Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	EBI/EMI, I ² C, IrDA, SmartCard, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	50
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K × 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32wg380f256-qfp100t

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1.3 Memory System Controller (MSC)

The Memory System Controller (MSC) is the program memory unit of the EFM32WG microcontroller. The flash memory is readable and writable from both the Cortex-M4 and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in the energy modes EM0 and EM1.

2.1.4 Direct Memory Access Controller (DMA)

The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving for instance data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 μ DMA controller licensed from ARM.

2.1.5 Reset Management Unit (RMU)

The RMU is responsible for handling the reset functionality of the EFM32WG.

2.1.6 Energy Management Unit (EMU)

The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32WG microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks.

2.1.7 Clock Management Unit (CMU)

The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32WG. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive.

2.1.8 Watchdog (WDOG)

The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a software failure.

2.1.9 Peripheral Reflex System (PRS)

The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS.

2.1.10 External Bus Interface (EBI)

The External Bus Interface provides access to external parallel interface devices such as SRAM, FLASH, ADCs and LCDs. The interface is memory mapped into the address bus of the Cortex-M4. This enables seamless access from software without manually manipulating the IO settings each time a read or write is performed. The data and address lines are multiplexed in order to reduce the number of pins required

to interface the external devices. The timing is adjustable to meet specifications of the external devices. The interface is limited to asynchronous devices.

2.1.11 TFT Direct Drive

The EBI contains a TFT controller which can drive a TFT via a 565 RGB interface. The TFT controller supports programmable display and port sizes and offers accurate control of frequency and setup and hold timing. Direct Drive is supported for TFT displays which do not have their own frame buffer. In that case TFT Direct Drive can transfer data from either on-chip memory or from an external memory device to the TFT at low CPU load. Automatic alpha-blending and masking is also supported for transfers through the EBI interface.

2.1.12 Universal Serial Bus Controller (USB)

The USB is a full-speed USB 2.0 compliant OTG host/device controller. The USB can be used in Device, On-the-go (OTG) Dual Role Device or Host-only configuration. In OTG mode the USB supports both Host Negotiation Protocol (HNP) and Session Request Protocol (SRP). The device supports both full-speed (12MBit/s) and low speed (1.5MBit/s) operation. The USB device includes an internal dedicated Descriptor-Based Scatter/Garther DMA and supports up to 6 OUT endpoints and 6 IN endpoints, in addition to endpoint 0. The on-chip PHY includes all OTG features, except for the voltage booster for supplying 5V to VBUS when operating as host.

2.1.13 Inter-Integrated Circuit Interface (I2C)

The I^2C module provides an interface between the MCU and a serial I^2C -bus. It is capable of acting as both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system. The interface provided to software by the I^2C module, allows both fine-grained control of the transmission process and close to automatic transfers. Automatic recognition of slave addresses is provided in all energy modes.

2.1.14 Universal Synchronous/Asynchronous Receiver/Transmitter (US-ART)

The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, IrDA and I2S devices.

2.1.15 Pre-Programmed USB/UART Bootloader

The bootloader presented in application note AN0042 is pre-programmed in the device at factory. The bootloader enables users to program the EFM32 through a UART or a USB CDC class virtual UART without the need for a debugger. The autobaud feature, interface and commands are described further in the application note.

2.1.16 Universal Asynchronous Receiver/Transmitter (UART)

The Universal Asynchronous serial Receiver and Transmitter (UART) is a very flexible serial I/O module. It supports full- and half-duplex asynchronous UART communication.

2.1.17 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)

The unique LEUARTTM, the Low Energy UART, is a UART that allows two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/

3.3.2 Environmental

Table 3.3. Environmental

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{ESDHBM}	ESD (Human Body Model HBM)	T _{AMB} =25°C			2000	V
V _{ESDCDM}	ESD (Charged De- vice Model, CDM)	T _{AMB} =25°C			750	V

Latch-up sensitivity passed: $\pm 100 \text{ mA}/1.5 \times \text{V}_{\text{SUPPLY}}(\text{max})$ according to JEDEC JESD 78 method Class II, 85°C.

3.4 Current Consumption

Table 3.4. Current Consumption

Symbol	Parameter	Condition	Min	Тур	Max	Unit	
		48 MHz HFXO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		225	236	μΑ/ MHz	
		48 MHz HFXO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		225		µA/ MHz	
		28 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		226	238	μΑ/ MHz	
		28 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		227		μΑ/ MHz	
		21 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		228	240	µA/ MHz	
	EM0 current. No prescaling. Running prime number cal-	21 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		229		µA/ MHz	
I _{EMO}	culation code from Flash. (Production test condition = 14 MHz)	14 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		230	243	µA/ MHz	
		14 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		231		µA/ MHz	
		11 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		232	245	µA/ MHz	
	11 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		233		µA/ MHz		
			6.6 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		238	250	µA/ MHz
		6.6 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		238		µA/ MHz	

