Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Obsolete | | Core Processor | Z8 | | Core Size | 8-Bit | | Speed | 8MHz | | Connectivity | - | | Peripherals | HLVD, POR, WDT | | Number of I/O | 24 | | Program Memory Size | 8KB (8K x 8) | | Program Memory Type | OTP | | EEPROM Size | - | | RAM Size | 237 x 8 | | Voltage - Supply (Vcc/Vdd) | 2V ~ 5.5V | | Data Converters | - | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 125°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 28-SSOP (0.209", 5.30mm Width) | | Supplier Device Package | - | | Purchase URL | https://www.e-xfl.com/product-detail/zilog/zgp323hah2808g | # **Development Features** Table 2 lists the features of ZiLOG® SZGP323H members. Table 2. Features | Device | OTP (KB) | RAM (Bytes) | I/O Lines | Voltage Range | |---------------------------|--------------|-------------|--------------|---------------| | ZGP323H OTP MCU
Family | 4, 8, 16, 32 | 237 | 32, 24 or 16 | 2.0V-5.5V | - Low power consumption—18mW (typical) - T = Temperature - $S = Standard 0^{\circ} to +70^{\circ}C$ - $E = Extended -40^{\circ} to +105^{\circ}C$ - A = Automotive -40 $^{\circ}$ to +125 $^{\circ}$ C - Three standby modes: - STOP— (typical 1.8µA) - HALT— (typical 0.8mA) - Low voltage reset - Special architecture to automate both generation and reception of complex pulses or signals: - One programmable 8-bit counter/timer with two capture registers and two load registers - One programmable 16-bit counter/timer with one 16-bit capture register pair and one 16-bit load register pair - Programmable input glitch filter for pulse reception - Six priority interrupts - Three external - Two assigned to counter/timers - One low-voltage detection interrupt - Low voltage detection and high voltage detection flags - Programmable Watch-Dog Timer/Power-On Reset (WDT/POR) circuits - Two independent comparators with programmable interrupt polarity - Programmable EPROM options - Port 0: 0–3 pull-up transistors - Port 0: 4-7 pull-up transistors PS023803-0305 Development Features Port 1: 0–3 pull-up transistors Port 1: 4–7 pull-up transistors Port 2: 0–7 pull-up transistors EPROM Protection WDT enabled at POR # **General Description** The ZGP323H is an OTP-based member of the MCU family of infrared microcontrollers. With 237B of general-purpose RAM and up to 32KB of OTP, ZiLOG[®], s CMOS microcontrollers offer fast-executing, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, automated pulse generation/reception, and internal key-scan pull-up transistors. The ZGP323H architecture (Figure 1) is based on ZiLOG's 8-bit microcontroller core with an Expanded Register File allowing access to register-mapped peripherals, input/output (I/O) circuits, and powerful counter/timer circuitry. The Z8® offers a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features that are useful in many consumer, automotive, computer peripheral, and battery-operated hand-held applications. There are three basic address spaces available to support a wide range of configurations: Program Memory, Register File and Expanded Register File. The register file is composed of 256 Bytes (B) of RAM. It includes 4 I/O port registers, 16 control and status registers, and 236 general-purpose registers. The Expanded Register File consists of two additional register groups (F and D). To unburden the program from coping with such real-time problems as generating complex waveforms or receiving and demodulating complex waveform/pulses, the Z8 GP OTP offers a new intelligent counter/timer architecture with 8-bit and 16-bit counter/timers (see Figure 2). Also included are a large number of user-selectable modes and two on-board comparators to process analog signals with separate reference voltages. **Note:** All signals with an overline, " ", are active Low. For example, B/W, in which WORD is active Low, and B/W, in which BYTE is active Low. Power connections use the conventional descriptions listed in Table 3. PS023803-0305 General Description Table 6. 