Zilog - ZGP323HAH2816C Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	24
Program Memory Size	16KB (16K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323hah2816c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ZGP323H Product Specification

List of Tables

Table 1.	Revision History of this Document iii
Table 2.	Features
Table 3.	Power Connections 3
Table 4.	20-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification
Table 5.	28-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification
Table 6.	40- and 48-Pin Configuration 8
Table 7.	Absolute Maximum Ratings 10
Table 8.	Capacitance
Table 9.	GP323HS DC Characteristics 11
Table 10.	GP323HE DC Characteristics 12
Table 11.	GP323HA DC Characteristics 14
Table 12.	EPROM/OTP Characteristics 15
Table 13.	AC Characteristics 17
Table 14.	Port 3 Pin Function Summary 23
Table 15.	CTR1(0D)01H T8 and T16 Common Functions
Table 16.	Interrupt Types, Sources, and Vectors
Table 17.	IRQ Register
Table 18.	SMR2(F)0DH:Stop Mode Recovery Register 2* 58
Table 19.	Stop Mode Recovery Source 60
Table 20.	Watch-Dog Timer Time Select 63
Table 21.	EPROM Selectable Options 64

Table 3. Power Connections

Connection	Circuit	Device	
Power	V _{CC}	V _{DD}	
Ground	GND	V _{SS}	

Note: Refer to the specific package for available pins.

Figure 1. Functional Block Diagram

Absolute Maximum Ratings

Stresses greater than those listed in Table 8 might cause permanent damage to the device. This rating is a stress rating only. Functional operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period might affect device reliability.

Table 7. Absolute Maximum Ratings

Parameter	Minimum	Maximum	Units	Notes
Ambient temperature under bias	-40	125	° C	1
Storage temperature	-65	+150	° C	
Voltage on any pin with respect to V _{SS}	-0.3	7.0	V	2
Voltage on V_{DD} pin with respect to V_{SS}	-0.3	7.0	V	
Maximum current on input and/or inactive output pin	-5	+5	μA	
Maximum output current from active output pin	-25	+25	mA	
Maximum current into V_{DD} or out of V_{SS}		75	mA	

Notes:

1. See Ordering Information.

2. This voltage applies to all pins except the following: V_{DD}, P32, P33 and RESET.

Standard Test Conditions

The characteristics listed in this product specification apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (see Figure 7).

Figure 7. Test Load Diagram

	T _A =0°C to +70°C										
Symbol	Parameter	V _{CC}	Min	Typ(7)	Мах	Units	Conditions	Notes			
I _{OL}	Output Leakage	2.0-5.5	-1		1	μA	$V_{IN} = 0V, V_{CC}$				
Icc	Supply Current	2.0V		1	3	mA	at 8.0 MHz	1, 2			
00		3.6V		5	10	mA	at 8.0 MHz	1, 2			
		5.5V		10	15	mA	at 8.0 MHz	1, 2			
I _{CC1}	Standby Current	2.0V		0.5	1.6	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6			
	(HALT Mode)	3.6V		0.8	2.0	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6			
		5.5V		1.3	3.2	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6			
I _{CC2}	Standby Current (Stop	2.0V		1.6	8	μA	$V_{IN} = 0 V, V_{CC} WDT not Running$	3			
	Mode)	3.6V		1.8	10	μA	$V_{IN} = 0 V, V_{CC} WDT not Running$	3			
		5.5V		1.9	12	μΑ	$V_{IN} = 0 V, V_{CC} WDT not Running$	3			
		2.0V		5	20	μΑ	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3			
		3.6V		8	30	μA	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3			
		5.5V		15	45	μΑ	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3			
I _{LV}	Standby Current (Low Voltage)			1.2	6	μA	Measured at 1.3V	4			
V _{BO}	V _{CC} Low Voltage			1.9	2.0	V	8MHz maximum				
20	Protection						Ext. CLK Freq.				
V _{LVD}	V _{CC} Low Voltage			2.4		V					
	Detection										
V _{HVD}	Vcc High Voltage			2.7		V					
	Detection										

Table 9. GP323HS DC Characteristics (Continued)

Notes:

1. All outputs unloaded, inputs at rail.

2. CL1 = CL2 = 100 pF.

3. Oscillator stopped.

4. Oscillator stops when V_{CC} falls below V_{BO} limit.

 It is strongly recommended to add a filter capacitor (minimum 0.1 μF), physically close to VCC and V_{SS} pins if operating voltage fluctuations are anticipated, such as those resulting from driving an Infrared LED.

