

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	16
Program Memory Size	32KB (32K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323hap2032g

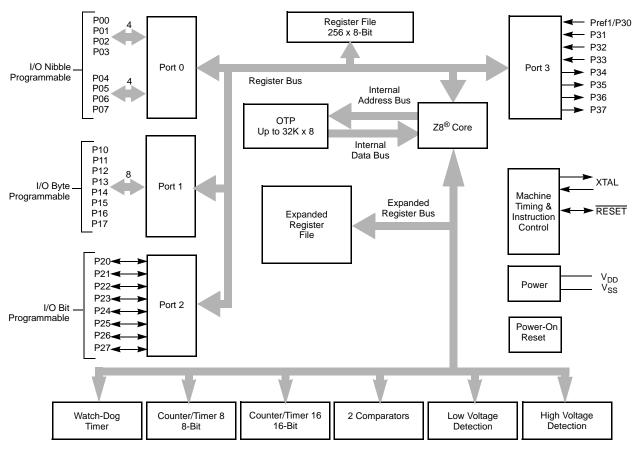
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

iii

Revision History

Each instance in Table 1 reflects a change to this document from its previous revision. To see more detail, click the appropriate link in the table.


Table 1. Revision History of this Document

Date	Revision Level	Section	Description	Page #
December 02 2004		deleted mask option and 10. Added new	consumption, STOP and HALT mode current values, note, clarified temperature ranges in Tables 6 and 8 Tables 9 and 10. Also added Characterization data to ed Program/Erase Endurance value in Table 12.	11,12,
		Removed Preliminar	y designation	All
March 2005	03	Minor change to Tab pin CDIP parts in the	e Ordering Section.	11,90

PS023803-0305 Revision History

Table 3. Power Connections

Connection	Circuit	Device	
Power	V_{CC}	V_{DD}	
Ground	GND	V _{SS}	

Note: Refer to the specific package for available pins.

Figure 1. Functional Block Diagram

PS023803-0305 General Description

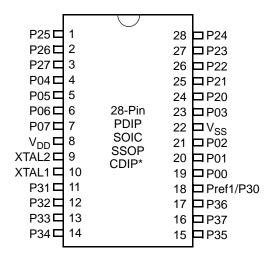


Figure 4. 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration

Table 5. 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification

Pin	Symbol	Direction	Description
1-3	P25-P27	Input/Output	Port 2, Bits 5,6,7
4-7	P04-P07	Input/Output	Port 0, Bits 4,5,6,7
8	V_{DD}		Power supply
9	XTAL2	Output	Crystal, oscillator clock
10	XTAL1	Input	Crystal, oscillator clock
11-13	P31-P33	Input	Port 3, Bits 1,2,3
14	P34	Output	Port 3, Bit 4
15	P35	Output	Port 3, Bit 5
16	P37	Output	Port 3, Bit 7
17	P36	Output	Port 3, Bit 6
18	Pref1/P30	Input	Analog ref input; connect to V _{CC} if not used
	Port 3 Bit 0		Input for Pref1/P30
19-21	P00-P02	Input/Output	Port 0, Bits 0,1,2
22	V _{SS}		Ground
23	P03	Input/Output	Port 0, Bit 3
24-28	P20-P24	Input/Output	Port 2, Bits 0-4

PS023803-0305 Pin Description

Table 6. 40- and 48-Pin Configuration (Continued)

Table of 40 all	a 40 i iii Ooiiiigai	ation (continued
40-Pin PDIP #	48-Pin SSOP #	Symbol
33	40	P13
8	9	P14
9	10	P15
12	15	P16
13	16	P17
35	42	P20
36	43	P21
37	44	P22
38	45	P23
39	46	P24
2	2	P25
3	3	P26
4	4	P27
16	19	P31
17	20	P32
18	21	P33
19	22	P34
22	26	P35
24	28	P36
23	27	P37
20	23	NC
40	47	NC
1	1	NC
21	25	RESET
15	18	XTAL1
14	17	XTAL2
11	12, 13	V_{DD}
31	24, 37, 38	V _{SS}
25	29	Pref1/P30
	48	NC
	6	NC
	14	NC
	30	NC
	36	NC
•		