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		1.2 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		271	286	μΑ/ MHz
		1.2 MHz HFRCO, all peripheral clocks disabled, $V_{\text{DD}}\text{=}$ 3.0 V, $T_{\text{AMB}}\text{=}85^{\circ}\text{C}$		275		μΑ/ MHz
		48 MHz HFXO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		63	75	μΑ/ MHz
		48 MHz HFXO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		65	76	μΑ/ MHz
		28 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		64	75	μΑ/ MHz
		28 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		65	77	μΑ/ MHz
		21 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		65	76	μΑ/ MHz
		21 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		66	78	μΑ/ MHz
	EM1 current (Pro-	14 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		67	79	μΑ/ MHz
I _{EM1}	tion = 14 MHz)	14 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		68	82	μΑ/ MHz
		11 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		68	81	µA/ MHz
		11 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		70	83	µA/ MHz
		6.6 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		74	87	µA/ MHz
		6.6 MHz HFRCO, all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		76	89	µA/ MHz
		1.2 MHz HFRCO. all peripher- al clocks disabled, V_{DD} = 3.0 V, T_{AMB} =25°C		106	120	µA/ MHz
		1.2 MHz HFRCO. all peripheral clocks disabled, V_{DD} = 3.0 V, T_{AMB} =85°C		112	129	μΑ/ MHz
I _{EM2}	EM2 current	EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, V_{DD} = 3.0 V, T_{AMB} =25°C		0.95 ¹	1.7 ¹	μA

Figure 3.3. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 21MHz

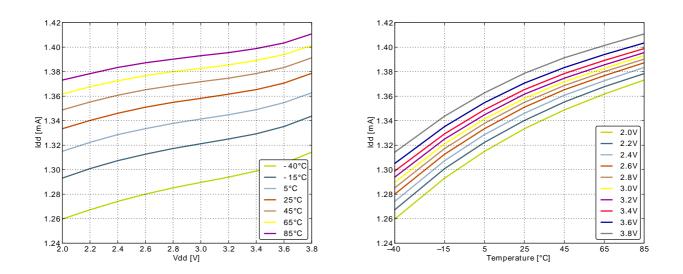
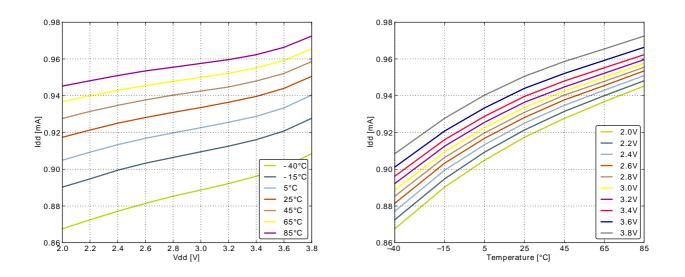



Figure 3.4. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 14MHz

Figure 3.5. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 11MHz

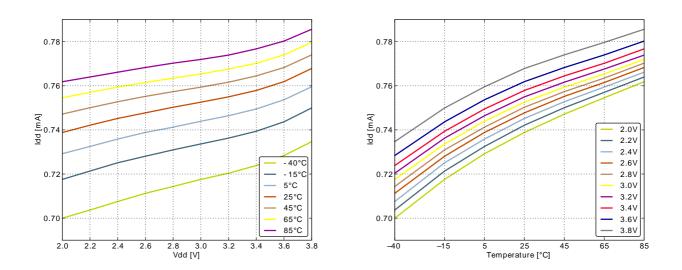
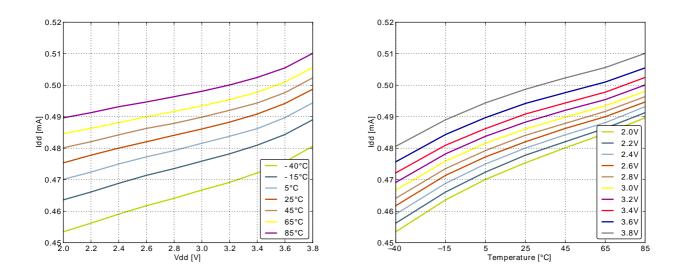
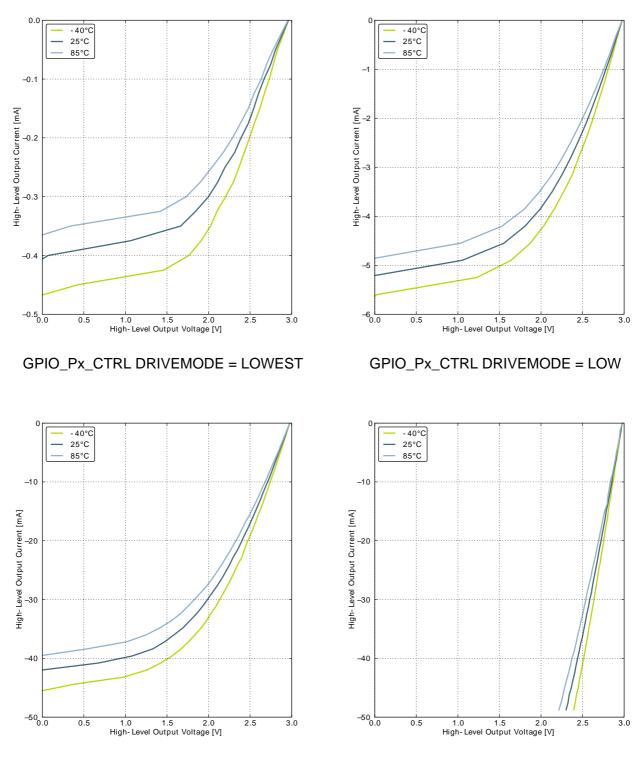