- 6. Comparator and Timers are on. Interrupt disabled.
- 7. Typical values shown are at 25 degrees C.

Table 10. GP323HE DC Characteristics

T _A = -40°C to +105°C								
Symbol	Parameter	V _{CC}	Min	Typ(7)	Max	Units	Conditions	Notes
V _{CC}	Supply Voltage		2.0		5.5	V	See Note 5	5
V _{CH}	Clock Input High Voltage	2.0-5.5	0.8 V _{CC}		V _{CC} +0.3	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	2.0-5.5	V _{SS} -0.3		0.4	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	2.0-5.5	0.7 V _{CC}		V _{CC} +0.3	V		
V _{IL}	Input Low Voltage	2.0-5.5	V _{SS} -0.3		0.2 V _{CC}	V		
V _{OH1}	Output High Voltage	2.0-5.5	V _{CC} -0.4			V	I _{OH} = -0.5mA	

Table 11. GP323HA DC Characteristics

	T _A = -40°C to +125°C									
Symbol	Parameter	V _{CC}	Min	Typ(7)	Max	Units	Conditions	Notes		
V _{CC}	Supply Voltage		2.0		5.5	V	See Note 5	5		
V _{CH}	Clock Input High Voltage	2.0-5.5	0.8 V _{CC}		V _{CC} +0.3	V	Driven by External Clock Generator			
V _{CL}	Clock Input Low Voltage	2.0-5.5	V _{SS} –0.3		0.4	V	Driven by External Clock Generator			
V _{IH}	Input High Voltage	2.0-5.5	0.7 V _{CC}		V _{CC} +0.3	V				
V _{IL}	Input Low Voltage	2.0-5.5	V _{SS} -0.3		0.2 V _{CC}	V				
V _{OH1}	Output High Voltage	2.0-5.5	V _{CC} -0.4			V	I _{OH} = -0.5mA			
V _{OH2}	Output High Voltage (P36, P37, P00, P01)	2.0-5.5	V _{CC} -0.8			V	I _{OH} = -7mA			
V _{OL1}	Output Low Voltage	2.0-5.5			0.4	V	$I_{OL} = 4.0 \text{mA}$			
V _{OL2}	Output Low Voltage (P00, P01, P36, P37)	2.0-5.5			0.8	V	I _{OL} = 10mA			
V _{OFFSET}	Comparator Input Offset Voltage	2.0-5.5			25	mV				
V _{REF}	Comparator Reference Voltage	2.0-5.5	0		V _{DD} -1.75	V				
IIL	Input Leakage	2.0-5.5	-1		1	μA	V _{IN} = 0V, V _{CC} Pull-ups disabled			
R _{PU}	Pull-up Resistance	2.0V	200		700	KΩ	V _{IN} = 0V; Pullups selected by mask			
		3.6V	50		300	KΩ	option			
		5.0V	25		175	KΩ	_			
I _{OL}	Output Leakage	2.0-5.5	-1		1	μΑ	$V_{IN} = 0V, V_{CC}$			
I _{CC}	Supply Current	2.0V		1	3	mA	at 8.0 MHz	1, 2		
		3.6V		5	10	mA	at 8.0 MHz	1, 2		
		5.5V		10	15	mA	at 8.0 MHz	1, 2		
I _{CC1}	Standby Current	2.0V		0.5	1.6	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6		
	(HALI Mode)	3.6V		0.8	2.0	mA	$V_{IN} = 0V$, Clock at 8.0MHz	1, 2, 6		
<u> </u>		5.5V		1.3	3.2	mA	$V_{IN} = 0V$, Clock at 8.0MHz	1, 2, 6		
I _{CC2}	Standby Current (Stop	2.0V		1.6	15	μA	$V_{IN} = 0$ V, V_{CC} WDT not Running	3		
	Mode)	3.6V		1.8	20	μA	$V_{IN} = 0$ V, V_{CC} WDT not Running	3		
		5.5V		1.9	25	μΑ	$v_{IN} = 0$ V, v_{CC} WDT not Running	3		
		2.00		о 0	30	μΑ	$v_{IN} = 0$ V, v_{CC} WDT is Running	ა ი		
		3.0V 5.5V		0 15	40 60	μΑ	$v_{IN} = 0.0$, v_{CC} wDT is Running	ა ვ		
	Chan allow Course at	0.00		10	00	μΑ	$V_{\rm IN} = 0.0$, $V_{\rm CC}$ with the Ruthing	3		
	(Low Voltage)			1.2	0	μΑ		4		
V _{BO}	V _{CC} Low Voltage Protection			1.9	2.15	V	8MHz maximum Ext. CLK Freq.			
V _{LVD}	V _{CC} Low Voltage Detection			2.4		V				