PS023803-0305 Pin Description

Table 10. GP323HE DC Characteristics (Continued)

T _A = -40°C to +105°C								
Symbol	Parameter	v_{cc}	Min	Typ(7)	Max	Units	Conditions	Notes
V _{OH2}	Output High Voltage (P36, P37, P00, P01)	2.0-5.5	V _{CC} -0.8			V	$I_{OH} = -7mA$	
V _{OL1}	Output Low Voltage	2.0-5.5			0.4	V	$I_{OL} = 4.0 \text{mA}$	
V _{OL2}	Output Low Voltage (P00, P01, P36, P37)	2.0-5.5			8.0	V	I _{OL} = 10mA	
V _{OFFSET}	Comparator Input Offset Voltage	2.0-5.5			25	mV		
V _{REF}	Comparator Reference Voltage	2.0-5.5	0		V _{DD} -1.75	V		
I _{IL}	Input Leakage	2.0-5.5	-1		1	μА	V _{IN} = 0V, V _{CC} Pull-ups disabled	
R _{PU}	Pull-up Resistance	2.0V	200.0		700.0	ΚΩ	V _{IN} = 0V; Pullups selected by mask	
		3.6V	50.0		300.0	ΚΩ	option	-
		5.0V	25.0		175.0	ΚΩ	_	
I _{OL}	Output Leakage	2.0-5.5	-1		1	μΑ	$V_{IN} = 0V, V_{CC}$	
I _{CC}	Supply Current	2.0V		1	3	mΑ	at 8.0 MHz	1, 2
		3.6V		5	10	mΑ	at 8.0 MHz	1, 2
		5.5V		10	15	mA	at 8.0 MHz	1, 2
I _{CC1}	Standby Current	2.0V		0.5	1.6	mΑ	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
	(HALT Mode)	3.6V		8.0	2.0	mΑ	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
		5.5V		1.3	3.2	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
I_{CC2}	Standby Current (Stop			1.6	12	μΑ	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT not Running}$	3
	Mode)	3.6V		1.8	15	μΑ	$V_{IN} = 0 V, V_{CC} WDT not Running$	3
		5.5V		1.9	18	μΑ	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT not Running}$	3
		2.0V		5	30	μA	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT is Running}$	3
		3.6V		8	40	μΑ	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT is Running}$	3
	0. " 0 .	5.5V		15	60	μΑ	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT is Running}$	3
I _{LV}	Standby Current (Low Voltage)			1.2	6	μА	Measured at 1.3V	4
V_{BO}	V _{CC} Low Voltage Protection			1.9	2.15	V	8MHz maximum Ext. CLK Freq.	
V _{LVD}	V _{CC} Low Voltage Detection			2.4		V		
V _{HVD}	Vcc High Voltage Detection			2.7		V		

Notes:

- 1. All outputs unloaded, inputs at rail.
- 2. CL1 = CL2 = 100 pF.
- 3. Oscillator stopped.
- 4. Oscillator stops when $\rm V_{CC}$ falls below $\rm V_{BO}$ limit.
- 5. It is strongly recommended to add a filter capacitor (minimum 0.1 μ F), physically close to VCC and V_{SS} pins if operating voltage fluctuations are anticipated, such as those resulting from driving an Infrared LED.
- 6. Comparator and Timers are on. Interrupt disabled.
- 7. Typical values shown are at 25 degrees C.