Figure 3.6. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 6.6MHz

Figure 3.14. Typical High-Level Output Current, 3V Supply Voltage

GPIO_Px_CTRL DRIVEMODE = STANDARD

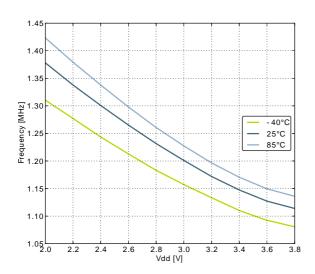

3.9.4 HFRCO

Table 3.12. HFRCO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		28 MHz frequency band	27.5	28.0	28.5	MHz
		21 MHz frequency band	20.6	21.0	21.4	MHz
f	Oscillation frequen-	14 MHz frequency band	13.7	14.0	14.3	MHz
f _{HFRCO}	су, V _{DD} = 3.0 V, Т _{АМВ} =25°С	11 MHz frequency band	10.8	11.0	11.2	MHz
		7 MHz frequency band	6.48	6.60	6.72	MHz
		1 MHz frequency band	1.15	1.20	1.25	MHz
t _{HFRCO_settling}	Settling time after start-up	f _{HFRCO} = 14 MHz		0.6		Cycles
		f _{HFRCO} = 28 MHz		165	215	μA
		f _{HFRCO} = 21 MHz		134	175	μA
1	Current consump-	f _{HFRCO} = 14 MHz		106	140	μA
I _{HFRCO}	tion	f _{HFRCO} = 11 MHz		94	125	μA
		f _{HFRCO} = 6.6 MHz		77	105	μA
		f _{HFRCO} = 1.2 MHz		25	40	μA
DC _{HFRCO}	Duty cycle	f _{HFRCO} = 14 MHz	48.5	50	51	%
TUNESTEP _{H-} FRCO	Frequency step for LSB change in TUNING value			0.3 ¹		%

¹The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions.

Figure 3.18. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature

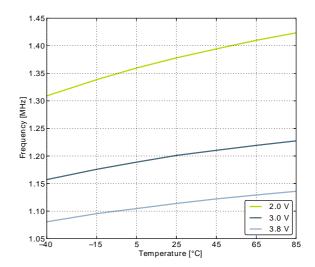


Figure 3.22. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature

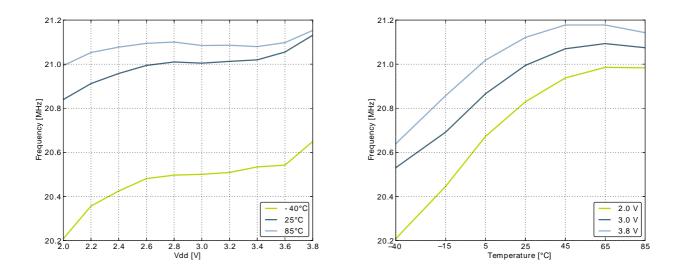
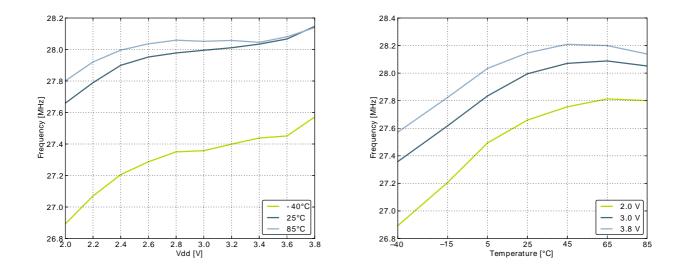



Figure 3.23. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature

3.9.5 AUXHFRCO

Table 3.13. AUXHFRCO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		28 MHz frequency band	27.5	28.0	28.5	MHz
		21 MHz frequency band	20.6	21.0	21.4	MHz
f	Oscillation frequen-	14 MHz frequency band	13.7	14.0	14.3	MHz
[†] AUXHFRCO	cy, V _{DD} = 3.0 V, T _{AMB} =25°C	11 MHz frequency band	10.8	11.0	11.2	MHz
		7 MHz frequency band	6.48	6.60	6.72	MHz
		1 MHz frequency band	1.15	1.20	1.25	MHz
t _{AUXHFRCO_settlir}	_g Settling time after start-up	f _{AUXHFRCO} = 14 MHz		0.6		Cycles
DC _{AUXHFRCO}	Duty cycle	f _{AUXHFRCO} = 14 MHz	48.5	50	51	%
TUNESTEP _{AUX} HFRCO	Frequency step for LSB change in TUNING value			0.3 ¹		%

¹The TUNING field in the CMU_AUXHFRCOCTRL register may be used to adjust the AUXHFRCO frequency. There is enough adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the AUXHFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions.

