

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	32
Program Memory Size	4KB (4K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-BSSOP (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323hah4804g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

P25 P26 P27 P04 P05 P07 V _{DD} XTAL2 XTAL1 P31 P32 P34	1 2 3 4 5 6 7 8 9 10 11 12 13 14	28-Pin PDIP SOIC SSOP CDIP*	28 27 26 25 24 23 22 21 20 19 18 17 16	 P24 P23 P22 P21 P20 P03 V_{SS} P02 P01 P00 Pref1/P30 P36 P35
P34 🗖	14		15	🖵 P35

Figure 4. 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration

Table 5. 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification

Pin	Symbol	Direction	Description
1-3	P25-P27	Input/Output	Port 2, Bits 5,6,7
4-7	P04-P07	Input/Output	Port 0, Bits 4,5,6,7
8	V _{DD}		Power supply
9	XTAL2	Output	Crystal, oscillator clock
10	XTAL1	Input	Crystal, oscillator clock
11-13	P31-P33	Input	Port 3, Bits 1,2,3
14	P34	Output	Port 3, Bit 4
15	P35	Output	Port 3, Bit 5
16	P37	Output	Port 3, Bit 7
17	P36	Output	Port 3, Bit 6
18	Pref1/P30	Input	Analog ref input; connect to V _{CC} if not used
	Port 3 Bit 0		Input for Pref1/P30
19-21	P00-P02	Input/Output	Port 0, Bits 0,1,2
22	V _{SS}		Ground
23	P03	Input/Output	Port 0, Bit 3
24-28	P20-P24	Input/Output	Port 2, Bits 0-4

ZGP323H Product Specification

40-Pin PDIP #	48-Pin SSOP #	Symbol
33	40	P13
8	9	P14
9	10	P15
12	15	P16
13	16	P17
35	42	P20
36	43	P21
37	44	P22
38	45	P23
39	46	P24
2	2	P25
3	3	P26
4	4	P27
16	19	P31
17	20	P32
18	21	P33
19	22	P34
22	26	P35
24	28	P36
23	27	P37
20	23	NC
40	47	NC
1	1	NC
21	25	RESET
15	18	XTAL1
14	17	XTAL2
11	12, 13	V _{DD}
31	24, 37, 38	V _{SS}
25	29	Pref1/P30
	48	NC
	6	NC
	14	NC
	30	NC
	36	NC

Table 6. 40- and 48-Pin Configuration (Continued)

