

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	24
Program Memory Size	32KB (32K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323hah2832c

ZGP323H Product Specification

	•
v	ı

Figure 34. SCLK Circuit	58
Figure 35. Stop Mode Recovery Source	59
Figure 36. Stop Mode Recovery Register 2 ((0F)DH:D2-D4, D6 Write Only) 6	31
Figure 37. Watch-Dog Timer Mode Register (Write Only)6	62
Figure 38. Resets and WDT	63
Figure 39. TC8 Control Register ((0D)O0H: Read/Write Except Where Noted) 6	36
Figure 40. T8 and T16 Common Control Functions ((0D)01H: Read/Write) 6	37
Figure 41. T16 Control Register ((0D) 2H: Read/Write Except Where Noted) . 6	39
Figure 42. T8/T16 Control Register (0D)03H: Read/Write (Except Where	
Noted)	
Figure 43. Voltage Detection Register	
Figure 44. Port Configuration Register (PCON)(0F)00H: Write Only) 7	72
Figure 45. Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only)	73
Figure 46. Stop Mode Recovery Register 2 ((0F)0DH:D2–D4, D6 Write Only)	74
Figure 47. Watch-Dog Timer Register ((0F) 0FH: Write Only)	75
Figure 48. Port 2 Mode Register (F6H: Write Only)	75
Figure 49. Port 3 Mode Register (F7H: Write Only)	76
Figure 50. Port 0 and 1 Mode Register (F8H: Write Only)	77
Figure 51. Interrupt Priority Register (F9H: Write Only)	78
Figure 52. Interrupt Request Register (FAH: Read/Write)	79
Figure 53. Interrupt Mask Register (FBH: Read/Write)	79
Figure 54. Flag Register (FCH: Read/Write)	30
Figure 55. Register Pointer (FDH: Read/Write) 8	30
Figure 56. Stack Pointer High (FEH: Read/Write) 8	81
Figure 57. Stack Pointer Low (FFH: Read/Write)	31
Figure 58. 20-Pin CDIP Package 8	82
Figure 59. 20-Pin PDIP Package Diagram 8	32
Figure 60. 20-Pin SOIC Package Diagram 8	33
Figure 61. 20-Pin SSOP Package Diagram 8	34
Figure 62. 28-Pin SOIC Package Diagram 8	35
Figure 63. 28-Pin CDIP Package Diagram 8	36
Figure 64. 28-Pin PDIP Package Diagram 8	36
Figure 65. 28-Pin SSOP Package Diagram	37
Figure 66. 40-Pin PDIP Package Diagram 8	37
Figure 67. 40-Pin CDIP Package Diagram	88

PS023803-0305 List of Figures

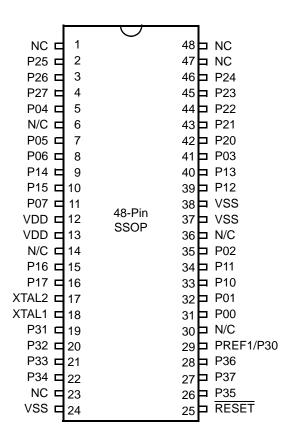


Figure 6. 48-Pin SSOP Pin Configuration

Table 6. 40- and 48-Pin Configuration

40-Pin PDIP#	48-Pin SSOP #	Symbol
26	31	P00
27	32	P01
30	35	P02
34	41	P03
5	5	P04
6	7	P05
7	8	P06
10	11	P07
28	33	P10
29	34	P11
32	39	P12

PS023803-0305 Pin Description

Table 10. GP323HE DC Characteristics (Continued)

