E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	16
Program Memory Size	4KB (4K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323has2004g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

P25 P26 P27 P04 P05 P06 P07 V _{DD} XTAL2 XTAL2 P31 P32 P33	1 2 3 4 5 6 7 8 9 10 11 12 13	28-Pin PDIP SOIC SSOP CDIP*	28 27 26 25 24 23 22 21 20 19 18 17	□ P24 □ P23 □ P22 □ P21 □ P03 □ V _{SS} □ P02 □ P01 □ P00 □ Pref1/P30 □ P36
P32 □ P33 □	12 13		17 16	□ P36 □ P37 □ P35
F 34 L	14		15	ц P35

Figure 4. 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration

Table 5. 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification

Pin	Symbol	Direction	Description
1-3	P25-P27	Input/Output	Port 2, Bits 5,6,7
4-7	P04-P07	Input/Output	Port 0, Bits 4,5,6,7
8	V _{DD}		Power supply
9	XTAL2	Output	Crystal, oscillator clock
10	XTAL1	Input	Crystal, oscillator clock
11-13	P31-P33	Input	Port 3, Bits 1,2,3
14	P34	Output	Port 3, Bit 4
15	P35	Output	Port 3, Bit 5
16	P37	Output	Port 3, Bit 7
17	P36	Output	Port 3, Bit 6
18	Pref1/P30	Input	Analog ref input; connect to V _{CC} if not used
	Port 3 Bit 0		Input for Pref1/P30
19-21	P00-P02	Input/Output	Port 0, Bits 0,1,2
22	V _{SS}		Ground
23	P03	Input/Output	Port 0, Bit 3
24-28	P20-P24	Input/Output	Port 2, Bits 0-4

Capacitance

Table 8 lists the capacitances.

Table 8. Capacitance

Parameter	Maximum				
Input capacitance	12pF				
Output capacitance	12pF				
I/O capacitance	12pF				
Note: $T_A = 25^{\circ}$ C, $V_{CC} = GND = 0$ V, f = 1.0 MHz, unmeasured pins returned to GND					

DC Characteristics

Table 9. GP323HS DC Characteristics

			T _A =0°C to	o +70°C				
Symbol	Parameter	V _{CC}	Min	Typ(7)	Max	Units	Conditions N	lotes
V _{CC}	Supply Voltage		2.0		5.5	V	See Note 5 5	5
V _{CH}	Clock Input High Voltage	2.0-5.5	0.8 V _{CC}		V _{CC} +0.3	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	2.0-5.5	V _{SS} -0.3		0.4	V	Driven by External Clock Generator	
VIH	Input High Voltage	2.0-5.5	0.7 V _{CC}		V _{CC} +0.3	V		
V _{IL}	Input Low Voltage	2.0-5.5	V _{SS} -0.3		0.2 V _{CC}	V		
V _{OH1}	Output High Voltage	2.0-5.5	V _{CC} -0.4			V	$I_{OH} = -0.5 \text{mA}$	
V _{OH2}	Output High Voltage (P36, P37, P00, P01)	2.0-5.5	V _{CC} -0.8			V	I _{OH} = -7mA	
V _{OL1}	Output Low Voltage	2.0-5.5			0.4	V	$I_{OL} = 4.0 \text{mA}$	
V _{OL2}	Output Low Voltage (P00, P01, P36, P37)	2.0-5.5			0.8	V	I _{OL} = 10mA	
V _{OFFSET}	Comparator Input Offset Voltage	2.0-5.5			25	mV		
V _{REF}	Comparator Reference Voltage	2.0-5.5	0		V _{CC} 1.75	V		
IIL	Input Leakage	2.0-5.5	-1		1	μA	V _{IN} = 0V, V _{CC} Pull-ups disabled	
R _{PU}	Pull-up Resistance	2.0V	225		675	KΩ	V _{IN} = 0V; Pullups selected by mask	
-		3.6V	75		275	KΩ	option	
		5.0V	40		160	KΩ		

T ₄ =0°C to +70°C								
Symbol	Parameter	V _{CC}	Min	Typ(7)	Мах	Units	Conditions	Notes
I _{OL}	Output Leakage	2.0-5.5	-1		1	μA	$V_{IN} = 0V, V_{CC}$	
Icc	Supply Current	2.0V		1	3	mA	at 8.0 MHz	1, 2
00		3.6V		5	10	mA	at 8.0 MHz	1, 2
		5.5V		10	15	mA	at 8.0 MHz	1, 2
I _{CC1}	Standby Current	2.0V		0.5	1.6	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
	(HALT Mode)	3.6V		0.8	2.0	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
		5.5V		1.3	3.2	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
I _{CC2}	Standby Current (Stop	2.0V		1.6	8	μA	$V_{IN} = 0 V, V_{CC} WDT not Running$	3
	Mode)	3.6V		1.8	10	μA	$V_{IN} = 0 V, V_{CC} WDT not Running$	3
		5.5V		1.9	12	μΑ	$V_{IN} = 0 V, V_{CC} WDT not Running$	3
		2.0V		5	20	μΑ	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3
		3.6V		8	30	μA	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3
		5.5V		15	45	μΑ	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3
I _{LV}	Standby Current (Low Voltage)			1.2	6	μA	Measured at 1.3V	4
V _{BO}	V _{CC} Low Voltage			1.9	2.0	V	8MHz maximum	
20	Protection						Ext. CLK Freq.	
V _{LVD}	V _{CC} Low Voltage			2.4		V		
	Detection							
V _{HVD}	Vcc High Voltage			2.7		V		
	Detection							