3.9.6 ULFRCO

Table 3.14. ULFRCO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{ULFRCO}	Oscillation frequen- cy	25°C, 3V	0.7		1.75	kHz
TC _{ULFRCO}	Temperature coeffi- cient			0.05		%/°C
VC _{ULFRCO}	Supply voltage co- efficient			-18.2		%/V

3.10 Analog Digital Converter (ADC)

Table 3.15. ADC

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{ADCIN}	Input voltage range	Single ended	0		V _{REF}	V
V ADCIN	input voltage range	Differential	-V _{REF} /2		V _{REF} /2	V
VADCREFIN	Input range of exter- nal reference volt- age, single ended and differential		1.25		V _{DD}	V
V _{ADCREFIN_CH7}	Input range of ex- ternal negative ref- erence voltage on channel 7	See V _{ADCREFIN}	0		V _{DD} - 1.1	V
V _{ADCREFIN_CH6}	Input range of ex- ternal positive ref-	See V _{ADCREFIN}	0.625		V _{DD}	V

Figure 3.24. Integral Non-Linearity (INL)

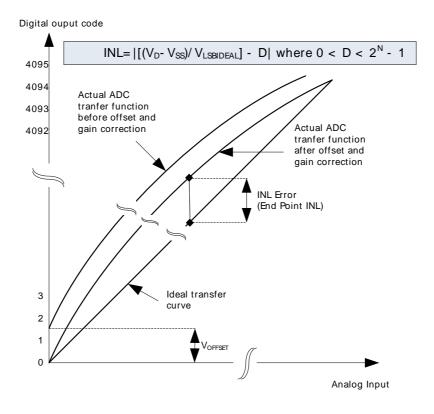
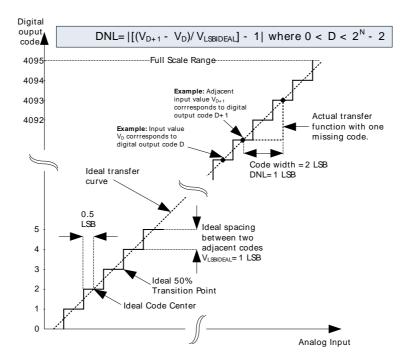
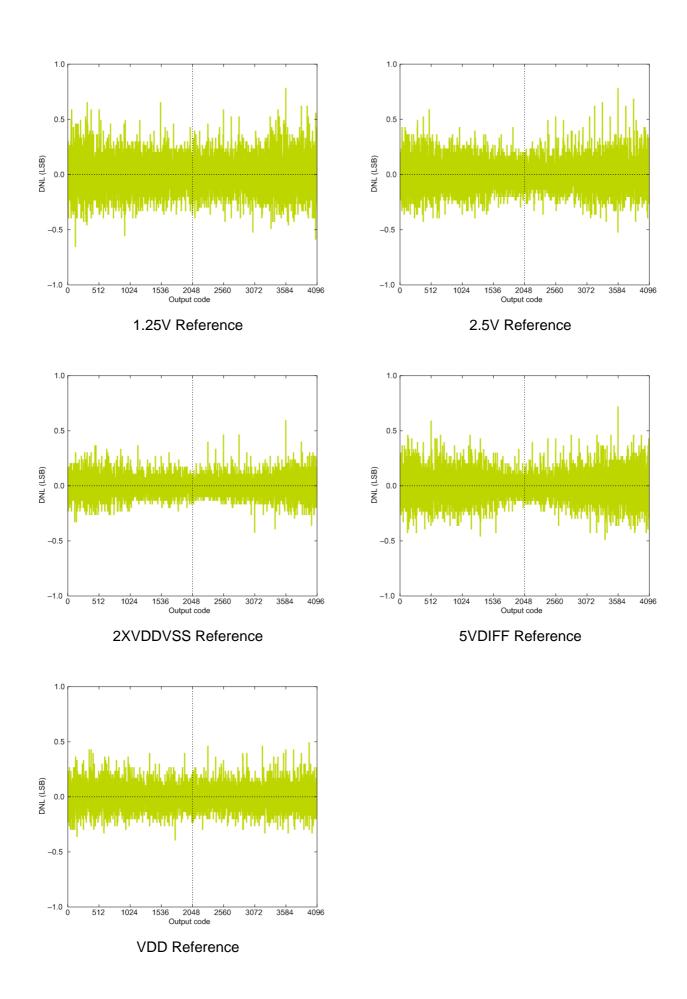




Figure 3.25. Differential Non-Linearity (DNL)