Table 11. GP323HA DC Characteristics

			T _A = -40°C	C to +12	5°C			
Symbol	Parameter	V _{CC}	Min	Typ(7)	Max	Units	Conditions	Notes
V _{CC}	Supply Voltage		2.0		5.5	V	See Note 5	5
V _{CH}	Clock Input High Voltage	2.0-5.5	0.8 V _{CC}		V _{CC} +0.3	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	2.0-5.5	V _{SS} -0.3		0.4	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	2.0-5.5	0.7 V _{CC}		V _{CC} +0.3	V		
V _{IL}	Input Low Voltage	2.0-5.5	V _{SS} 0.3		0.2 V _{CC}	V		
V _{OH1}	Output High Voltage	2.0-5.5	V _{CC} -0.4			V	I _{OH} = -0.5mA	
V _{OH2}	Output High Voltage (P36, P37, P00, P01)	2.0-5.5	V _{CC} -0.8			V	I _{OH} = -7mA	
V _{OL1}	Output Low Voltage	2.0-5.5			0.4	V	$I_{OL} = 4.0 \text{mA}$	
V _{OL2}	Output Low Voltage (P00, P01, P36, P37)	2.0-5.5			0.8	V	I _{OL} = 10mA	
V _{OFFSET}	Comparator Input Offset Voltage	2.0-5.5			25	mV		
V _{REF}	Comparator Reference Voltage	2.0-5.5	0		V _{DD} -1.75	V		
Ι _{ΙL}	Input Leakage	2.0-5.5	-1		1	μΑ	V _{IN} = 0V, V _{CC} Pull-ups disabled	
R _{PU}	Pull-up Resistance	2.0V	200		700	KΩ	V _{IN} = 0V; Pullups selected by mask	(
		3.6V	50		300	KΩ	option	
		5.0V	25		175	KΩ	_	
I _{OL}	Output Leakage	2.0-5.5	-1		1	μΑ	$V_{IN} = 0V, V_{CC}$	
I _{CC}	Supply Current	2.0V		1	3	mA	at 8.0 MHz	1, 2
		3.6V		5	10	mA	at 8.0 MHz	1,2
	0	5.5V		10	15	mA	at 8.0 MHz	1, 2
I _{CC1}	Standby Current	2.0V		0.5	1.6	mA m A	$V_{IN} = 0V$, Clock at 8.0MHz	1, 2, 6
	(HALT Mode)	3.6V 5.5V		0.8 1.3	2.0 3.2	mA mA	$V_{IN} = 0V$, Clock at 8.0MHz $V_{IN} = 0V$, Clock at 8.0MHz	1, 2, 6 1, 2, 6
1	Standby Current (Stop	2.0V		1.6	15	μΑ	$V_{IN} = 0 V$, V_{CC} WDT not Running	3
I _{CC2}	Mode)	2.6V 3.6V		1.8	20	μA μA	$V_{IN} = 0 V, V_{CC} WDT not Running$ $V_{IN} = 0 V, V_{CC} WDT not Running$	3
	wode)	5.5V		1.9	25	μA	$V_{IN} = 0 V$, V_{CC} WDT not Running	3
		2.0V		5	30	μA	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3
		3.6V		8	40	μA	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3
		5.5V		15	60	μA	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3
I _{LV}	Standby Current (Low Voltage)			1.2	6	μA	Measured at 1.3V	4
V _{BO}	V _{CC} Low Voltage Protection			1.9	2.15	V	8MHz maximum Ext. CLK Freq.	
V _{LVD}	V _{CC} Low Voltage Detection			2.4		V	•	

Table 11. GP323HA DC Characteristics (Continued)

	T _A = -40°C to +125°C							
Symbol	Parameter	V _{CC}	Min	Typ(7)	Max	Units	Conditions	Notes
V _{HVD}	Vcc High Voltage Detection			2.7		V		
Notes:								
1. All o	outputs unloaded, inpu	ıts at rail.						
2. CL1	1 = CL2 = 100 pF.							
3. Osc	cillator stopped.							
4. Osc	cillator stops when V _{CC}	falls below	V _{BO} limit.					
volt	age fluctuations are a	nticipated, su	ch as thos	e resulting			cally close to VCC and nfrared LED.	V_{SS} pins if operating
6. Cor	mparator and Timers a	re on. Interru	pt disabled	1.				

7. Typical values shown are at 25 degrees C.

Table 12. EPROM/OTP Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes
	Erase Time	15			Minutes	1,3
	Data Retention @ use years		10		Years	2
	Program/Erase Endurance	100			Cycles	1

Notes:

1. For windowed cerdip package only.

2. Standard: 0°C to 70°C; Extended: -40°C to +105°C; Automotive: -40°C to +125°C. Determined using the Arrhenius model, which is an industry standard for estimating data retention of floating gate technologies:

AF = exp[(Ea/k)*(1/Tuse - 1/TStress)] Where: Ea is the intrinsic activation energy (eV; typ. 0.8) k is Boltzman's constant (8.67 x 10-5 eV/°K) °K = -273.16°C Tuse = Use Temperature in °K TStress = Stress Temperature in °K 3. At a stable UV Lamp output of 20mW/CM²