40- and 48-Pin Configuration (Continued) | Table of 40 all | a 40 i iii Ooiiiigai | ation (continued | |-----------------|----------------------|------------------| | 40-Pin PDIP # | 48-Pin SSOP # | Symbol | | 33 | 40 | P13 | | 8 | 9 | P14 | | 9 | 10 | P15 | | 12 | 15 | P16 | | 13 | 16 | P17 | | 35 | 42 | P20 | | 36 | 43 | P21 | | 37 | 44 | P22 | | 38 | 45 | P23 | | 39 | 46 | P24 | | 2 | 2 | P25 | | 3 | 3 | P26 | | 4 | 4 | P27 | | 16 | 19 | P31 | | 17 | 20 | P32 | | 18 | 21 | P33 | | 19 | 22 | P34 | | 22 | 26 | P35 | | 24 | 28 | P36 | | 23 | 27 | P37 | | 20 | 23 | NC | | 40 | 47 | NC | | 1 | 1 | NC | | 21 | 25 | RESET | | 15 | 18 | XTAL1 | | 14 | 17 | XTAL2 | | 11 | 12, 13 | V_{DD} | | 31 | 24, 37, 38 | V_{SS} | | 25 | 29 | Pref1/P30 | | | 48 | NC | | | 6 | NC | | | 14 | NC | | | 30 | NC | | | 36 | NC | | • | | | PS023803-0305 Pin Description ## **AC Characteristics** Figure 8 and Table 13 describe the Alternating Current (AC) characteristics. Figure 8. AC Timing Diagram PS023803-0305 AC Characteristics #### **Comparator Inputs** In analog mode, P31 and P32 have a comparator front end. The comparator reference is supplied to P33 and Pref1. In this mode, the P33 internal data latch and its corresponding IRQ1 are diverted to the SMR sources (excluding P31, P32, and P33) as indicated in Figure 12 on page 22. In digital mode, P33 is used as D3 of the Port 3 input register, which then generates IRQ1. Note: Comparators are powered down by entering Stop Mode. For P31–P33 to be used in a Stop Mode Recovery source, these inputs must be placed into digital mode. #### **Comparator Outputs** These channels can be programmed to be output on P34 and P37 through the PCON register. # **RESET (Input, Active Low)** Reset initializes the MCU and is accomplished either through Power-On, Watch-Dog Timer, Stop Mode Recovery, Low-Voltage detection, or external reset. During Power-On Reset and Watch-Dog Timer Reset, the internally generated reset drives the reset pin Low for the POR time. Any devices driving the external reset line must be open-drain to avoid damage from a possible conflict during reset conditions. Pull-up is provided internally. When the Z8 GP asserts (Low) the RESET pin, the internal pull-up is disabled. The Z8 GP does not assert the RESET pin when under VBO. Note: The external Reset does not initiate an exit from STOP mode. # **Functional Description** This device incorporates special functions to enhance the Z8[®], functionality in consumer and battery-operated applications. ## **Program Memory** This device addresses up to 32KB of OTP memory. The first 12 Bytes are reserved for interrupt vectors. These locations contain the six 16-bit vectors that correspond to the six available interrupts. #### **RAM** This device features 256B of RAM. See Figure 14. 29 The upper nibble of the register pointer (see Figure 16) selects which working register group, of 16 bytes in the register file, is accessed out of the possible 256. The lower nibble selects the expanded register file bank and, in the case of the Z8 GP family, banks 0, F, and D are implemented. A $_{\rm OH}$ in the lower nibble allows the normal register file (bank 0) to be addressed. Any other value from $_{\rm 1H}$ to $_{\rm FH}$ exchanges the lower 16 registers to an expanded register bank. Figure 16. Register Pointer Example: Z8 GP: (See Figure 15 on page 28) R253 RP = 00h R0 = Port 0 R1 = Port 1 R2 = Port 2 R3 = Port 3 But if: R253 RP = 0Dh R0 = CTR0 R1 = CTR1 R2 = CTR2 R3 = Reserved ## Capture_INT_Mask Set this bit to allow an interrupt when data is captured into either LO8 or HI8 upon a positive or negative edge detection in demodulation mode. #### **Counter INT Mask** Set this bit to allow an interrupt when T8 has a timeout. #### P34_Out This bit defines whether P34 is used as a normal output pin or the T8 output. #### T8 and T16 Common Functions—CTR1(0D)01H This register controls the functions in common with the T8 and T16. Table 16 lists and briefly describes the fields for this register. Table 16. CTR1(0D)01H T8 and T16 Common Functions | Field | Bit Position | | Value | Description | |-------------------|--------------|-----|-------|-------------------| | Mode | 7 | R/W | 0* | Transmit Mode | | | | | | Demodulation Mode | | P36_Out/ | -6 | R/W | | Transmit Mode | | Demodulator_Input | | | 0* | Port Output | | | | | 1 | T8/T16 Output | | | | | | Demodulation Mode | | | | | 0* | P31 | | | | | 1 | P20 | | T8/T16_Logic/ | 54 | R/W | | Transmit Mode | | Edge _Detect | | | 00** | AND | | | | | 01 | OR | | | | | 10 | NOR | | | | | 11 | NAND | | | | | | Demodulation Mode | | | | | 00** | Falling Edge | | | | | 01 | Rising Edge | | | | | 10 | Both