	T _A = -40°C to +105°C							
Symbol	Parameter	v_{cc}	Min	Typ(7)	Max	Units	Conditions	Notes
V _{OH2}	Output High Voltage (P36, P37, P00, P01)	2.0-5.5	V _{CC} -0.8			V	$I_{OH} = -7mA$	
V _{OL1}	Output Low Voltage	2.0-5.5			0.4	V	$I_{OL} = 4.0 \text{mA}$	
V _{OL2}	Output Low Voltage (P00, P01, P36, P37)	2.0-5.5			8.0	V	I _{OL} = 10mA	
V _{OFFSET}	Comparator Input Offset Voltage	2.0-5.5			25	mV		
V _{REF}	Comparator Reference Voltage	2.0-5.5	0		V _{DD} -1.75	V		
I _{IL}	Input Leakage	2.0-5.5	-1		1	μА	V _{IN} = 0V, V _{CC} Pull-ups disabled	
R _{PU}	Pull-up Resistance	2.0V	200.0		700.0	ΚΩ	V _{IN} = 0V; Pullups selected by mask	(
		3.6V	50.0		300.0	ΚΩ	option	
		5.0V	25.0		175.0	ΚΩ	_	-
I _{OL}	Output Leakage	2.0-5.5	-1		1	μΑ	$V_{IN} = 0V, V_{CC}$	
I _{CC}	Supply Current	2.0V		1	3	mA	at 8.0 MHz	1, 2
		3.6V		5	10	mΑ	at 8.0 MHz	1, 2
		5.5V		10	15	mA	at 8.0 MHz	1, 2
I _{CC1}	Standby Current	2.0V		0.5	1.6	mΑ	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
	(HALT Mode)	3.6V		8.0	2.0	mΑ	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
		5.5V		1.3	3.2	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
I_{CC2}	Standby Current (Stop			1.6	12	μΑ	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT not Running}$	3
	Mode)	3.6V		1.8	15	μΑ	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT not Running}$	3
		5.5V		1.9	18	μΑ	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT not Running}$	3
		2.0V		5	30	μA	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT is Running}$	3
		3.6V		8	40	μΑ	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT is Running}$	3
		5.5V		15	60	μΑ	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT is Running}$	3
I _{LV}	Standby Current (Low Voltage)			1.2	6	μА	Measured at 1.3V	4
V_{BO}	V _{CC} Low Voltage Protection			1.9	2.15	V	8MHz maximum Ext. CLK Freq.	
V _{LVD}	V _{CC} Low Voltage Detection			2.4		V		
V _{HVD}	Vcc High Voltage Detection			2.7		V		

Notes:

- 1. All outputs unloaded, inputs at rail.
- 2. CL1 = CL2 = 100 pF.
- 3. Oscillator stopped.
- 4. Oscillator stops when $\rm V_{CC}$ falls below $\rm V_{BO}$ limit.
- 5. It is strongly recommended to add a filter capacitor (minimum 0.1 μ F), physically close to VCC and V_{SS} pins if operating voltage fluctuations are anticipated, such as those resulting from driving an Infrared LED.
- 6. Comparator and Timers are on. Interrupt disabled.
- 7. Typical values shown are at 25 degrees C.

PS023803-0305 DC Characteristics

Table 11. GP323HA DC Characteristics

	T _A = -40°C to +125°C							
Symbol	Parameter	V_{CC}	Min	Typ(7)	Max	Units	Conditions	Notes
V _{CC}	Supply Voltage		2.0		5.5	V	See Note 5	5
V _{CH}	Clock Input High Voltage	2.0-5.5	0.8 V _{CC}		V _{CC} +0.3	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	2.0-5.5	V _{SS} -0.3		0.4	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	2.0-5.5	0.7 V _{CC}		V _{CC} +0.3	V		
V _{IL}	Input Low Voltage	2.0-5.5	V _{SS} -0.3		0.2 V _{CC}	V		
V _{OH1}	Output High Voltage	2.0-5.5	V _{CC} -0.4			V	$I_{OH} = -0.5$ mA	
V _{OH2}	Output High Voltage (P36, P37, P00, P01)	2.0-5.5	V _{CC} -0.8			V	$I_{OH} = -7 \text{mA}$	
V _{OL1}	Output Low Voltage	2.0-5.5			0.4	V	I _{OL} = 4.0mA	
V _{OL2}	Output Low Voltage (P00, P01, P36, P37)	2.0-5.5			8.0	V	I _{OL} = 10mA	
V _{OFFSET}	Comparator Input Offset Voltage	2.0-5.5			25	mV		
V _{REF}	Comparator Reference Voltage	2.0-5.5	0		V _{DD} -1.75	V		
I _{IL}	Input Leakage	2.0-5.5	–1		1	μΑ	V _{IN} = 0V, V _{CC} Pull-ups disabled	
R _{PU}	Pull-up Resistance	2.0V	200		700	ΚΩ	V _{IN} = 0V; Pullups selected by mask	
		3.6V	50		300	ΚΩ	option	
		5.0V	25		175	ΚΩ	_	
I _{OL}	Output Leakage	2.0-5.5	-1		1	μΑ	$V_{IN} = 0V, V_{CC}$	
I _{CC}	Supply Current	2.0V		1	3	mΑ	at 8.0 MHz	1, 2
		3.6V		5	10	mΑ	at 8.0 MHz	1, 2
		5.5V		10	15	mA	at 8.0 MHz	1, 2
I _{CC1}	Standby Current	2.0V		0.5	1.6	mΑ	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
	(HALT Mode)	3.6V		8.0	2.0	mΑ	$V_{IN} = 0V$, Clock at 8.0MHz	1, 2, 6
		5.5V		1.3	3.2	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
I_{CC2}	Standby Current (Stop			1.6	15	μΑ	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT not Running}$	3
	Mode)	3.6V		1.8	20	μΑ	V _{IN} = 0 V, V _{CC} WDT not Running	3
		5.5V		1.9	25	μA	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT not Running}$	3
		2.0V 3.6V		5	30	μA Λ	V _{IN} = 0 V, V _{CC} WDT is Running	3 3
		5.5V		8 15	40 60	μA μA	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT is Running}$ $V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT is Running}$	3
I _{LV}	Standby Current (Low Voltage)	J.J V		1.2	6	μА	Measured at 1.3V	4
V _{BO}	V _{CC} Low Voltage Protection			1.9	2.15	V	8MHz maximum Ext. CLK Freq.	
V _{LVD}	V _{CC} Low Voltage Detection			2.4		V		

