	256	32	\checkmark	16	50	4	13	15	15	6/6	15	\checkmark		\checkmark	\checkmark	TQFP-64
SiM3C164-B-GM	256	32			28	4	7	11	12	3/3	10			~	~	QFN-40
SiM3C157-B-GM	128	32	\checkmark	24	65	6	16	16	16	8/8	16	~	V	~	~	LGA-92
SiM3C157-B-GQ	128	32	\checkmark	24	65	6	16	16	16	8/8	16	\checkmark	V	\checkmark	\checkmark	TQFP-80
SiM3C156-B-GM	128	32	\checkmark	16	50	4	13	15	15	6/6	15	\checkmark		\checkmark	\checkmark	QFN-64
SiM3C156-B-GQ	128	32	\checkmark	16	50	4	13	15	15	6/6	15	\checkmark		\checkmark	~	TQFP-64
SiM3C154-B-GM	128	32			28	4	7	11	12	3/3	10			\checkmark	\checkmark	QFN-40
SiM3C146-B-GM	64	16	\checkmark	16	50	4	13	15	15	6/6	15	\checkmark		\checkmark	~	QFN-64
SiM3C146-B-GQ	64	16	\checkmark	16	50	4	13	15	15	6/6	15	\checkmark		\checkmark	\checkmark	TQFP-64
SiM3C144-B-GM	64	16			28	4	7	11	12	3/3	10			\checkmark	\checkmark	QFN-40
SiM3C136-B-GM	32	8	\checkmark	16	50	4	13	15	15	6/6	15	\checkmark		\checkmark	\checkmark	QFN-64
SiM3C136-B-GQ	32	8	\checkmark	16	50	4	13	15	15	6/6	15	V		\checkmark	\checkmark	TQFP-64
SiM3C134-B-GM	32	8			28	4	7	11	12	3/3	10			\checkmark	\checkmark	QFN-40

Table 5.1. Product Selection Guide

SiM3C1xx

Pin Name	Туре	Pin Numbers TQFP-80	Pin Numbers LGA-92	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
VSS	Ground	33 75	B15 B34							
VDD	Power (Core)	74	A44							
VIO	Power (I/O)	32 49 73	A19 A29 A43							
VREGIN	Power (Regulator)	76	A45							
VSSHD	Ground (High Drive)	4	B2							
VIOHD	Power (High Drive)	5	A3							
RESET	Active-low Reset	80	A48							
SWCLK/TCK	Serial Wire/JTAG	45	B20							
SWDIO/TMS	Serial Wire/JTAG	44	A27							
PB0.0	Standard I/O	72	B33	XBR0	\checkmark					ADC0.0
PB0.1	Standard I/O	71	B32	XBR0	\checkmark					ADC0.1 CS0.0
PB0.2	Standard I/O	70	A42	XBR0	\checkmark					ADC0.2 CS0.1
PB0.3	Standard I/O	69	B31	XBR0	\checkmark					ADC0.3 CS0.2
PB0.4	Standard I/O	68	A41	XBR0	~					ADC0.4 CS0.3
PB0.5	Standard I/O	67	B30	XBR0	\checkmark					ADC0.5 CS0.4
PB0.6	Standard I/O	66	A40	XBR0	\checkmark					CS0.5
PB0.7	Standard I/O	65	B29	XBR0	\checkmark					ADC0.6 CS0.6 IVC0.0

Table 6.1. Pin Definitions and alternate functions for SiM3C1x7

Table 6.1. Pin Definitions and alter	nate functions for SiM3C1x7 (Continued)
--------------------------------------	---