Edges | | | | | 11 | Reserved | Table 17. CTR2(D)02H: Counter/Timer16 Control Register | Field | Bit Position | | Value | Description | |------------------|---------------------|-----|-------|-----------------------------| | T16_Enable | 7 | R | 0* | Counter Disabled | | | | | 1 | Counter Enabled | | | | W | 0 | Stop Counter | | | | | 1 | Enable Counter | | Single/Modulo-N | -6 | R/W | | Transmit Mode | | | | | 0* | Modulo-N | | | | | 1 | Single Pass | | | | | | Demodulation Mode | | | | | 0 | T16 Recognizes Edge | | | | | 1 | T16 Does Not Recognize Edge | | Time_Out | 5 | R | 0* | No Counter Timeout | | _ | | | 1 | Counter Timeout | | | | | | Occurred | | | | W | 0 | No Effect | | | | | 1 | Reset Flag to 0 | | T16 _Clock | 43 | R/W | 00** | SCLK | | | | | 01 | SCLK/2 | | | | | 10 | SCLK/4 | | | | | 11 | SCLK/8 | | Capture_INT_Mask | 2 | R/W | 0** | Disable Data Capture Int. | | | | | 1 | Enable Data Capture Int. | | Counter_INT_Mask | 1- | R/W | 0* | Disable Timeout Int. | | | | | | Enable Timeout Int. | | P35_Out | 0 | R/W | 0* | P35 as Port Output | | | | | 1 | T16 Output on P35 | #### Note: #### T16_Enable This field enables T16 when set to 1. ### Single/Modulo-N In TRANSMIT Mode, when set to 0, the counter reloads the initial value when it reaches the terminal count. When set to 1, the counter stops when the terminal count is reached. ^{*}Indicates the value upon Power-On Reset. ^{**}Indicates the value upon Power-On Reset. Not reset with a Stop Mode recovery. Table 19. Interrupt Types, Sources, and Vectors | Name | Source | Vector Location | Comments | |------|----------------------|------------------------|--| | IRQ0 | P32 | 0,1 | External (P32), Rising, Falling Edge Triggered | | IRQ1 | P33 | 2,3 | External (P33), Falling Edge Triggered | | IRQ2 | P31, T _{IN} | 4,5 | External (P31), Rising, Falling Edge Triggered | | IRQ3 | T16 | 6,7 | Internal | | IRQ4 | T8 | 8,9 | Internal | | IRQ5 | LVD | 10,11 | Internal | When more than one interrupt is pending, priorities are resolved by a programmable priority encoder controlled by the Interrupt Priority Register. An interrupt machine cycle activates when an interrupt request is granted. As a result, all subsequent interrupts are disabled, and the Program Counter and Status Flags are saved. The cycle then branches to the program memory vector location reserved for that interrupt. All ZGP323H interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request. To accommodate polled interrupt systems, interrupt inputs are masked, and the Interrupt Request register is polled to determine which of the interrupt requests require service. An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQ0. Interrupts IRQ2 and IRQ0 can be rising, falling, or both edge triggered. These interrupts are programmable by the user. The software can poll to identify the state of the pin. Programming bits for the Interrupt Edge Select are located in the IRQ Register (R250), bits D7 and D6. The configuration is indicated in Table 20. Table 20. IRQ Register | IRQ | | Interrupt Edge | | | |---|----|----------------|------------|--| | D7 | D6 | IRQ2 (P31) | IRQ0 (P32) | | | 0 | 0 | F | F | | | 0 | 1 | F | R | | | 1 | 0 | R | F | | | 1 | 1 | R/F | R/F | | | Note: F = Falling Edge; R = Rising Edge | | | | | ## **Stop Mode Recovery Register 2 (SMR2)** This register determines the mode of Stop Mode Recovery for SMR2 (Figure 36). SMR2(0F)DH Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery. - * Default setting after reset - * * At the XOR gate input Figure 36. Stop Mode Recovery Register 2 ((0F)DH:D2-D4, D6 Write Only) If SMR2 is used in conjunction with SMR, either of the specified events causes a Stop Mode Recovery. Note: Port pins configured as outputs are ignored as an SMR or SMR2 recovery source. For example, if the NAND or P23–P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23–P21) form the NAND equation. #### **WDTMR During STOP (D3)** This bit determines whether or not the WDT is active during STOP Mode. Because the XTAL clock is stopped during STOP Mode, the on-board RC has to be selected as the clock source to the WDT/POR counter. A 1 indicates active during Stop. The default is 1. #### **EPROM Selectable Options** There are seven EPROM Selectable Options to choose from based on ROM code requirements. These options are listed in Table 