PS023803-0305 DC Characteristics

ERF (Expanded Register File). Bits 7–4 of register RP select the working register group. Bits 3–0 of register RP select the expanded register file bank.

Note: An expanded register bank is also referred to as an expanded register group (see Figure 15).

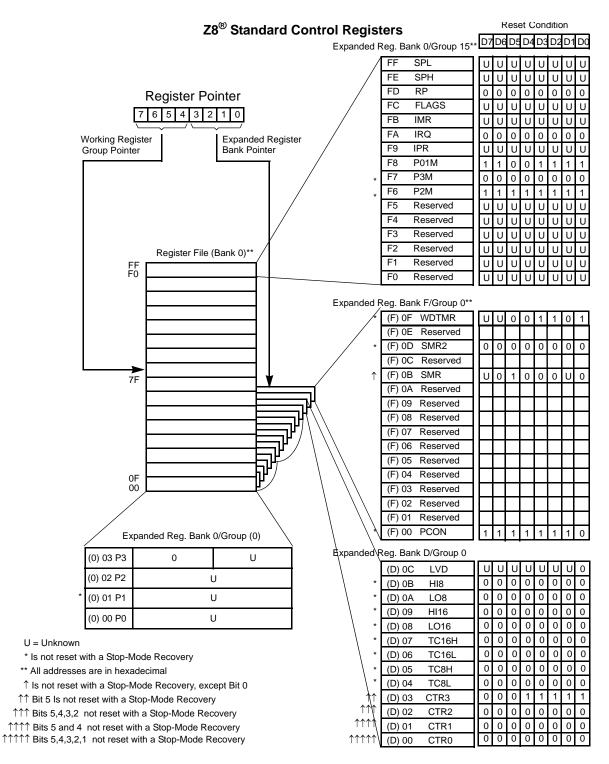


Figure 15. Expanded Register File Architecture

Counter/Timer2 LS-Byte Hold Register—TC16L(D)06H

Field	Bit Position		Description	
T16_Data_LO	[7:0]	R/W	Data	

Counter/Timer8 High Hold Register—TC8H(D)05H

Field	Bit Position	Bit Position	
T8_Level_HI	[7:0]	R/W	Data

Counter/Timer8 Low Hold Register—TC8L(D)04H

Field	Bit Position		Description	
T8_Level_LO	[7:0]	R/W	Data	

CTR0 Counter/Timer8 Control Register—CTR0(D)00H

Table 15 lists and briefly describes the fields for this register.

Table 15. CTR0(D)00H Counter/Timer8 Control Register

Field	Bit Position		Value	Description
T8_Enable	7	R/W	0*	Counter Disabled
			1	Counter Enabled
			0	Stop Counter
			1	Enable Counter
Single/Modulo-N	-6	R/W	0*	Modulo-N
-			1	Single Pass
Time_Out	5	R/W	0**	No Counter Time-Out
			1	Counter Time-Out Occurred
			0	No Effect
			1	Reset Flag to 0
T8 _Clock	43	R/W	0 0**	SCLK
			0 1	SCLK/2
			1 0	SCLK/4
			11	SCLK/8
Capture_INT_Mask	2	R/W	0**	Disable Data Capture Interrupt
			1	Enable Data Capture Interrupt

T8/T16_Logic/Edge _Detect

In TRANSMIT Mode, this field defines how the outputs of T8 and T16 are combined (AND, OR, NOR, NAND).