AC Characteristics

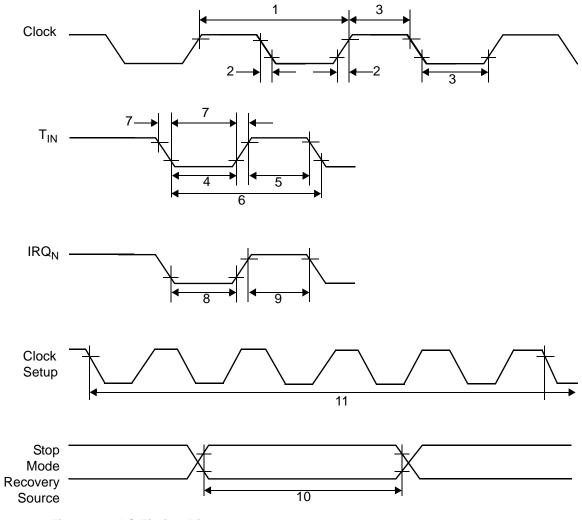


Figure 8. AC Timing Diagram

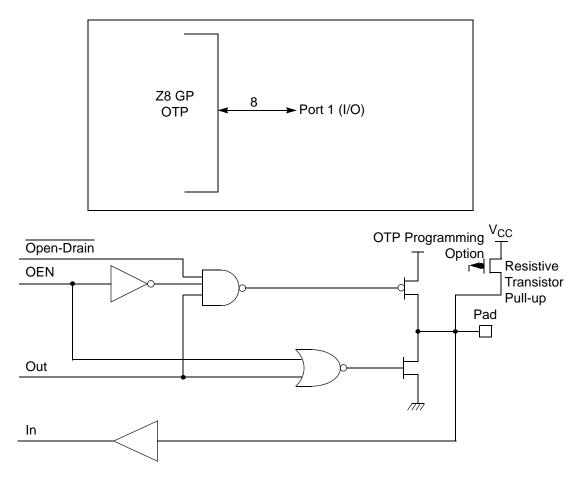


Figure 10. Port 1 Configuration

Port 2 (P27-P20)

Port 2 is an 8-bit, bidirectional, CMOS-compatible I/O port (see Figure 11). These eight I/O lines can be independently configured under software control as inputs or outputs. Port 2 is always available for I/O operation. A mask option is available to connect eight pull-up transistors on this port. Bits programmed as outputs are globally programmed as either push-pull or open-drain. The POR resets with the eight bits of Port 2 configured as inputs.

Port 2 also has an 8-bit input OR and AND gate, which can be used to wake up the part. P20 can be programmed to access the edge-detection circuitry in demodulation mode.

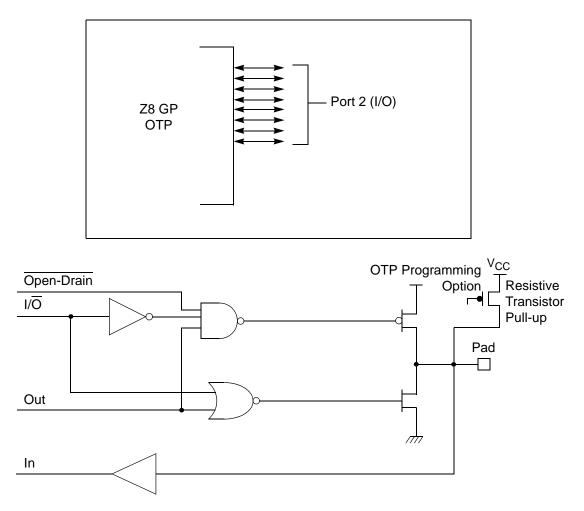


Figure 11. Port 2 Configuration

Port 3 (P37–P30)

Port 3 is a 8-bit, CMOS-compatible fixed I/O port (see Figure 12). Port 3 consists of four fixed input (P33–P30) and four fixed output (P37–P34), which can be configured under software control for interrupt and as output from the counter/timers. P30, P31, P32, and P33 are standard CMOS inputs; P34, P35, P36, and P37 are push-pull outputs.

CTR1(0D)01H" on page 35). Other edge detect and IRQ modes are described in Table 14.

Note: Comparators are powered down by entering Stop Mode. For P31–P33 to be used in a Stop Mode Recovery (SMR) source, these inputs must be placed into digital mode.

Pin	I/O	Counter/Timers	Comparator	Interrupt
Pref1/P30	IN		RF1	
P31	IN	IN	AN1	IRQ2
P32	IN		AN2	IRQ0
P33	IN		RF2	IRQ1
P34	OUT	Т8	AO1	
P35	OUT	T16		
P36	OUT	T8/16		
P37	OUT		AO2	
P20	I/O	IN		

Table 14. Port 3 Pin Function Summary

>

Port 3 also provides output for each of the counter/timers and the AND/OR Logic (see Figure 13). Control is performed by programming bits D5–D4 of CTR1, bit 0 of CTR0, and bit 0 of CTR2.