Figure 3.28. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		V _{out} =1V, RESSEL=0, 0.1 Hz <f<1 mhz,="" opaxhcmdis="0</td"><td></td><td>196</td><td></td><td>μV_{RMS}</td></f<1>		196		μV _{RMS}
		V _{out} =1V, RESSEL=0, 0.1 Hz <f<1 mhz,="" opaxhcmdis="1</td"><td></td><td>229</td><td></td><td>μV_{RMS}</td></f<1>		229		μV _{RMS}
		RESSEL=7, 0.1 Hz <f<10 khz,<br="">OPAxHCMDIS=0</f<10>		1230		μV _{RMS}
		RESSEL=7, 0.1 Hz <f<10 khz,<br="">OPAxHCMDIS=1</f<10>		2130		μV _{RMS}
		RESSEL=7, 0.1 Hz <f<1 mhz,<br="">OPAxHCMDIS=0</f<1>		1630		μV _{RMS}
		RESSEL=7, 0.1 Hz <f<1 mhz,<br="">OPAxHCMDIS=1</f<1>		2590		μV _{RMS}

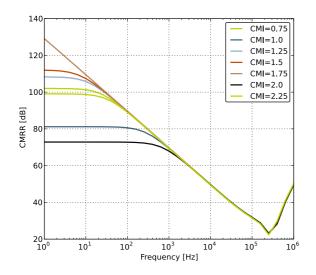
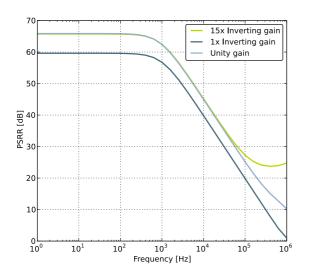
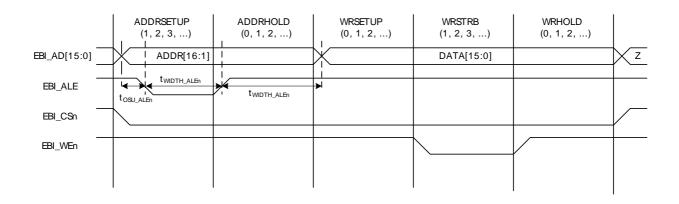



Figure 3.33. OPAMP Positive Power Supply Rejection Ratio

Table 3.20. EBI Write Enable Timing

Symbol	Parameter	Min	Тур	Max	Unit
t _{OH_WEn¹²³⁴}	Output hold time, from trailing EBI_WEn/ EBI_NANDWEn edge to EBI_AD, EBI_A, EBI_CSn, EBI_BLn invalid	-6.00 + (WRHOLD * thfcoreclk)			ns
t _{OSU_WEn 12345}	Output setup time, from EBI_AD, EBI_A, EBI_CSn, EBI_BLn valid to leading EBI_WEn/ EBI_NANDWEn edge	-14.00 + (WRSETUP * t _{HFCORECLK})			ns
twidth_wen ¹²³⁴⁵	EBI_WEn/EBI_NANDWEn pulse width	-7.00 + ((WRSTRB +1) * t _{HFCORECLK})			ns

¹Applies for all addressing modes (figure only shows D16 addressing mode)


²Applies for both EBI_WEn and EBI_NANWEn (figure only shows EBI_WEn)

³Applies for all polarities (figure only shows active low signals)

 $^4\text{Measurement}$ done at 10% and 90% of V_{DD} (figure shows 50% of $_{\text{VDD}})$

⁵ The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFWE=0. The leading edge of EBI_WEn can be moved to the right by setting HALFWE=1. This decreases the length of t_{WIDTH_WEn} and increases the length of t_{OSU_WEn} by 1/2 * $t_{HFCLKNODIV}$.

Figure 3.39. EBI Address Latch Enable Related Output Timing

Table 3.21. EBI Address Latch Enable Related Output Timing

Symbol	Parameter	Min	Тур	Мах	Unit
t _{OH_ALEn 1234}	Output hold time, from trailing EBI_ALE edge to EBI_AD invalid	-6.00 + (AD- DRHOLD ⁵ * t _{HFCORE-} CLK)			ns
t _{OSU_ALEn 124}	Output setup time, from EBI_AD valid to leading EBI_ALE edge	-13.00 + (0 * t _{HFCORE-} _{CLK})			ns
twidth_Alen ¹²³⁴	EBI_ALEn pulse width	-7.00 + (ADDRSET- UP+1) * t _{HFCORECLK})			ns

¹Applies to addressing modes D8A24ALE and D16A16ALE (figure only shows D16A16ALE)

²Applies for all polarities (figure only shows active low signals)

 3 The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFALE=0. The trailing edge of EBI_ALE can be moved to the left by setting HALFALE=1. This decreases the length of t_{WIDTH_ALEn} and increases the length of tOH_ALEn by t_{HFCORECLK} - 1/2 * t_{HFCLKNODIV}.

 4 Measurement done at 10% and 90% of V_DD (figure shows 50% of $_{\text{VDD}})$

⁵Figure only shows a write operation. For a multiplexed read operation the address hold time is controlled via the RDSETUP state instead of via the ADDRHOLD state.