Table 9. GP323HS DC Characteristics (Continued)

Notes:

1. All outputs unloaded, inputs at rail.

2. CL1 = CL2 = 100 pF.

3. Oscillator stopped.

4. Oscillator stops when V_{CC} falls below V_{BO} limit.

 It is strongly recommended to add a filter capacitor (minimum 0.1 μF), physically close to VCC and V_{SS} pins if operating voltage fluctuations are anticipated, such as those resulting from driving an Infrared LED.

- 6. Comparator and Timers are on. Interrupt disabled.
- 7. Typical values shown are at 25 degrees C.

Table 10. GP323HE DC Characteristics

T _A = -40°C to +105°C								
Symbol	Parameter	V _{CC}	Min	Typ(7)	Max	Units	Conditions	Notes
V _{CC}	Supply Voltage		2.0		5.5	V	See Note 5	5
V _{CH}	Clock Input High Voltage	2.0-5.5	0.8 V _{CC}		V _{CC} +0.3	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	2.0-5.5	V _{SS} -0.3		0.4	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	2.0-5.5	0.7 V _{CC}		V _{CC} +0.3	V		
V _{IL}	Input Low Voltage	2.0-5.5	V _{SS} 0.3		0.2 V _{CC}	V		
V _{OH1}	Output High Voltage	2.0-5.5	V _{CC} -0.4			V	I _{OH} = -0.5mA	

Table 11. GP323HA DC Characteristics (Continued)

	T _A = -40°C to +125°C							
Symbol	Parameter	V _{CC}	Min	Typ(7)	Max	Units	Conditions	Notes
V _{HVD}	Vcc High Voltage Detection			2.7		V		
Notes:								
1. All o	outputs unloaded, inpu	uts at rail.						
2. CL1	= CL2 = 100 pF.							
3. Osc	illator stopped.							
4. Osc	illator stops when V _{CO}	c falls below '	V _{BO} limit.					
5. It is volt	strongly recommender age fluctuations are a	ed to add a fil nticipated, su	ter capacit ch as thos	or (minimu e resulting	ım 0.1 μl from dri	F), physi ving an l	cally close to VCC and nfrared LED.	V_{SS} pins if operating
6. Cor	nparator and Timers a	re on. Interru	pt disabled	d		-		

7. Typical values shown are at 25 degrees C.

Table 12. EPROM/OTP Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes
	Erase Time	15			Minutes	1,3
	Data Retention @ use years		10		Years	2
	Program/Erase Endurance	100			Cycles	1

Notes:

1. For windowed cerdip package only.

2. Standard: 0°C to 70°C; Extended: -40°C to +105°C; Automotive: -40°C to +125°C. Determined using the Arrhenius model, which is an industry standard for estimating data retention of floating gate technologies:

AF = exp[(Ea/k)*(1/Tuse - 1/TStress)] Where: Ea is the intrinsic activation energy (eV; typ. 0.8) k is Boltzman's constant (8.67 x 10-5 eV/°K) °K = -273.16°C Tuse = Use Temperature in °K TStress = Stress Temperature in °K 3. At a stable UV Lamp output of 20mW/CM²

ZGP323H Product Specification

Location of 3	2768	Not Accessible
first Byte of	_100	On-Chip
executed		KOM
after RESET	12	Reset Start Address
	11	IRQ5
	10	IRQ5
	9	IRQ4
	8	IRQ4
	7	IRQ3
(Lower Byte)	6	IRQ3
	5	IRQ2
Interrupt Vector	4	IRQ2
(Upper Byte)	3	IRQ1
	2	IRQ1
	1	IRQ0
	0	IRQ0

Expanded Register File

The register file has been expanded to allow for additional system control registers and for mapping of additional peripheral devices into the register address area. The Z8[®] register address space (R0 through R15) has been implemented as 16 banks, with 16 registers per bank. These register groups are known as the

Timers

T8_Capture_HI—HI8(D)0BH

This register holds the captured data from the output of the 8-bit Counter/Timer0. Typically, this register holds the number of counts when the input signal is 1.