PS023803-0305 DC Characteristics

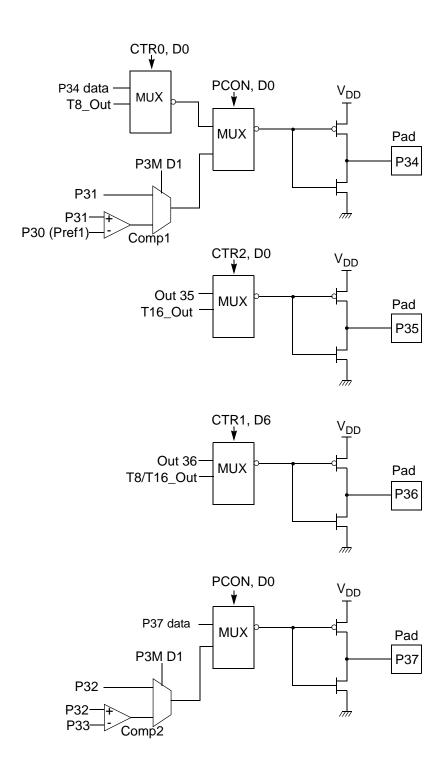


Figure 13. Port 3 Counter/Timer Output Configuration

PS023803-0305 Pin Functions

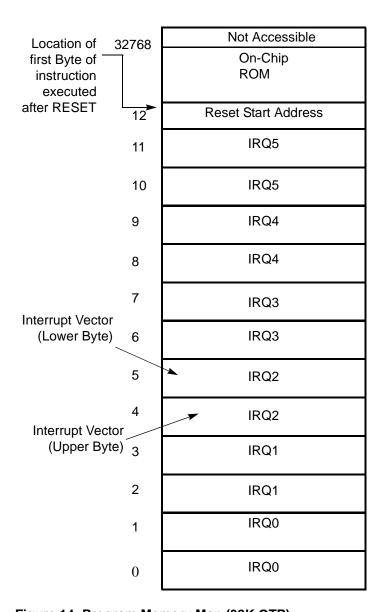


Figure 14. Program Memory Map (32K OTP)

Expanded Register File

The register file has been expanded to allow for additional system control registers and for mapping of additional peripheral devices into the register address area. The Z8[®] register address space (R0 through R15) has been implemented as 16 banks, with 16 registers per bank. These register groups are known as the

31

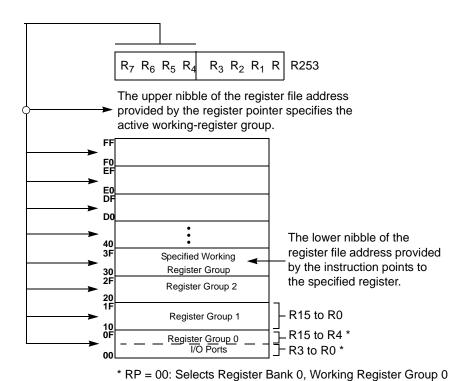


Figure 17. Register Pointer—Detail

Stack

The internal register file is used for the stack. An 8-bit Stack Pointer SPL (R255) is used for the internal stack that resides in the general-purpose registers (R4–R239). SPH (R254) can be used as a general-purpose register.

T8/T16_Logic/Edge _Detect

In TRANSMIT Mode, this field defines how the outputs of T8 and T16 are combined (AND, OR, NOR, NAND).

In DEMODULATION Mode, this field defines which edge should be detected by the edge detector.

Transmit_Submode/Glitch Filter

In Transmit Mode, this field defines whether T8 and T16 are in the PING-PONG mode or in independent normal operation mode. Setting this field to "NORMAL OPERATION Mode" terminates the "PING-PONG Mode" operation. When set to 10, T16 is immediately forced to a 0; a setting of 11 forces T16 to output a 1.

In DEMODULATION Mode, this field defines the width of the glitch that must be filtered out.

Initial_T8_Out/Rising_Edge

In TRANSMIT Mode, if 0, the output of T8 is set to 0 when it starts to count. If 1, the output of T8 is set to 1 when it starts to count. When the counter is not enabled and this bit is set to 1 or 0, T8_OUT is set to the opposite state of this bit. This ensures that when the clock is enabled, a transition occurs to the initial state set by CTR1, D1.