Figure 3.40. EBI Read Enable Related Output Timing

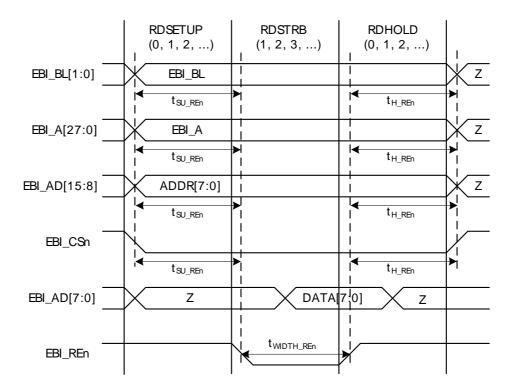


Table 3.22. EBI Read Enable Related Output Timing

Symbol	Parameter	Min	Тур	Max	Unit
t _{OH_REn 1234}	Output hold time, from trailing EBI_REn/ EBI_NANDREn edge to EBI_AD, EBI_A, EBI_CSn, EBI_BLn invalid	-10.00 + (RDHOLD * t _{HFCORECLK})			ns
tosu_REn ¹²³⁴⁵	Output setup time, from EBI_AD, EBI_A, EBI_CSn, EBI_BLn valid to leading EBI_REn/EBI_NANDREn edge	-10.00 + (RDSETUP * t _{HFCORECLK})			ns
twidth_REn ¹²³⁴⁵⁶	EBI_REn pulse width	-9.00 + ((RD- STRB+1) * t _{HFCORE-} _{CLK})			ns

¹Applies for all addressing modes (figure only shows D8A8. Output timing for EBI_AD only applies to multiplexed addressing modes D8A24ALE and D16A16ALE)

²Applies for both EBI_REn and EBI_NANDREn (figure only shows EBI_REn)

³Applies for all polarities (figure only shows active low signals)

 $^4\text{Measurement}$ done at 10% and 90% of V_{DD} (figure shows 50% of $_{\text{VDD}})$

⁵The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFRE=0. The leading edge of EBI_REn can be moved to the right by setting HALFRE=1. This decreases the length of t_{WIDTH_REn} and increases the length of t_{OSU_REn} by 1/2 * $t_{HFCLKNODIV}$.

⁶When page mode is used, RDSTRB is replaced by RDPA for page hits.

LQFP100 Pin# and Name		Pin Alternate Functionality / Description									
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other					
-						ETM_TD0 #3					
4	PA3		EBI_AD12 #0/1/2	TIM0_CDTI0 #0	U0_TX #2	LES_ALTEX2 #0 ETM_TD1 #3					
5	PA4		EBI_AD13 #0/1/2	TIM0_CDTI1 #0	U0_RX #2	LES_ALTEX3 #0 ETM_TD2 #3					
6	PA5		EBI_AD14 #0/1/2	TIM0_CDTI2 #0	LEU1_TX #1	LES_ALTEX4 #0 ETM_TD3 #3					
7	PA6		EBI_AD15 #0/1/2		LEU1_RX #1	ETM_TCLK #3 GPIO_EM4WU1					
8	IOVDD_0	Digital IO power supply ().								
9	PB0		EBI_A16 #0/1/2	TIM1_CC0 #2							
10	PB1		EBI_A17 #0/1/2	TIM1_CC1 #2							
11	PB2		EBI_A18 #0/1/2	TIM1_CC2 #2							
12	PB3		EBI_A19 #0/1/2	PCNT1_S0IN #1	US2_TX #1						
13	PB4		EBI_A20 #0/1/2	PCNT1_S1IN #1	US2_RX #1						
14	PB5		EBI_A21 #0/1/2		US2_CLK #1						
15	PB6		EBI_A22 #0/1/2		US2_CS #1						
16	VSS	Ground									
17	IOVDD_1	Digital IO power supply	1.								
18	PC0	ACMP0_CH0 DAC0_OUT0ALT #0/ OPAMP_OUT0ALT	EBI_A23 #0/1/2	TIM0_CC1 #4 PCNT0_S0IN #2	US0_TX #5 US1_TX #0 I2C0_SDA #4	LES_CH0 #0 PRS_CH2 #0					
19	PC1	ACMP0_CH1 DAC0_OUT0ALT #1/ OPAMP_OUT0ALT	EBI_A24 #0/1/2	TIM0_CC2 #4 PCNT0_S1IN #2	US0_RX #5 US1_RX #0 I2C0_SCL #4	LES_CH1 #0 PRS_CH3 #0					
20	PC2	ACMP0_CH2 DAC0_OUT0ALT #2/ OPAMP_OUT0ALT	EBI_A25 #0/1/2	TIM0_CDTI0 #4	US2_TX #0	LES_CH2 #0					
21	PC3	ACMP0_CH3 DAC0_OUT0ALT #3/ OPAMP_OUT0ALT	EBI_NANDREn #0/1/2	TIM0_CDTI1 #4	US2_RX #0	LES_CH3 #0					
22	PC4	ACMP0_CH4 DAC0_P0 / OPAMP_P0	EBI_A26 #0/1/2	TIM0_CDTI2 #4 LETIM0_OUT0 #3 PCNT1_S0IN #0	US2_CLK #0 I2C1_SDA #0	LES_CH4 #0					
23	PC5	ACMP0_CH5 DAC0_N0 / OPAMP_N0	EBI_NANDWEn #0/1/2	LETIM0_OUT1 #3 PCNT1_S1IN #0	US2_CS #0 I2C1_SCL #0	LES_CH5 #0					
24	PB7	LFXTAL_P		TIM1_CC0 #3	US0_TX #4 US1_CLK #0						
25	PB8	LFXTAL_N		TIM1_CC1 #3	US0_RX #4 US1_CS #0						
26	PA7		EBI_CSTFT #0/1/2								
27	PA8		EBI_DCLK #0/1/2	TIM2_CC0 #0							
28	PA9		EBI_DTEN #0/1/2	TIM2_CC1 #0							
29	PA10		EBI_VSNC #0/1/2	TIM2_CC2 #0							
30	PA11		EBI_HSNC #0/1/2								
31	IOVDD_2	Digital IO power supply 2.									
32	VSS	Ground									