Pin Name	Туре	Pin Numbers TQFP-80	Pin Numbers LGA-92	Crossbar Capability (see Port Config Section)	Port Match	External Memory Interface (m = muxed mode)	Port-Mapped Level Shifter	Output Toggle Logic	External Trigger Inputs	Analog or Additional Functions
PB0.8	Standard I/O	64	A39	XBR0	~					ADC0.7 CS0.7 IVC0.1
PB0.9	Standard I/O	63	A38	XBR0	~					ADC0.8 RTC1
PB0.10	Standard I/O	62	A37	XBR0	\checkmark					RTC2
PB0.11	Standard I/O	61	D4	XBR0	\checkmark					ADC0.9 VREFGND
PB0.12	Standard I/O	60	A36	XBR0	~					ADC0.10 VREF
PB0.13	Standard I/O	59	A35	XBR0	\checkmark					IDAC0
PB0.14	Standard I/O	58	B27	XBR0	\checkmark					IDAC1
PB0.15	Standard I/O	57	A34	XBR0	\checkmark					XTAL1
PB1.0	Standard I/O	56	A33	XBR0	\checkmark					XTAL2
PB1.1	Standard I/O	55	B25	XBR0	\checkmark					ADC0.11
PB1.2/TRST	Standard I/O /JTAG	54	A32	XBR0	\checkmark					
PB1.3/TDO/ SWV	Standard I/O /JTAG/ Serial Wire Viewer	53	B24	XBR0	\checkmark					ADC0.12 ADC1.12
PB1.4/TDI	Standard I/O /JTAG	52	A31	XBR0	~					ADC0.13 ADC1.13
PB1.5/ETM0	Standard I/O /ETM	51	B23	XBR0	~					ADC0.14 ADC1.14
PB1.6/ETM1	Standard I/O /ETM	50	A30	XBR0	~					ADC0.15 ADC1.15
PB1.7/ETM2	Standard I/O /ETM	48	B22	XBR0	~					ADC1.11 CS0.8
PB1.8/ETM3	Standard I/O /ETM	47	B21	XBR0	V					ADC1.10 CS0.9

6.2. SiM3C1x6 Pin Definitions

Figure 6.8. TQFP-80 Package Drawing

Table 6.6.	TQFP-80	Package	Dimensions
------------	---------	---------	------------

Dimension	Min	Nominal	Max	
Α	_	—	1.20	
A1	0.05	—	0.15	
A2	0.95	1.00	1.05	
b	0.17	0.20	0.27	
С	0.09	—	0.20	
D	14.00 BSC			
D1	12.00 BSC			
е	0.50 BSC			
E	14.00 BSC			
E1	12.00 BSC			

Figure 6.11. QFN-64 Landing Diagram

Dimension	mm
C1	8.90
C2	8.90
E	0.50
X1	0.30
Y1	0.85
X2	4.25
Y2	4.25
Notes:	•

Table 6.9. QFN-64 Landing Diagram Dimensions

- 1. All dimensions shown are in millimeters (mm).
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.

Figure 6.13. TQFP-64 Landing Diagram

 Table 6.11. TQFP-64 Landing Diagram Dimensions

Dimension	Min	Мах		
C1	11.30	11.40		
C2	11.30	11.40		
E	0.50 BSC			
X	0.20	0.30		
Y	1.40	1.50		
 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This land pattern design is based on the IPC-7351 guidelines. 				

Figure 6.15. QFN-40 Landing Diagram

Dimension	mm
C1	5.90
C2	5.90
E	0.50
X1	0.30
Y1	0.85
X2	4.65
Y2	4.65

Table 6.13. QFN-40 Landing Diagram Dimensions

Notes:

- 1. All dimensions shown are in millimeters (mm).
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- **3.** All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a
 - Fabrication Allowance of 0.05 mm.

7. Revision Specific Behavior

This chapter details any known differences from behavior as stated in the device datasheet and reference manual. All known errata for the current silicon revision are rolled into this section at the time of publication. Any errata found after publication of this document will initially be detailed in a separate errata document until this datasheet is revised.

7.1. Revision Identification

The Lot ID Code on the top side of the device package can be used for decoding device revision information. Figures 7.1, 7.2, 7.3, and 7.4 show how to find the Lot ID Code on the top side of the device package.

In addition, firmware can determine the revision of the device by checking the DEVICEID registers.

These characters identify the device revision

Figure 7.1. LGA-92 SiM3C1x7 Revision Information

Figure 7.2. TQFP-80 SiM3C1x7 Revision Information