In DEMODULATION Mode, this field defines which edge should be detected by the edge detector.

Transmit_Submode/Glitch Filter

In Transmit Mode, this field defines whether T8 and T16 are in the PING-PONG mode or in independent normal operation mode. Setting this field to "NORMAL OPERATION Mode" terminates the "PING-PONG Mode" operation. When set to 10, T16 is immediately forced to a 0; a setting of 11 forces T16 to output a 1.

In DEMODULATION Mode, this field defines the width of the glitch that must be filtered out.

Initial_T8_Out/Rising_Edge

In TRANSMIT Mode, if 0, the output of T8 is set to 0 when it starts to count. If 1, the output of T8 is set to 1 when it starts to count. When the counter is not enabled and this bit is set to 1 or 0, T8_OUT is set to the opposite state of this bit. This ensures that when the clock is enabled, a transition occurs to the initial state set by CTR1, D1.

In DEMODULATION Mode, this bit is set to 1 when a rising edge is detected in the input signal. In order to reset the mode, a 1 should be written to this location.

Initial_T16 Out/Falling _Edge

In TRANSMIT Mode, if it is 0, the output of T16 is set to 0 when it starts to count. If it is 1, the output of T16 is set to 1 when it starts to count. This bit is effective only in Normal or PING-PONG Mode (CTR1, D3; D2). When the counter is not enabled and this bit is set, T16_OUT is set to the opposite state of this bit. This ensures that when the clock is enabled, a transition occurs to the initial state set by CTR1, D0.

In DEMODULATION Mode, this bit is set to 1 when a falling edge is detected in the input signal. In order to reset it, a 1 should be written to this location.

Note: Modifying CTR1 (D1 or D0) while the counters are enabled causes unpredictable output from T8/16_OUT.

CTR2 Counter/Timer 16 Control Register—CTR2(D)02H

Table 17 lists and briefly describes the fields for this register.

Table 17. CTR2(D)02H: Counter/Timer16 Control Register

Field	Bit Position		Value	Description
T16_Enable	7	R	0*	Counter Disabled
			1	Counter Enabled
		W	0	Stop Counter
			1	Enable Counter
Single/Modulo-N	-6	R/W		Transmit Mode
			0*	Modulo-N
			1	Single Pass
				Demodulation Mode
			0	T16 Recognizes Edge
			1	T16 Does Not Recognize Edge
Time_Out	5	R	0*	No Counter Timeout
_			1	Counter Timeout
				Occurred
		W	0	No Effect
			1	Reset Flag to 0
T16 _Clock	43	R/W	00**	SCLK
			01	SCLK/2
			10	SCLK/4
			11	SCLK/8
Capture_INT_Mask	2	R/W	0**	Disable Data Capture Int.
			1	Enable Data Capture Int.
Counter_INT_Mask	1-	R/W	0*	Disable Timeout Int.
				Enable Timeout Int.
P35_Out	0	R/W	0*	P35 as Port Output
			1	T16 Output on P35

Note:

T16_Enable

This field enables T16 when set to 1.

Single/Modulo-N

In TRANSMIT Mode, when set to 0, the counter reloads the initial value when it reaches the terminal count. When set to 1, the counter stops when the terminal count is reached.

^{*}Indicates the value upon Power-On Reset.

^{**}Indicates the value upon Power-On Reset. Not reset with a Stop Mode recovery.