34

Table 15.CTR0(D)00H Counter/Timer8 Control Register (Continued)

Field	Bit Position		Value	Description
Counter_INT_Mask	1-	R/W	0** 1	Disable Time-Out Interrupt Enable Time-Out Interrupt
P34_Out	0	R/W	0* 1	P34 as Port Output T8 Output on P34

Note:

*Indicates the value upon Power-On Reset.

**Indicates the value upon Power-On Reset. Not reset with a Stop Mode recovery.

T8 Enable

This field enables T8 when set (written) to 1.

Single/Modulo-N

When set to 0 (Modulo-N), the counter reloads the initial value when the terminal count is reached. When set to 1 (single-pass), the counter stops when the terminal count is reached.

Timeout

This bit is set when T8 times out (terminal count reached). To reset this bit, write a 1 to its location.

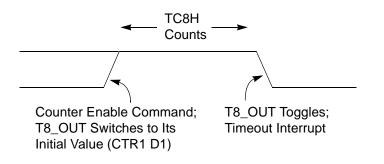
Caution: Writing a 1 is the only way to reset the Terminal Count status condition. Reset this bit before using/enabling the counter/timers.

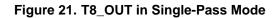
The first clock of T8 might not have complete clock width and can occur any time when enabled.

Note: Take care when using the OR or AND commands to manipulate CTR0, bit 5 and CTR1, bits 0 and 1 (Demodulation Mode). These instructions use a Read-Modify-Write sequence in which the current status from the CTR0 and CTR1 registers is ORed or ANDed with the designated value and then written back into the registers.

T8 Clock

This bit defines the frequency of the input signal to T8.


Note: The letter h denotes hexadecimal values.


Transition from 0 to FFh is not a timeout condition.

Caution: Using the same instructions for stopping the counter/timers and setting the status bits is not recommended.

Two successive commands are necessary. First, the counter/timers must be stopped. Second, the status bits must be reset. These commands are required because it takes one counter/timer clock interval for the initiated event to actually occur. See Figure 21 and Figure 22.

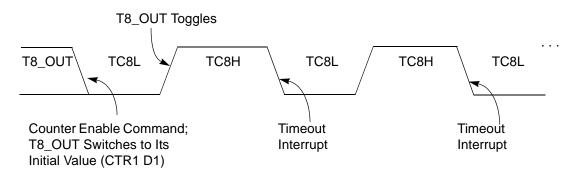


Figure 22. T8_OUT in Modulo-N Mode

T8 Demodulation Mode

The user must program TC8L and TC8H to FFH. After T8 is enabled, when the first edge (rising, falling, or both depending on CTR1, D5; D4) is detected, it starts to count down. When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current value of T8 is complemented and put into one of the capture registers. If it is a positive edge, data is put

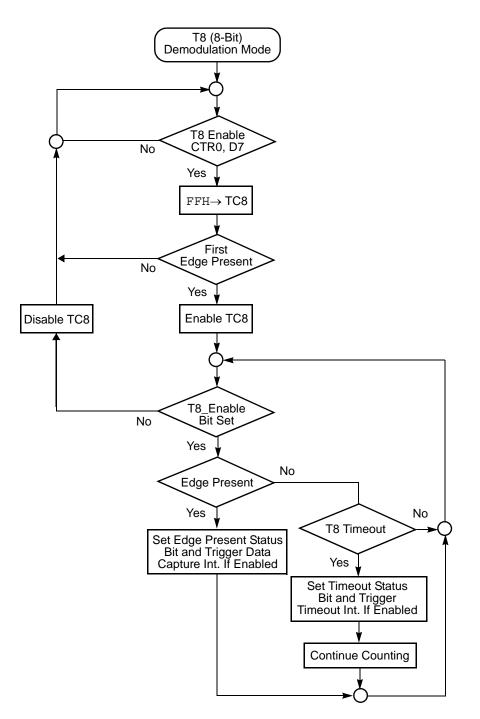


Figure 24. Demodulation Mode Flowchart

48

If D6 of CTR2 Is 1

T16 ignores the subsequent edges in the input signal and continues counting down. A timeout of T8 causes T16 to capture its current value and generate an interrupt if enabled (CTR2, D2). In this case, T16 does not reload and continues counting. If the D6 bit of CTR2 is toggled (by writing a 0 then a 1 to it), T16 captures and reloads on the next edge (rising, falling, or both depending on CTR1, D5; D4), continuing to ignore subsequent edges.