LQFP100 Pin# and Name		Pin Alternate Functionality / Description									
Pin #	Pin Name	Analog	EBI	Timers	Communication	Other					
61	PE1		EBI_A08 #0/1/2	TIM3_CC1 #1 PCNT0_S1IN #1	U0_RX #1 I2C1_SCL #2						
62	PE2	BU_VOUT	EBI_A09 #0	TIM3_CC2 #1	U1_TX #3	ACMP0_O #1					
63	PE3	BU_STAT	EBI_A10 #0		U1_RX #3	ACMP1_O #1					
64	PE4		EBI_A11 #0/1/2		US0_CS #1						
65	PE5		EBI_A12 #0/1/2		US0_CLK #1						
66	PE6		EBI_A13 #0/1/2		US0_RX #1						
67	PE7		EBI_A14 #0/1/2		US0_TX #1						
68	PC8	ACMP1_CH0	EBI_A15 #0/1/2	TIM2_CC0 #2	US0_CS #2	LES_CH8 #0					
69	PC9	ACMP1_CH1	EBI_A09 #1/2	TIM2_CC1 #2	US0_CLK #2	LES_CH9 #0 GPIO_EM4WU2					
70	PC10	ACMP1_CH2	EBI_A10 #1/2	TIM2_CC2 #2	US0_RX #2	LES_CH10 #0					
71	PC11	ACMP1_CH3	EBI_ALE #1/2		US0_TX #2	LES_CH11 #0					
72	USB_VREGI	USB Input to internal 3.3 V regulator.									
73	USB_VREGO	USB Decoupling for internal 3.3 V USB regulator and regulator output.									
74	PF10				U1_TX #1 USB_DM						
75	PF11				U1_RX #1 USB_DP						
76	PF0			TIM0_CC0 #5 LETIM0_OUT0 #2	US1_CLK #2 LEU0_TX #3 I2C0_SDA #5	DBG_SWCLK #0/1/2/3					
77	PF1			TIM0_CC1 #5 LETIM0_OUT1 #2	US1_CS #2 LEU0_RX #3 I2C0_SCL #5	DBG_SWDIO #0/1/2/3 GPIO_EM4WU3					
78	PF2		EBI_ARDY #0/1/2	TIM0_CC2 #5	LEU0_TX #4	ACMP1_O #0 DBG_SWO #0 GPIO_EM4WU4					
79	USB_VBUS	USB 5.0 V VBUS input.									
80	PF12				USB_ID						
81	PF5		EBI_REn #0/2	TIM0_CDTI2 #2/5	USB_VBUSEN #0	PRS_CH2 #1					
82	IOVDD_5	Digital IO power supply 5.									
83	VSS	Ground									
84	PF6		EBI_BL0 #0/1/2	TIM0_CC0 #2	U0_TX #0						
85	PF7		EBI_BL1 #0/1/2	TIM0_CC1 #2	U0_RX #0						
86	PF8		EBI_WEn #1	TIM0_CC2 #2		ETM_TCLK #1					
87	PF9		EBI_REn #1			ETM_TD0 #1					
88	PD9		EBI_CS0 #0/1/2								
89	PD10		EBI_CS1 #0/1/2								
90	PD11		EBI_CS2 #0/1/2								
91	PD12		EBI_CS3 #0/1/2								
92	PE8		EBI_AD00 #0/1/2	PCNT2_S0IN #1		PRS_CH3 #1					
93	PE9		EBI_AD01 #0/1/2	PCNT2_S1IN #1							
94	PE10		EBI_AD02 #0/1/2	TIM1_CC0 #1	US0_TX #0	BOOT_TX					