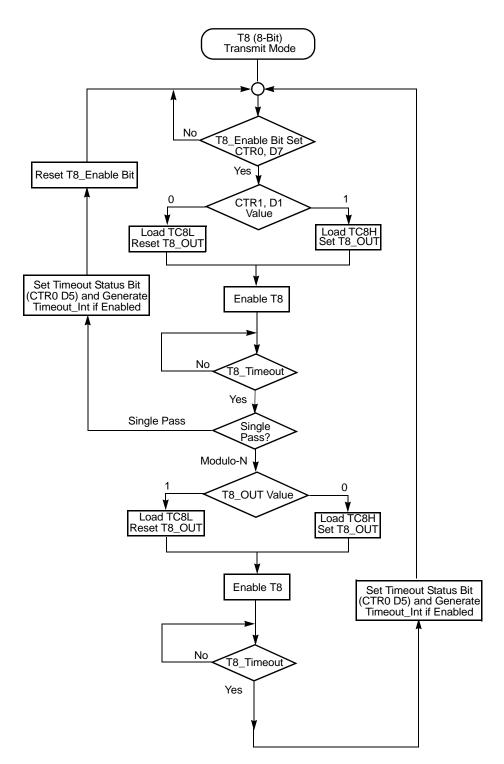


Figure 19. Transmit Mode Flowchart

42

When T8 is enabled, the output T8_OUT switches to the initial value (CTR1, D1). If the initial value (CTR1, D1) is 0, TC8L is loaded; otherwise, TC8H is loaded into the counter. In SINGLE-PASS Mode (CTR0, D6), T8 counts down to 0 and stops, T8_OUT toggles, the timeout status bit (CTR0, D5) is set, and a timeout interrupt can be generated if it is enabled (CTR0, D1). In Modulo-N Mode, upon reaching terminal count, T8_OUT is toggled, but no interrupt is generated. From that point, T8 loads a new count (if the T8_OUT level now is 0), TC8L is loaded; if it is 1, TC8H is loaded. T8 counts down to 0, toggles T8_OUT, and sets the timeout status bit (CTR0, D5), thereby generating an interrupt if enabled (CTR0, D1). One cycle is thus completed. T8 then loads from TC8H or TC8L according to the T8_OUT level and repeats the cycle. See Figure 20.

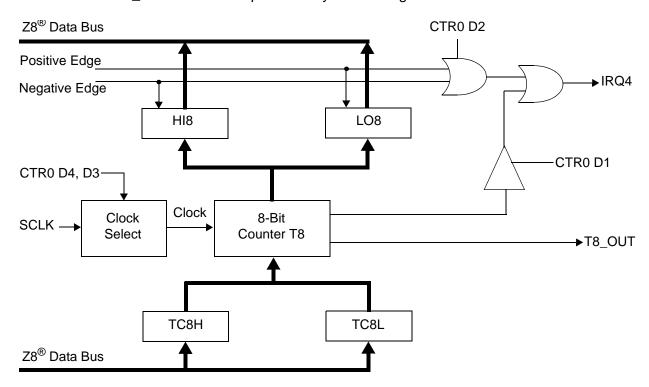


Figure 20. 8-Bit Counter/Timer Circuits

You can modify the values in TC8H or TC8L at any time. The new values take effect when they are loaded.

 \bigwedge

Caution

To ensure known operation do not write these registers at the time the values are to be loaded into the counter/timer. *An initial count of 1 is not allowed (a non-function occurs).* An initial count of 0 causes TC8 to count from 0 to FFH to FEH.

50

During PING-PONG Mode

The enable bits of T8 and T16 (CTR0, D7; CTR2, D7) are set and cleared alternately by hardware. The timeout bits (CTR0, D5; CTR2, D5) are set every time the counter/timers reach the terminal count.

Interrupts

The ZGP323H features six different interrupts (Table 19). The interrupts are maskable and prioritized (Figure 30). The six sources are divided as follows: three sources are claimed by Port 3 lines P33–P31, two by the counter/timers (Table 19) and one for low voltage detection. The Interrupt Mask Register (globally or individually) enables or disables the six interrupt requests.

The source for IRQ is determined by bit 1 of the Port 3 mode register (P3M). When in digital mode, Pin P33 is the source. When in analog mode the output of the Stop mode recovery source logic is used as the source for the interrupt. See Figure 35, Stop Mode Recovery Source, on page 59.

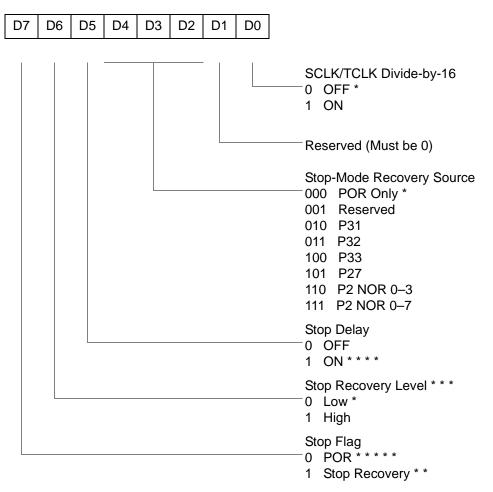
Power-On Reset

A timer circuit clocked by a dedicated on-board RC-oscillator is used for the Power-On Reset (POR) timer function. The POR time allows V_{DD} and the oscillator circuit to stabilize before instruction execution begins.