This T16 mode generally measures mark time, the length of an active carrier signal burst.

If T16 reaches 0, T16 continues counting from FFFFh. Meanwhile, a status bit (CTR2 D5) is set, and an interrupt timeout can be generated if enabled (CTR2 D1).

Ping-Pong Mode

This operation mode is only valid in TRANSMIT Mode. T8 and T16 must be programmed in Single-Pass mode (CTR0, D6; CTR2, D6), and Ping-Pong mode must be programmed in CTR1, D3; D2. The user can begin the operation by enabling either T8 or T16 (CTR0, D7 or CTR2, D7). For example, if T8 is enabled, T8_OUT is set to this initial value (CTR1, D1). According to T8_OUT's level, TC8H or TC8L is loaded into T8. After the terminal count is reached, T8 is disabled, and T16 is enabled. T16_OUT then switches to its initial value (CTR1, D0), data from TC16H and TC16L is loaded, and T16 starts to count. After T16 reaches the terminal count, it stops, T8 is enabled again, repeating the entire cycle. Interrupts can be allowed when T8 or T16 reaches terminal control (CTR0, D1; CTR2, D1). To stop the ping-pong operation, write 00 to bits D3 and D2 of CTR1. See Figure 28.

)

Note: Enabling ping-pong operation while the counter/timers are running might cause intermittent counter/timer function. Disable the counter/timers and reset the status flags before instituting this operation.

ED
52

Name	Source	Vector Location	Comments
IRQ0	P32	0,1	External (P32), Rising, Falling Edge Triggered
IRQ1	P33	2,3	External (P33), Falling Edge Triggered
IRQ2	P31, T _{IN}	4,5	External (P31), Rising, Falling Edge Triggered
IRQ3	T16	6,7	Internal
IRQ4	T8	8,9	Internal
IRQ5	LVD	10,11	Internal

Table 19. Interrupt Types, Sources, and Vectors

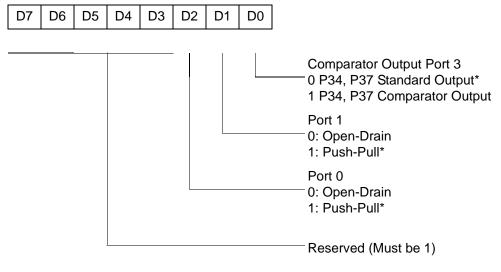
When more than one interrupt is pending, priorities are resolved by a programmable priority encoder controlled by the Interrupt Priority Register. An interrupt machine cycle activates when an interrupt request is granted. As a result, all subsequent interrupts are disabled, and the Program Counter and Status Flags are saved. The cycle then branches to the program memory vector location reserved for that interrupt. All ZGP323H interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request. To accommodate polled interrupt systems, interrupt inputs are masked, and the Interrupt Request register is polled to determine which of the interrupt requests require service.

An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQ0. Interrupts IRQ2 and IRQ0 can be rising, falling, or both edge triggered. These interrupts are programmable by the user. The software can poll to identify the state of the pin.

Programming bits for the Interrupt Edge Select are located in the IRQ Register (R250), bits D7 and D6. The configuration is indicated in Table 20.

I	RQ	Interr	upt Edge		
D7	D6	IRQ2 (P31)	IRQ0 (P32)		
0	0	F	F		
0	1	F	R		
1	0	R	F		
1	1	R/F	R/F		
Note: F = Falling Edge; R = Rising Edge					

Table 20. IRQ Register



FF	NOP	; clear the pipeline
6F	Stop	; enter Stop Mode
or		
FF	NOP	; clear the pipeline
7F	HALT	; enter HALT Mode

Port Configuration Register

The Port Configuration (PCON) register (Figure 32) configures the comparator output on Port 3. It is located in the expanded register 2 at Bank F, location 00.

PCON(FH)00H

* Default setting after reset

Figure 32. Port Configuration Register (PCON) (Write Only)

Comparator Output Port 3 (D0)

Bit 0 controls the comparator used in Port 3. A 1 in this location brings the comparator outputs to P34 and P37, and a 0 releases the Port to its standard I/O configuration.