Field	Bit Position		Description
T8_Capture_HI	[7:0]	R/W	Captured Data - No Effect

T8_Capture_LO—L08(D)0AH

This register holds the captured data from the output of the 8-bit Counter/Timer0. Typically, this register holds the number of counts when the input signal is 0.

Field	Bit Position	Description		
T8_Capture_L0	[7:0]	R/W	Captured Data - No Effect	

T16_Capture_HI—HI16(D)09H

This register holds the captured data from the output of the 16-bit Counter/ Timer16. This register holds the MS-Byte of the data.

Field	Bit Position		Description	
T16_Capture_HI	[7:0]	R/W	Captured Data - No Effect	

T16_Capture_LO—L016(D)08H

This register holds the captured data from the output of the 16-bit Counter/ Timer16. This register holds the LS-Byte of the data.

Field	Bit Position	Description
T16_Capture_LO	[7:0]	R/W Captured Data - No Effect

Counter/Timer2 MS-Byte Hold Register—TC16H(D)07H

Field	Bit Position	Description	
T16_Data_HI	[7:0]	R/W	Data

35

Capture_INT_Mask

Set this bit to allow an interrupt when data is captured into either LO8 or HI8 upon a positive or negative edge detection in demodulation mode.

Counter_INT_Mask

Set this bit to allow an interrupt when T8 has a timeout.

P34_Out

This bit defines whether P34 is used as a normal output pin or the T8 output.

T8 and T16 Common Functions—CTR1(0D)01H

This register controls the functions in common with the T8 and T16.

Table 16 lists and briefly describes the fields for this register.

Field	Bit Position		Value	Description
Mode	7	R/W	0*	Transmit Mode
				Demodulation Mode
P36_Out/	-6	R/W		Transmit Mode
Demodulator_Input			0*	Port Output
			1	T8/T16 Output
				Demodulation Mode
			0*	P31
			1	P20
T8/T16_Logic/	54	R/W		Transmit Mode
Edge _Detect			00**	AND
			01	OR
			10	NOR
			11	NAND
				Demodulation Mode
			00**	Falling Edge
			01	Rising Edge
			10	Both Edges
			11	Reserved

Table 16. CTR1(0D)01H T8 and T16 Common Functions

Power-On Reset

A timer circuit clocked by a dedicated on-board RC-oscillator is used for the Power-On Reset (POR) timer function. The POR time allows V_{DD} and the oscillator circuit to stabilize before instruction execution begins.

The POR timer circuit is a one-shot timer triggered by one of three conditions:

- Power Fail to Power OK status, including Waking up from V_{BO} Standby
- Stop-Mode Recovery (if D5 of SMR = 1)
- WDT Timeout

The POR timer is 2.5 ms minimum. Bit 5 of the Stop-Mode Register determines whether the POR timer is bypassed after Stop-Mode Recovery (typical for external clock).

HALT Mode

This instruction turns off the internal CPU clock, but not the XTAL oscillation. The counter/timers and external interrupts IRQ0, IRQ1, IRQ2, IRQ3, IRQ4, and IRQ5 remain active. The devices are recovered by interrupts, either externally or internally generated. An interrupt request must be executed (enabled) to exit HALT Mode. After the interrupt service routine, the program continues from the instruction after HALT Mode.

STOP Mode

This instruction turns off the internal clock and external crystal oscillation, reducing the standby current to 10 μ A or less. STOP Mode is terminated only by a reset, such as WDT timeout, POR, SMR or external reset. This condition causes the processor to restart the application program at address 000CH. To enter STOP (or HALT) mode, first flush the instruction pipeline to avoid suspending execution in mid-instruction. Execute a NOP (Opcode = FFH) immediately before the appropriate sleep instruction, as follows:

Figure 34. SCLK Circuit

Stop-Mode Recovery Source (D2, D3, and D4)

These three bits of the SMR specify the wake-up source of the Stop recovery (Figure 35 and Table 22).

Stop-Mode Recovery Register 2—SMR2(F)0DH

Table 21 lists and briefly describes the fields for this register.

Field	Bit Position		Value	Description
Reserved	7		0	Reserved (Must be 0)
Recovery Level	-6	W	0 [†]	Low
-			1	High
Reserved	5		0	Reserved (Must be 0)
Source	432	W	000†	A. POR Only
			001	B. NAND of P23–P20
			010	C. NAND of P27–P20
			011	D. NOR of P33–P31
			100	E. NAND of P33–P31
			101	F. NOR of P33–P31, P00, P07
			110	G. NAND of P33–P31, P00, P07
			111	H. NAND of P33–P31, P22–P20
Reserved	10		00	Reserved (Must be 0)

Table 21.SMR2(F)0DH:Stop	Mode Recovery	Register	2*
--------------------------	---------------	----------	----

Notes:

* Port pins configured as outputs are ignored as a SMR recovery source. † Indicates the value upon Power-On Reset

62

Watch-Dog Timer Mode Register (WDTMR)

The Watch-Dog Timer (WDT) is a retriggerable one-shot timer that resets the Z8[®] CPU if it reaches its terminal count. The WDT must initially be enabled by executing the WDT instruction. On subsequent executions of the WDT instruction, the WDT is refreshed. The WDT circuit is driven by an on-board RC-oscillator. The WDT instruction affects the Zero (Z), Sign (S), and Overflow (V) flags.