In DEMODULATION Mode, this bit is set to 1 when a rising edge is detected in the input signal. In order to reset the mode, a 1 should be written to this location.

Initial_T16 Out/Falling _Edge

In TRANSMIT Mode, if it is 0, the output of T16 is set to 0 when it starts to count. If it is 1, the output of T16 is set to 1 when it starts to count. This bit is effective only in Normal or PING-PONG Mode (CTR1, D3; D2). When the counter is not enabled and this bit is set, T16_OUT is set to the opposite state of this bit. This ensures that when the clock is enabled, a transition occurs to the initial state set by CTR1, D0.

In DEMODULATION Mode, this bit is set to 1 when a falling edge is detected in the input signal. In order to reset it, a 1 should be written to this location.

Note: Modifying CTR1 (D1 or D0) while the counters are enabled causes unpredictable output from T8/16_OUT.

CTR2 Counter/Timer 16 Control Register—CTR2(D)02H

Table 17 lists and briefly describes the fields for this register.

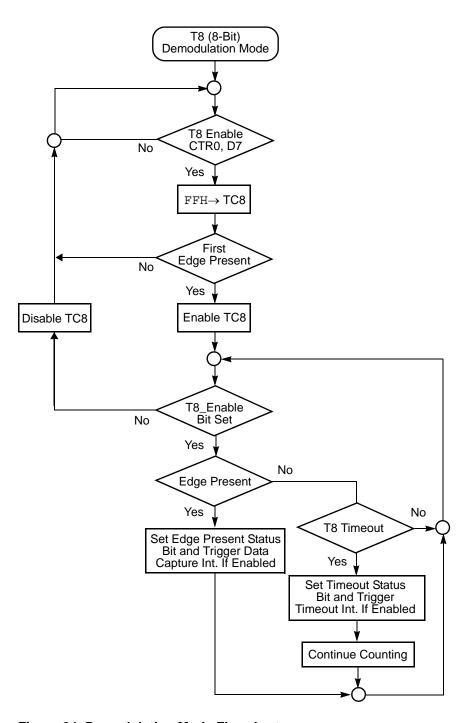


Figure 24. Demodulation Mode Flowchart

48

If D6 of CTR2 Is 1

T16 ignores the subsequent edges in the input signal and continues counting down. A timeout of T8 causes T16 to capture its current value and generate an interrupt if enabled (CTR2, D2). In this case, T16 does not reload and continues counting. If the D6 bit of CTR2 is toggled (by writing a 0 then a 1 to it), T16 captures and reloads on the next edge (rising, falling, or both depending on CTR1, D5; D4), continuing to ignore subsequent edges.

This T16 mode generally measures mark time, the length of an active carrier signal burst.

If T16 reaches 0, T16 continues counting from FFFFh. Meanwhile, a status bit (CTR2 D5) is set, and an interrupt timeout can be generated if enabled (CTR2 D1).