The POR timer circuit is a one-shot timer triggered by one of three conditions:

- Power Fail to Power OK status, including Waking up from V_{BO} Standby
- Stop-Mode Recovery (if D5 of SMR = 1)
- WDT Timeout

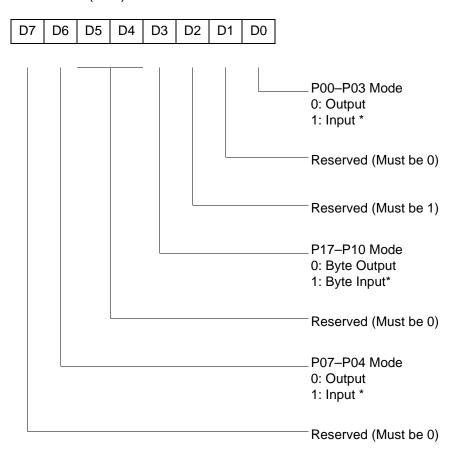
The POR timer is 2.5 ms minimum. Bit 5 of the Stop-Mode Register determines whether the POR timer is bypassed after Stop-Mode Recovery (typical for external clock).


HALT Mode

This instruction turns off the internal CPU clock, but not the XTAL oscillation. The counter/timers and external interrupts IRQ0, IRQ1, IRQ2, IRQ3, IRQ4, and IRQ5 remain active. The devices are recovered by interrupts, either externally or internally generated. An interrupt request must be executed (enabled) to exit HALT Mode. After the interrupt service routine, the program continues from the instruction after HALT Mode.

STOP Mode

This instruction turns off the internal clock and external crystal oscillation, reducing the standby current to 10 μ A or less. STOP Mode is terminated only by a reset, such as WDT timeout, POR, SMR or external reset. This condition causes the processor to restart the application program at address 000CH. To enter STOP (or HALT) mode, first flush the instruction pipeline to avoid suspending execution in mid-instruction. Execute a NOP (Opcode = FFH) immediately before the appropriate sleep instruction, as follows:


SMR(0F)0BH

- * Default setting after reset
- * * Set after Stop Mode Recovery
- * * * At the XOR gate input
- * * * * Default setting after reset. Must be 1 if using a crystal or resonator clock source.
- * * * * * Default setting after Power On Reset. Not reset with a Stop Mode recovery.

Figure 45. Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only)

R248 P01M(F8H)

^{*} Default setting after reset; only P00, P01 and P07 are available on 20-pin configurations.

Figure 50. Port 0 and 1 Mode Register (F8H: Write Only)

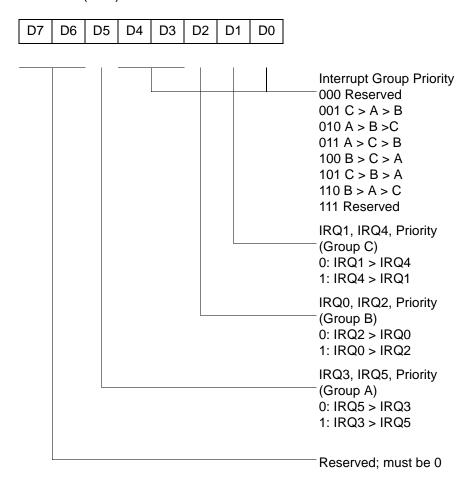
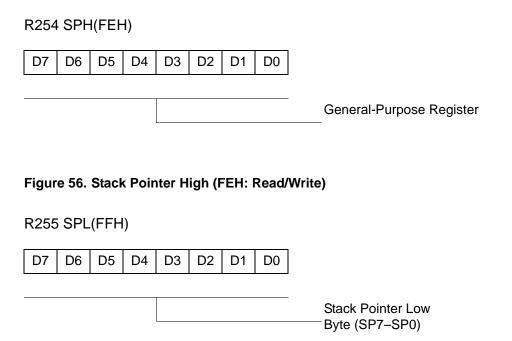
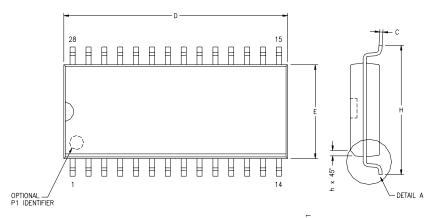
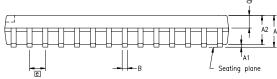


Figure 51. Interrupt Priority Register (F9H: Write Only)


Figure 57. Stack Pointer Low (FFH: Read/Write)

Package Information

Package information for all versions of ZGP323H is depicted in Figures 59 through Figure 68.