AC Characteristics

Figure 8. AC Timing Diagram

Figure 9. Port 0 Configuration

Port 1 (P17–P10)

Port 1 (see Figure 10) Port 1 can be configured for standard port input or output mode. After POR, Port 1 is configured as an input port. The output drivers are either push-pull or open-drain and are controlled by bit D1 in the PCON register.

Note: The Port 1 direction is reset to its default state following an SMR.

Figure 11. Port 2 Configuration

Port 3 (P37–P30)

Port 3 is a 8-bit, CMOS-compatible fixed I/O port (see Figure 12). Port 3 consists of four fixed input (P33–P30) and four fixed output (P37–P34), which can be configured under software control for interrupt and as output from the counter/timers. P30, P31, P32, and P33 are standard CMOS inputs; P34, P35, P36, and P37 are push-pull outputs.

29

The upper nibble of the register pointer (see Figure 16) selects which working register group, of 16 bytes in the register file, is accessed out of the possible 256. The lower nibble selects the expanded register file bank and, in the case of the Z8 GP family, banks 0, F, and D are implemented. A OH in the lower nibble allows the normal register file (bank 0) to be addressed. Any other value from 1H to FH exchanges the lower 16 registers to an expanded register bank.

Figure 16. Register Pointer

Example: Z8 GP: (See Figure 15 on page 28)

R253 RP = 00h R0 = Port 0 R1 = Port 1 R2 = Port 2 R3 = Port 3

But if:

R253 RP = 0Dh R0 = CTR0 R1 = CTR1 R2 = CTR2R3 = Reserved

Name	Source	Vector Location	Comments
IRQ0	P32	0,1	External (P32), Rising, Falling Edge Triggered
IRQ1	P33	2,3	External (P33), Falling Edge Triggered
IRQ2	P31, T _{IN}	4,5	External (P31), Rising, Falling Edge Triggered
IRQ3	T16	6,7	Internal
IRQ4	Т8	8,9	Internal
IRQ5	LVD	10,11	Internal

Table 19. Interrupt Types, Sources, and Vectors

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder controlled by the Interrupt Priority Register. An interrupt machine cycle activates when an interrupt request is granted. As a result, all subsequent interrupts are disabled, and the Program Counter and Status Flags are saved. The cycle then branches to the program memory vector location reserved for that interrupt. All ZGP323H interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request. To accommodate polled interrupt systems, interrupt inputs are masked, and the Interrupt Request register is polled to determine which of the interrupt requests require service.

An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQ0. Interrupts IRQ2 and IRQ0 can be rising, falling, or both edge triggered. These interrupts are programmable by the user. The software can poll to identify the state of the pin.

Programming bits for the Interrupt Edge Select are located in the IRQ Register (R250), bits D7 and D6. The configuration is indicated in Table 20.