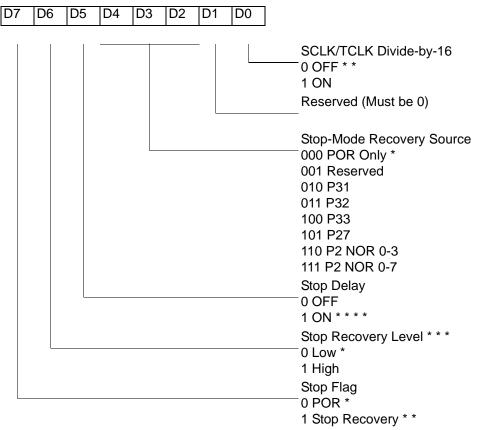
Ping-Pong Mode

This operation mode is only valid in TRANSMIT Mode. T8 and T16 must be programmed in Single-Pass mode (CTR0, D6; CTR2, D6), and Ping-Pong mode must be programmed in CTR1, D3; D2. The user can begin the operation by enabling either T8 or T16 (CTR0, D7 or CTR2, D7). For example, if T8 is enabled, T8_OUT is set to this initial value (CTR1, D1). According to T8_OUT's level, TC8H or TC8L is loaded into T8. After the terminal count is reached, T8 is disabled, and T16 is enabled. T16_OUT then switches to its initial value (CTR1, D0), data from TC16H and TC16L is loaded, and T16 starts to count. After T16 reaches the terminal count, it stops, T8 is enabled again, repeating the entire cycle. Interrupts can be allowed when T8 or T16 reaches terminal control (CTR0, D1; CTR2, D1). To stop the ping-pong operation, write 00 to bits D3 and D2 of CTR1. See Figure 28.

Note: Enabling ping-pong operation while the counter/timers are running might cause intermittent counter/timer function. Disable the counter/timers and reset the status flags before instituting this operation.

50

During PING-PONG Mode


The enable bits of T8 and T16 (CTR0, D7; CTR2, D7) are set and cleared alternately by hardware. The timeout bits (CTR0, D5; CTR2, D5) are set every time the counter/timers reach the terminal count.

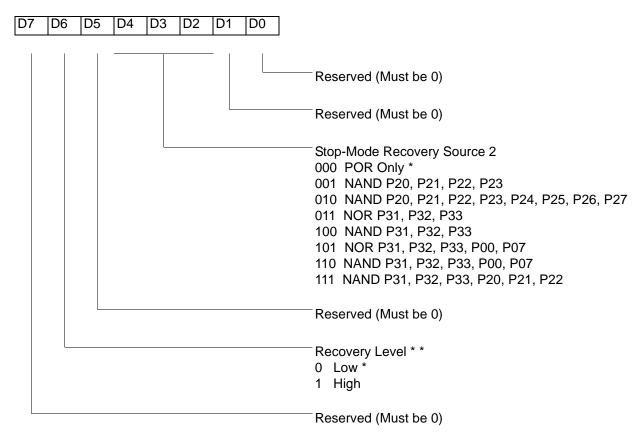
Interrupts

The ZGP323H features six different interrupts (Table 19). The interrupts are maskable and prioritized (Figure 30). The six sources are divided as follows: three sources are claimed by Port 3 lines P33–P31, two by the counter/timers (Table 19) and one for low voltage detection. The Interrupt Mask Register (globally or individually) enables or disables the six interrupt requests.

The source for IRQ is determined by bit 1 of the Port 3 mode register (P3M). When in digital mode, Pin P33 is the source. When in analog mode the output of the Stop mode recovery source logic is used as the source for the interrupt. See Figure 35, Stop Mode Recovery Source, on page 59.

SMR(0F)0BH

- * Default after Power On Reset or Watch-Dog Reset
- * * Default setting after Reset and Stop Mode Recovery
- * * * At the XOR gate input
- * * * * Default setting after reset. Must be 1 if using a crystal or resonator clock source.


Figure 33. STOP Mode Recovery Register

SCLK/TCLK Divide-by-16 Select (D0)

D0 of the SMR controls a divide-by-16 prescaler of SCLK/TCLK (Figure 34). This control selectively reduces device power consumption during normal processor execution (SCLK control) and/or Halt Mode (where TCLK sources interrupt logic). After Stop Mode Recovery, this bit is set to a 0.

Stop Mode Recovery Register 2 (SMR2)

This register determines the mode of Stop Mode Recovery for SMR2 (Figure 36). SMR2(0F)DH

Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery.

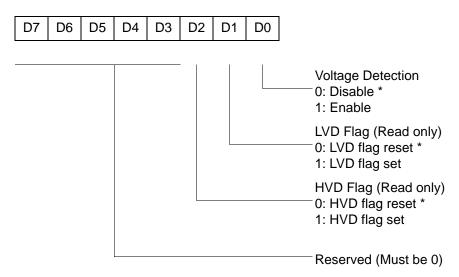

- * Default setting after reset
- * * At the XOR gate input

Figure 36. Stop Mode Recovery Register 2 ((0F)DH:D2-D4, D6 Write Only)

If SMR2 is used in conjunction with SMR, either of the specified events causes a Stop Mode Recovery.