Port 1 Output Mode (D1)

Bit 1 controls the output mode of port 1. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.

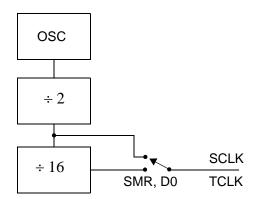


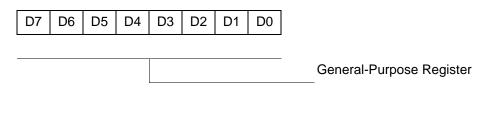
Figure 34. SCLK Circuit

Stop-Mode Recovery Source (D2, D3, and D4)

These three bits of the SMR specify the wake-up source of the Stop recovery (Figure 35 and Table 22).

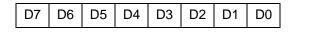
Stop-Mode Recovery Register 2—SMR2(F)0DH

Table 21 lists and briefly describes the fields for this register.


Field	Bit Position		Value	Description
Reserved	7		0	Reserved (Must be 0)
Recovery Level	-6	W	0 [†]	Low
-			1	High
Reserved	5		0	Reserved (Must be 0)
Source	432	W	000 [†]	A. POR Only
			001	B. NAND of P23–P20
			010	C. NAND of P27–P20
			011	D. NOR of P33–P31
			100	E. NAND of P33–P31
			101	F. NOR of P33–P31, P00, P07
			110	G. NAND of P33–P31, P00, P07
			111	H. NAND of P33–P31, P22–P20
Reserved	10		00	Reserved (Must be 0)

Notes:

* Port pins configured as outputs are ignored as a SMR recovery source. † Indicates the value upon Power-On Reset



R254 SPH(FEH)

Figure 56. Stack Pointer High (FEH: Read/Write)

R255 SPL(FFH)

Stack Pointer Low Byte (SP7–SP0)

Figure 57. Stack Pointer Low (FFH: Read/Write)

Package Information

Package information for all versions of ZGP323H is depicted in Figures 59 through Figure 68.

MILLIMETER

MAX

2.65

0.30

2.44

0.46

0.30

12.95

7.60

10.65

0.40

1.00

1.07

1.27 BSC

INCH

мах

.104

.012

.096

.018

.012

.510

.299

.419

.016

.039

.042

.050 BSC

MIN

.094

.004

.088

.014

.009

.496

.291

.394

.012

.024

.038

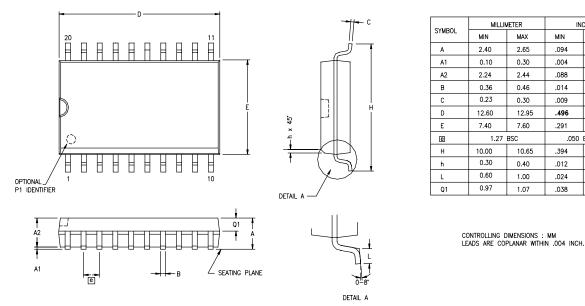


Figure 60. 20-Pin SOIC Package Diagram

PS023803-0305

ZGP323H Product Specification

Ordering Information

32KB Standard Temperature: 0° to +70°C

	•		
Part Number	Description	Part Number	Description
ZGP323HSH4832C	48-pin SSOP 32K OTP	ZGP323HSS2832C	28-pin SOIC 32K OTP
ZGP323HSP4032C	40-pin PDIP 32K OTP	ZGP323HSH2032C	20-pin SSOP 32K OTP
ZGP323HSK2832E	28-pin CDIP 32K OTP	ZGP323HSK2032E	20-pin CDIP 32K OTP
ZGP323HSK4032E	40-pin CDIP 32K OTP	ZGP323HSP2032C	20-pin PDIP 32K OTP
ZGP323HSH2832C	28-pin SSOP 32K OTP	ZGP323HSS2032C	20-pin SOIC 32K OTP
ZGP323HSP2832C	28-pin PDIP 32K OTP		