EFM[®]32

...the world's most energy friendly microcontrollers

Alternate	LOCATION								
Functionality	0	1	2	3	4	5	6	Description	
EBI_A08	PE1	PE1	PE1					External Bus Interface (EBI) address output pin 08.	
EBI_A09	PE2	PC9	PC9					External Bus Interface (EBI) address output pin 09.	
EBI_A10	PE3	PC10	PC10					External Bus Interface (EBI) address output pin 10.	
EBI_A11	PE4	PE4	PE4					External Bus Interface (EBI) address output pin 11.	
EBI_A12	PE5	PE5	PE5					External Bus Interface (EBI) address output pin 12.	
EBI_A13	PE6	PE6	PE6					External Bus Interface (EBI) address output pin 13.	
EBI_A14	PE7	PE7	PE7					External Bus Interface (EBI) address output pin 14.	
EBI_A15	PC8	PC8	PC8					External Bus Interface (EBI) address output pin 15.	
EBI_A16	PB0	PB0	PB0					External Bus Interface (EBI) address output pin 16.	
EBI_A17	PB1	PB1	PB1					External Bus Interface (EBI) address output pin 17.	
EBI_A18	PB2	PB2	PB2					External Bus Interface (EBI) address output pin 18.	
EBI_A19	PB3	PB3	PB3					External Bus Interface (EBI) address output pin 19.	
EBI_A20	PB4	PB4	PB4					External Bus Interface (EBI) address output pin 20.	
EBI_A21	PB5	PB5	PB5					External Bus Interface (EBI) address output pin 21.	
EBI_A22	PB6	PB6	PB6					External Bus Interface (EBI) address output pin 22.	
EBI_A23	PC0	PC0	PC0					External Bus Interface (EBI) address output pin 23.	
EBI_A24	PC1	PC1	PC1					External Bus Interface (EBI) address output pin 24.	
EBI_A25	PC2	PC2	PC2					External Bus Interface (EBI) address output pin 25.	
EBI_A26	PC4	PC4	PC4					External Bus Interface (EBI) address output pin 26.	
EBI_A27	PD2	PD2	PD2					External Bus Interface (EBI) address output pin 27.	
EBI_AD00	PE8	PE8	PE8					External Bus Interface (EBI) address and data input / out- put pin 00.	
EBI_AD01	PE9	PE9	PE9					External Bus Interface (EBI) address and data input / out- put pin 01.	
EBI_AD02	PE10	PE10	PE10					External Bus Interface (EBI) address and data input / out- put pin 02.	
EBI_AD03	PE11	PE11	PE11					External Bus Interface (EBI) address and data input / out- put pin 03.	
EBI_AD04	PE12	PE12	PE12					External Bus Interface (EBI) address and data input / out- put pin 04.	
EBI_AD05	PE13	PE13	PE13					External Bus Interface (EBI) address and data input / out- put pin 05.	
EBI_AD06	PE14	PE14	PE14					External Bus Interface (EBI) address and data input / out- put pin 06.	
EBI_AD07	PE15	PE15	PE15					External Bus Interface (EBI) address and data input / out- put pin 07.	
EBI_AD08	PA15	PA15	PA15					External Bus Interface (EBI) address and data input / out- put pin 08.	
EBI_AD09	PA0	PA0	PA0					External Bus Interface (EBI) address and data input / out- put pin 09.	
EBI_AD10	PA1	PA1	PA1					External Bus Interface (EBI) address and data input / out- put pin 10.	
EBI_AD11	PA2	PA2	PA2					External Bus Interface (EBI) address and data input / out- put pin 11.	
EBI_AD12	PA3	PA3	PA3					External Bus Interface (EBI) address and data input / out- put pin 12.	
EBI_AD13	PA4	PA4	PA4					External Bus Interface (EBI) address and data input / out- put pin 13.	

Table 4.4. LQFP100 (Dimensions in mm)

		SYMBOL	MIN	NOM	MAX		
total thickness	А			1.6			
stand off	A1	0.05		0.15			
mold thickness	mold thickness			1.4	1.45		
lead width (plating)	b	0.17	0.2	0.27		
lead width	lead width				0.23		
L/F thickness (platin	L/F thickness (plating)				0.2		
lead thickness	lead thickness			0.09			
	х	D	16 BSC				
	У	E	16 BSC				
body size	х	D1	14 BSC				
body size	У	E1	14 BSC				
lead pitch		е	0.5 BSC				
		L	0.45	0.6	0.75		
footprint		L1	1 REF				
				3.5°	7°		
	θ2	11°	12°	13°			
				12°	13°		
	R1	0.08		0.2			
		S	0.2				
package edge tolerar	aaa	0.2					
lead edge tolerance	bbb	0.2					
coplanarity		CCC	0.08				
lead offset		ddd	0.08				
mold flatness		eee		0.05			

The LQFP100 Package uses Nickel-Palladium-Gold preplated leadframe.

All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).

For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx

7 Revision History

7.1 Revision 1.40

- June 13th, 2014 Removed "Preliminary" markings. Corrected single power supply voltage minimum value from 1.85V to 1.98V. Added AUXHFRCO to blockdiagram and electrical characteristics. Updated current consumption data. Updated transition between energy modes data. Updated power management data. Updated GPIO data. Updated LFRCO, HFRCO and ULFRCO data. Updated ADC data. Updated DAC data. Updated OPAMP data. Updated ACMP data. Updated VCMP data. Added EBI timing chapter. 7.2 Revision 1.31 November 21st, 2013 Updated figures. Updated errata-link.
 - Updated chip marking.

Added link to Environmental and Quality information.

Re-added missing DAC-data.

7.3 Revision 1.30

September 30th, 2013

Added I2C characterization data.

Added SPI characterization data.

Corrected the DAC and OPAMP2 pin sharing information in the Alternate Functionality Pinout section.

Added the USB bootloader information.