Note: Port pins configured as outputs are ignored as an SMR or SMR2 recovery source. For example, if the NAND or P23–P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23–P21) form the NAND equation.

LVD(0D)0CH

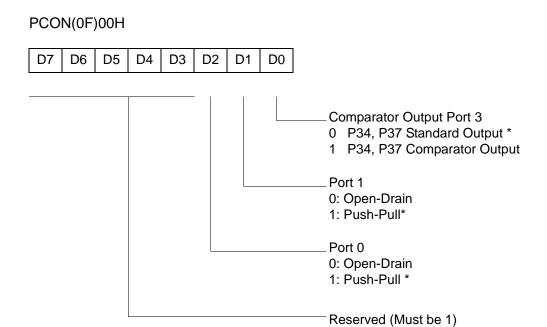
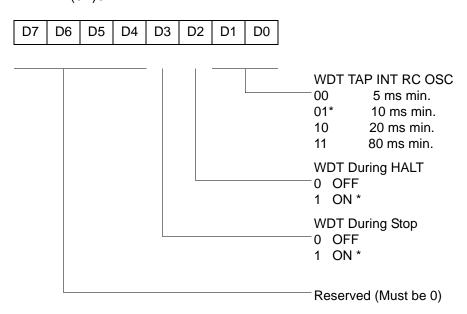

^{*} Default setting after reset.

Figure 43. Voltage Detection Register

Note: Do not modify register P01M while checking a low-voltage condition. Switching noise of both ports 0 and 1 together might trigger the LVD flag.

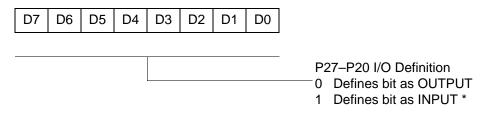
Expanded Register File Control Registers (0F)


The expanded register file control registers (0F) are depicted in Figures 44 through Figure 57.

^{*} Default setting after reset

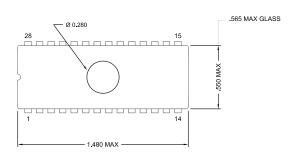
Figure 44. Port Configuration Register (PCON)(0F)00H: Write Only)

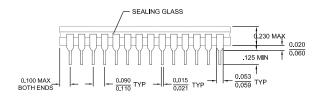
WDTMR(0F)0FH



^{*} Default setting after reset. Not reset with a Stop Mode recovery.

Figure 47. Watch-Dog Timer Register ((0F) 0FH: Write Only)


Standard Control Registers


R246 P2M(F6H)

^{*} Default setting after reset. Not reset with a Stop Mode recovery.

Figure 48. Port 2 Mode Register (F6H: Write Only)

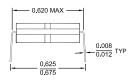
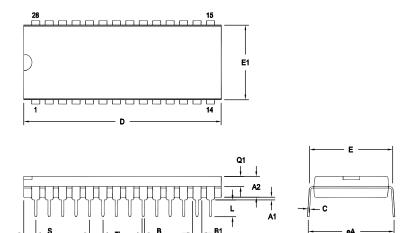
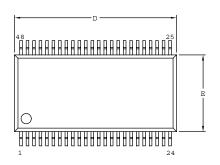
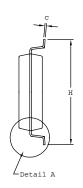