I	RQ	Interr	Interrupt Edge				
D7	D6	IRQ2 (P31)	IRQ0 (P32)				
0	0	F	F				
0	1	F	R				
1	0	R	F				
1	1	R/F	R/F				
Note: F = Falling Edge; R = Rising Edge							

Table 20. IRQ Register

53

Clock

The device's on-chip oscillator has a high-gain, parallel-resonant amplifier, for connection to a crystal or ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal must be AT cut, 1 MHz to 8 MHz maximum, with a series resistance (RS) less than or equal to 100 Ω . The on-chip oscillator can be driven with a suitable external clock source.

The crystal must be connected across XTAL1 and XTAL2 using the recommended capacitors (capacitance greater than or equal to 22 pF) from each pin to ground.

f = 8mHz

Figure 31. Oscillator Configuration

Port 0 Output Mode (D2)

Bit 2 controls the output mode of port 0. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.

Stop-Mode Recovery Register (SMR)

This register selects the clock divide value and determines the mode of Stop Mode Recovery (Figure 33). All bits are write only except bit 7, which is read only. Bit 7 is a flag bit that is hardware set on the condition of Stop recovery and reset by a power-on cycle. Bit 6 controls whether a low level or a high level at the XORgate input (Figure 35 on page 59) is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits D2, D3, and D4 of the SMR register specify the source of the Stop Mode Recovery signal. Bits D0 determines if SCLK/ TCLK are divided by 16 or not. The SMR is located in Bank F of the Expanded Register Group at address OBH.

Figure 34. SCLK Circuit

Stop-Mode Recovery Source (D2, D3, and D4)

These three bits of the SMR specify the wake-up source of the Stop recovery (Figure 35 and Table 22).

Stop-Mode Recovery Register 2—SMR2(F)0DH

Table 21 lists and briefly describes the fields for this register.

Field	Bit Position		Value	Description
Reserved	7		0	Reserved (Must be 0)
Recovery Level	-6	W	0 [†]	Low
-			1	High
Reserved	5		0	Reserved (Must be 0)
Source	432	W	000†	A. POR Only
			001	B. NAND of P23–P20
			010	C. NAND of P27–P20
			011	D. NOR of P33–P31
			100	E. NAND of P33–P31
			101	F. NOR of P33–P31, P00, P07
			110	G. NAND of P33–P31, P00, P07
			111	H. NAND of P33–P31, P22–P20
Reserved	10		00	Reserved (Must be 0)

Table 21.SMR2(F)0DH:Stop	Mode Recovery	Register	2*
--------------------------	---------------	----------	----

Notes:

* Port pins configured as outputs are ignored as a SMR recovery source. † Indicates the value upon Power-On Reset

Notes: Take care in differentiating the Transmit Mode from Demodulation Mode. Depending on which of these two modes is operating, the CTR1 bit has different functions.

Changing from one mode to another cannot be performed without disabling the counter/timers.

CTR3(0D)03H

D7	D6	D5	D4	D3	D2	D1	D0	
								Reserved No effect when written Always reads 11111 Sync Mode 0* Disable Sync Mode** 1 Enable Sync Mode T ₈ Enable R 0* T ₈ Disabled R 1 T ₈ Enabled
								W0 Stop T ₈ W1 Enable T ₈
								T ₁₆ Enable R 0* T ₁₆ Disabled R 1 T ₁₆ Enabled W 0 Stop T ₁₆ W 1 Enable T ₁₆

* Default setting after reset. ** Default setting after reset. Not reset with a Stop Mode recovery.

Figure 42. T8/T16 Control Register (0D)03H: Read/Write (Except Where Noted)

Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery.

* Default setting after reset. Not reset with a Stop Mode recovery.