SYMBOL	MILL	IMETER	II.	NCH
SYMBOL	MIN	MAX	MIN	MAX
Α	2.40	2.64	.094	.104
A1	0.10	0.30	.004	.012
A2	2.24	2.44	.088	.096
В	0.36	0.46	.014	.018
С	0.23	0.30	.009	.012
D	17.78	18.00	.700	.710
E	7.40	7.60	.291	.299
е	1.27	7 BSC	.050	D BSC
Н	10.00	10.65	.394	.419
h	0.30	0.71	.012	.028
L	0.61	1.00	.024	.039
Q1	0.97	1.09	.038	.043

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

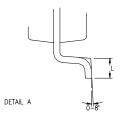
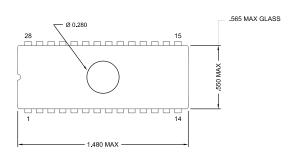
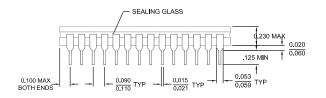




Figure 62. 28-Pin SOIC Package Diagram

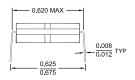
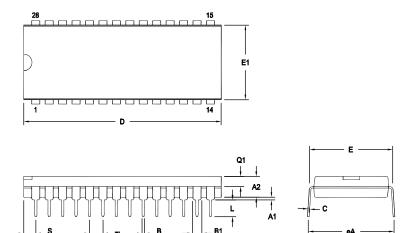
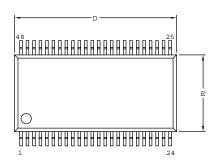
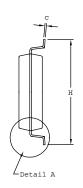
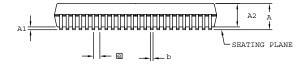



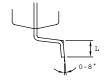
Figure 63. 28-Pin CDIP Package Diagram


SYMBOL	OPT#	MILLIMETER		INCH	
		MIN	MAX	MIN	MAX
A1		0.38	1.02	.015	.040
A2		3.18	4.19	.125	.165
В		0.38	0.53	.015	.021
B1	01	1.40	1.65	.055	.065
	02	1.14	1.40	.045	.055
С		0.23	0.38	.009	.015
D	01	36.58	37.34	1.440	1.470
	02	35.31	35.94	1.390	1.415
E		15.24	15.75	.600	.620
E1	01	13.59	14.10	.535	.555
	02	12.83	13.08	.505	.515
е		2.54 TYP		.100 BSC	
eA		15.49	16.76	.610	.660
L		3.05	3.81	.120	.150
Q1	01	1.40	1.91	.055	.075
	02	1.40	1.78	.055	.070
s	01	1.52	2.29	.060	.090
	02	1.02	1.52	.040	.060


CONTROLLING DIMENSIONS: INCH

OPTION TABLE					
OPTION#	PACKAGE				
01	STANDARD				
02	IDF				


Note: ZiLOG supplies both options for production. Component layout PCB design should cover bigger option 01.


Figure 64. 28-Pin PDIP Package Diagram

SYMBOL	MILLI	METER	INCH		
SIMBOL	MIN	MAX	MIN	MAX	
A	2.41	2.79	0.095	0.110	
A1	0.23	0.38	0.009	0.015	
A2	2.18	2.39	0.086	0.094	
b	0.20	0.34	0.008	0.0135	
c	0.13	0.25	0.005	0.010	
D	15.75	16.00	0.620	0.630	
E	7.39	7.59	0.291	0.299	
е	0.635 BSC		0.025 BSC		
Н	10.16	10.41	0.400	0.410	
L	0.51	1.016	0.020	0.040	

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH

Figure 68. 48-Pin SSOP Package Design

Note: Check with ZiLOG on the actual bonding diagram and coordinate for chip-on-board assembly.