32KB Extended Temperature: -40° to +105°C

	•		
Part Number	Description	Part Number	Description
ZGP323HEH4832C	48-pin SSOP 32K OTP	ZGP323HES2832C	28-pin SOIC 32K OTP
ZGP323HEP4032C	40-pin PDIP 32K OTP	ZGP323HEH2032C	20-pin SSOP 32K OTP
ZGP323HEH2832C	28-pin SSOP 32K OTP	ZGP323HEP2032C	20-pin PDIP 32K OTP
ZGP323HEP2832C	28-pin PDIP 32K OTP	ZGP323HES2032C	20-pin SOIC 32K OTP

32KB Automotive Temperature: -40° to +125°C				
Part Number	Description	Part Number	Description	
ZGP323HAH4832C	48-pin SSOP 32K OTP	ZGP323HAS2832C	28-pin SOIC 32K OTP	
ZGP323HAP4032C	40-pin PDIP 32K OTP	ZGP323HAH2032C	20-pin SSOP 32K OTP	
ZGP323HAH2832C	28-pin SSOP 32K OTP	ZGP323HAP2032C	20-pin PDIP 32K OTP	
ZGP323HAP2832C	28-pin PDIP 32K OTP	ZGP323HAS2032C	20-pin SOIC 32K OTP	
Replace C with G for Lead-Free Packaging				

ZGP323H Z8[®] OTP Microcontroller with IR Timers

pin 4 Ε **EPROM** selectable options 64 expanded register file 26 expanded register file architecture 28 expanded register file control registers 71 flag 80 interrupt mask register 79 interrupt priority register 78 interrupt request register 79 port 0 and 1 mode register 77 port 2 configuration register 75 port 3 mode register 76 port configuration register 75 register pointer 80 stack pointer high register 81 stack pointer low register 81 stop-mode recovery register 73 stop-mode recovery register 2 74 T16 control register 69 T8 and T16 common control functions register 67 T8/T16 control register 70 TC8 control register 66 watch-dog timer register 75 F features standby modes 1 functional description counter/timer functional blocks 40 CTR(D)01h register 35 CTR0(D)00h register 33 CTR2(D)02h register 37 CTR3(D)03h register 39 expanded register file 26 expanded register file architecture 28 HI16(D)09h register 32 HI8(D)0Bh register 32 L08(D)0Ah register 32 L0I6(D)08h register 32

program memory map 26 **RAM 25** register description 65 register file 30 register pointer 29 register pointer detail 31 SMR2(F)0D1h register 40 stack 31 TC16H(D)07h register 32 TC16L(D)06h register 33 TC8H(D)05h register 33 TC8L(D)04h register 33 G glitch filter circuitry 40 Η halt instruction, counter/timer 54 input circuit 40 interrupt block diagram, counter/timer 51 interrupt types, sources and vectors 52 L low-voltage detection register 65 Μ memory, program 25 modulo-N mode T16 OUT 47 T8 OUT 43 0 oscillator configuration 53 output circuit, counter/timer 49 Ρ package information 20-pin DIP package diagram 82 20-pin SSOP package diagram 84 28-pin DIP package diagram 86 28-pin SOIC package diagram 85 28-pin SSOP package diagram 87 40-pin DIP package diagram 87 48-pin SSOP package diagram 89 pin configuration 20-pin DIP/SOIC/SSOP 5

ZGP323H Z8[®] OTP Microcontroller with IR Timers

T8_Capture_LO 32 register file 30 expanded 26 register pointer 29 detail 31 reset pin function 25 resets and WDT 63 S SCLK circuit 58 single-pass mode T16_OUT 47 T8_OUT 43 stack 31 standard test conditions 10 standby modes 1 stop instruction, counter/timer 54 stop mode recovery 2 register 61 source 59 stop mode recovery 2 61 stop mode recovery register 57 Т T16 transmit mode 46 T16_Capture_HI 32 T8 transmit mode 40 T8_Capture_HI 32 test conditions, standard 10 test load diagram 10 timing diagram, AC 16 transmit mode flowchart 41 V VCC 5 voltage brown-out/standby 64 detection and flags 65 voltage detection register 71 W watch-dog timer mode registerwatch-dog timer mode register 62 time select 63

X XTAL1 5 XTAL1 pin function 18 XTAL2 5 XTAL2 pin function 18