* * At the XOR gate input

Figure 46. Stop Mode Recovery Register 2 ((0F)0DH:D2–D4, D6 Write Only)

MILLIMETER

MAX

2.65

0.30

2.44

0.46

0.30

12.95

7.60

10.65

0.40

1.00

1.07

1.27 BSC

INCH

мах

.104

.012

.096

.018

.012

.510

.299

.419

.016

.039

.042

.050 BSC

MIN

.094

.004

.088

.014

.009

.496

.291

.394

.012

.024

.038

Figure 60. 20-Pin SOIC Package Diagram

PS023803-0305

8KB Standard Temperature: 0° to +70°C

Part Number	Description	Part Number	Description
ZGP323HSH4808C	48-pin SSOP 8K OTP	ZGP323HSS2808C	28-pin SOIC 8K OTP
ZGP323HSP4008C	40-pin PDIP 8K OTP	ZGP323HSH2008C	20-pin SSOP 8K OTP
ZGP323HSH2808C	28-pin SSOP 8K OTP	ZGP323HSP2008C	20-pin PDIP 8K OTP
ZGP323HSP2808C	28-pin PDIP 8K OTP	ZGP323HSS2008C	20-pin SOIC 8K OTP

8KB Extended Temperature: -40° to +105°C

Part Number	Description	Part Number	Description
ZGP323HEH4808C	48-pin SSOP 8K OTP	ZGP323HES2808C	28-pin SOIC 8K OTP
ZGP323HEP4008C	40-pin PDIP 8K OTP	ZGP323HEH2008C	20-pin SSOP 8K OTP
ZGP323HEH2808C	28-pin SSOP 8K OTP	ZGP323HEP2008C	20-pin PDIP 8K OTP
ZGP323HEP2808C	28-pin PDIP 8K OTP	ZGP323HES2008C	20-pin SOIC 8K OTP

8KB Automotive Temperature: -40° to +125°C

Part Number	Description	Part Number	Description		
	Becchption	i altitulioo	Beeenpaien		
ZGP323HAH4808C	48-pin SSOP 8K OTP	ZGP323HAS2808C	28-pin SOIC 8K OTP		
ZGP323HAP4008C	40-pin PDIP 8K OTP	ZGP323HAH2008C	20-pin SSOP 8K OTP		
ZGP323HAH2808C	28-pin SSOP 8K OTP	ZGP323HAP2008C	20-pin PDIP 8K OTP		
ZGP323HAP2808C	28-pin PDIP 8K OTP	ZGP323HAS2008C	20-pin SOIC 8K OTP		
Replace C with G for Lead-Free Packaging					

Example

ZGP323H Z8[®] OTP Microcontroller with IR Timers

Numerics 16-bit counter/timer circuits 46 20-pin DIP package diagram 82 20-pin SSOP package diagram 84 28-pin DIP package diagram 86 28-pin SOICpackage diagram 85 28-pin SSOP package diagram 87 40-pin DIP package diagram 87 48-pin SSOP package diagram 89 8-bit counter/timer circuits 42 А absolute maximum ratings 10 AC characteristics 16 timing diagram 16 address spaces, basic 2 architecture 2 expanded register file 28 В basic address spaces 2 block diagram, ZLP32300 functional 3 С capacitance 11 characteristics AC 16 DC 11 clock 53 comparator inputs/outputs 25 configuration port 0 19 port 1 20 port 2 21 port 3 22 port 3 counter/timer 24 counter/timer 16-bit circuits 46 8-bit circuits 42 brown-out voltage/standby 64 clock 53 demodulation mode count capture flowchart 44

demodulation mode flowchart 45 EPROM selectable options 64 glitch filter circuitry 40 halt instruction 54 input circuit 40 interrupt block diagram 51 interrupt types, sources and vectors 52 oscillator configuration 53 output circuit 49 ping-pong mode 48 port configuration register 55 resets and WDT 63 SCLK circuit 58 stop instruction 54 stop mode recovery register 57 stop mode recovery register 2 61 stop mode recovery source 59 T16 demodulation mode 47 T16 transmit mode 46 T16 OUT in modulo-N mode 47 T16_OUT in single-pass mode 47 T8 demodulation mode 43 T8 transmit mode 40 T8 OUT in modulo-N mode 43 T8_OUT in single-pass mode 43 transmit mode flowchart 41 voltage detection and flags 65 watch-dog timer mode register 62 watch-dog timer time select 63 CTR(D)01h T8 and T16 Common Functions 35 D DC characteristics 11 demodulation mode count capture flowchart 44 flowchart 45 T1647 T8 43 description functional 25 general 2