24. **Table 24. EPROM Selectable Options** | Port 00-03 Pull-Ups | On/Off | |-----------------------------------|--------| | Port 04–07 Pull-Ups | On/Off | | Port 10–13 Pull-Ups | On/Off | | Port 14–17 Pull-Ups | On/Off | | Port 20–27 Pull-Ups | On/Off | | EPROM Protection | On/Off | | Watch-Dog Timer at Power-On Reset | On/Off | #### **Voltage Brown-Out/Standby** An on-chip Voltage Comparator checks that the V_{DD} is at the required level for correct operation of the device. Reset is globally driven when V_{DD} falls below V_{BO} . A small drop in V_{DD} causes the XTAL1 and XTAL2 circuitry to stop the crystal or resonator clock. If the V_{DD} is allowed to stay above V_{RAM} , the RAM content is preserved. When the power level is returned to above V_{BO} , the device performs a POR and functions normally. ### CTR1(0D)01H Figure 40. T8 and T16 Common Control Functions ((0D)01H: Read/Write) ## CTR2(0D)02H Figure 41. T16 Control Register ((0D) 2H: Read/Write Except Where Noted) ^{*} Default setting after reset Figure 44. Port Configuration Register (PCON)(0F)00H: Write Only) ## SMR2(0F)0DH Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery. Figure 46. Stop Mode Recovery Register 2 ((0F)0DH:D2-D4, D6 Write Only) ^{*} Default setting after reset. Not reset with a Stop Mode recovery. ^{* *} At the XOR gate input ^{*} Default setting after reset. Not reset with a Stop Mode recovery. Figure 49. Port 3 Mode Register (F7H: Write Only) ## R248 P01M(F8H) ^{*} Default setting after reset; only P00, P01 and P07 are available on 20-pin configurations. Figure 50. Port 0 and 1 Mode Register (F8H: Write Only) | CVALDOL | MILLIN | METER | INCH | | |---------|--------|----------|------|------| | SYMBOL | MIN | MAX | MIN | MAX | | Α | 2.40 | 2.65 | .094 | .104 | | A1 | 0.10 | 0.30 | .004 | .012 | | A2 | 2.24 | 2.44 | .088 | .096 | | В | 0.36 | 0.46 | .014 | .018 | | С | 0.23 | 0.30 | .009 | .012 | | D | 12.60 | 12.95 | .496 | .510 | | E | 7.40 | 7.60 | .291 | .299 | | е | 1.27 | 1.27 BSC | | BSC | | Н | 10.00 | 10.65 | .394 | .419 | | h | 0.30 | 0.40 | .012 | .016 | | L | 0.60 | 1.00 | .024 | .039 | | Q1 | 0.97 | 1.07 | .038 | .042 | CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH. Figure 60. 20-Pin SOIC Package Diagram PS023803-0305 Package Information 95 ## **Example** PS023803-0305 Ordering Information | Numerics | demodulation mode flowchart 45 | |---------------------------------------|---| | 16-bit counter/timer circuits 46 | EPROM selectable options 64 | | 20-pin DIP package diagram 82 | glitch filter circuitry 40 | | 20-pin SSOP package diagram 84 | halt instruction 54 | | 28-pin DIP package diagram 86 | input circuit 40 | | 28-pin SOICpackage diagram 85 | interrupt block diagram 51 | | 28-pin SSOP package diagram 87 | interrupt types, sources and vectors 52 | | 40-pin DIP package diagram 87 | oscillator configuration 53 | | 48-pin SSOP package diagram 89 | output circuit 49 | | 8-bit counter/timer circuits 42 | ping-pong mode 48 | | A | port configuration register 55 | | absolute maximum ratings 10 | resets and WDT 63 | | AC | SCLK circuit 58 | | characteristics 16 | stop instruction 54 | | timing diagram 16 | stop mode recovery register 57 | | address spaces, basic 2 | stop mode recovery register 2 61 | | architecture 2 | stop mode recovery source 59 | | expanded register file 28 | T16 demodulation mode 47 | | В | T16 transmit mode 46 | | basic address spaces 2 | T16_OUT in modulo-N mode 47 | | block diagram, ZLP32300 functional 3 | T16_OUT in single-pass mode 47 | | C | T8 demodulation mode 43 | | capacitance 11 | T8 transmit mode 40 | | characteristics | T8_OUT in modulo-N mode 43 | | AC 16 | T8_OUT in single-pass mode 43 | | DC 11 | transmit mode flowchart 41 | | clock 53 | voltage detection and flags 65 | | comparator inputs/outputs 25 | watch-dog timer mode register 62 | | configuration | watch-dog timer time select 63 | | port 0 19 | CTR(D)01h T8 and T16 Common Functions | | port 1 20 | 35 | | port 2 21 | D | | port 3 22 | DC characteristics 11 | | port 3 counter/timer 24 | demodulation mode | | counter/timer | count capture flowchart 44 | | 16-bit circuits 46 | flowchart 45 | | 8-bit circuits 42 | T16 47 | | brown-out voltage/standby 64 | T8 43 | | clock 53 | description | | demodulation mode count capture flow- | functional 25 | | chart 44 | general 2 |