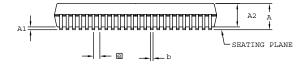
Figure 63. 28-Pin CDIP Package Diagram

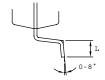
SYMBOL	OPT#	MILLIN	IETER	INCH	
GIMBOL	011#	MIN	MAX	MIN	MAX
A1		0.38	1.02	.015	.040
A2		3.18	4.19	.125	.165
В		0.38	0.53	.015	.021
B1	01	1.40	1.65	.055	.065
В	02	1.14	1.40	.045	.055
С		0.23	0.38	.009	.015
D	01	36.58	37.34	1.440	1.470
	02	35.31	35.94	1.390	1.415
E		15.24	15.75	.600	.620
E1	01	13.59	14.10	.535	.555
	02	12.83	13.08	.505	.515
е		2.54	TYP	.100 BSC	
eA		15.49	16.76	.610	.660
L		3.05	3.81	.120	.150
Q1	01	1.40	1.91	.055	.075
_ .	02	1.40	1.78	.055	.070
	01	1.52	2.29	.060	.090
S	02	1.02	1.52	.040	.060


CONTROLLING DIMENSIONS: INCH


OPTION TABLE				
OPTION # PACKAGE				
01	STANDARD			
02	IDF			

Note: ZiLOG supplies both options for production. Component layout PCB design should cover bigger option 01.


Figure 64. 28-Pin PDIP Package Diagram


PS023803-0305 Package Information

SYMBOL	MILLI	METER	INCH	
SIMBOL	MIN	MAX	MIN	MAX
A	2.41	2.79	0.095	0.110
A1	0.23	0.38	0.009	0.015
A2	2.18	2.39	0.086	0.094
b	0.20	0.34	0.008	0.0135
C	0.13	0.25	0.005	0.010
D	15.75	16.00	0.620	0.630
E	7.39	7.59	0.291	0.299
е	0.635 BSC		0.0	25 BSC
Н	10.16	10.41	0.400	0.410
L	0.51	1.016	0.020	0.040

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH

Figure 68. 48-Pin SSOP Package Design

Note: Check with ZiLOG on the actual bonding diagram and coordinate for chip-on-board assembly.

PS023803-0305 Package Information

16KB Standard Temperature: 0° to +70°C								
Part Number	Description	Part Number	Description					
ZGP323HSH4816C	48-pin SSOP 16K OTP	ZGP323HSS2816C	28-pin SOIC 16K OTP					
ZGP323HSP4016C	40-pin PDIP 16K OTP	ZGP323HSH2016C	20-pin SSOP 16K OTP					
ZGP323HSH2816C	28-pin SSOP 16K OTP	ZGP323HSP2016C	20-pin PDIP 16K OTP					
ZGP323HSP2816C	28-pin PDIP 16K OTP	ZGP323HSS2016C	20-pin SOIC 16K OTP					
16KB Extended Ter	mperature: -40° to +105	°C						
Part Number	Description	Part Number	Description					
ZGP323HEH4816C	48-pin SSOP 16K OTP	ZGP323HES2816C	28-pin SOIC 16K OTP					
ZGP323HEP4016C	40-pin PDIP 16K OTP	ZGP323HEH2016C	20-pin SSOP 16K OTP					
ZGP323HEH2816C	28-pin SSOP 16K OTP	ZGP323HEP2016C	20-pin PDIP 16K OTP					
ZGP323HEP2816C	28-pin PDIP 16K OTP	ZGP323HES2016C	20-pin SOIC 16K OTP					
16KB Automotive T	emperature: -40° to +12	25°C						
Part Number	Description	Part Number	Description					
ZGP323HAH4816C	48-pin SSOP 16K OTP	ZGP323HAS2816C	28-pin SOIC 16K OTP					
ZGP323HAP4016C	40-pin PDIP 16K OTP	ZGP323HAH2016C	20-pin SSOP 16K OTP					
ZGP323HAH2816C	28-pin SSOP 16K OTP	ZGP323HAP2016C	20-pin PDIP 16K OTP					
ZGP323HAP2816C	28-pin PDIP 16K OTP	ZGP323HAS2016C	20-pin SOIC 16K OTP					
Replace C with G for Lead-Free Packaging								

PS023803-0305 Ordering Information