The POR clock source the internal RC-oscillator. Bits 0 and 1 of the WDT register control a tap circuit that determines the minimum timeout period. Bit 2 determines whether the WDT is active during HALT, and Bit 3 determines WDT activity during Stop. Bits 4 through 7 are reserved (Figure 37). This register is accessible only during the first 60 processor cycles (120 XTAL clocks) from the execution of the first instruction after Power-On-Reset, Watch-Dog Reset, or a Stop-Mode Recovery (Figure 36). After this point, the register cannot be modified by any means (intentional or otherwise). The WDTMR cannot be read. The register is located in Bank F of the Expanded Register Group at address location 0Fh. It is organized as shown in Figure 37.

WDTMR(0F)0Fh

* Default setting after reset

Figure 37. Watch-Dog Timer Mode Register (Write Only)

WDT Time Select (D0, D1)

This bit selects the WDT time period. It is configured as indicated in Table 23.

WDTMR During STOP (D3)

This bit determines whether or not the WDT is active during STOP Mode. Because the XTAL clock is stopped during STOP Mode, the on-board RC has to be selected as the clock source to the WDT/POR counter. A 1 indicates active during Stop. The default is 1.

EPROM Selectable Options

There are seven EPROM Selectable Options to choose from based on ROM code requirements. These options are listed in Table 24.

Table 24. EPROM Selectable Options

Port 00–03 Pull-Ups	On/Off
Port 04–07 Pull-Ups	On/Off
Port 10–13 Pull-Ups	On/Off
Port 14–17 Pull-Ups	On/Off
Port 20–27 Pull-Ups	On/Off
EPROM Protection	On/Off
Watch-Dog Timer at Power-On Reset	On/Off

Voltage Brown-Out/Standby

An on-chip Voltage Comparator checks that the V_{DD} is at the required level for correct operation of the device. Reset is globally driven when V_{DD} falls below V_{BO}. A small drop in V_{DD} causes the XTAL1 and XTAL2 circuitry to stop the crystal or resonator clock. If the V_{DD} is allowed to stay above V_{RAM}, the RAM content is preserved. When the power level is returned to above V_{BO}, the device performs a POR and functions normally.

CI	R1(0L)01H							
D7	D6	D5	D4	D3	D2	D1	D0		
									Transmit Mode* R/W 0 T16_OUT is 0 initially 1 T16_OUT is 1 initially Demodulation Mode R 0 No Falling Edge Detection R 1 Falling Edge Detection W 0 No Effect W 1 Reset Flag to 0 Transmit Mode* R/W 0 T8_OUT is 0 initially* 1 T8_OUT is 1 initially Demodulation Mode R 0 No Rising Edge Detection R 1 Rising Edge Detection W 0 No Effect W 1 Reset Flag to 0 Transmit Mode* 0 0 Normal Operation* 0 1 Ping-Pong Mode 1 0 T16_OUT = 0 1 1 T16_OUT = 1 Demodulation Mode 0 0 No Filter 0 1 4 SCLK Cycle Filter 1 0 8 SCLK Cycle Filter 1 1 Reserved Transmit Mode/T8/T16 Logic 0 0 AND** 0 1 0R 1 0 NOR 1 1 NAND Demodulation Mode 0 0 Falling Edge Detection 0 1 Rising Edge Detection
									1 0 Both Edge Detection 1 0 Both Edge Detection 1 1 Reserved Transmit Mode* 0 P36 as Port Output *
									1 P36 as T8/T16_OUT Demodulation Mode 0 P31 as Demodulator Input 1 P20 as Demodulator Input
* De **De reco	efault se efault se overy.	etting aft etting aft	er Res er Res	et et Not	reset	with a S	Stop-N	lode	Transmit/Demodulation Mode 0 Transmit Mode * 1 Demodulation Mode

Figure 40. T8 and T16 Common Control Functions ((0D)01H: Read/Write)

Notes: Take care in differentiating the Transmit Mode from Demodulation Mode. Depending on which of these two modes is operating, the CTR1 bit has different functions.

Changing from one mode to another cannot be performed without disabling the counter/timers.

PCON(0F)00H

* Default setting after reset

Figure 44. Port Configuration Register (PCON)(0F)00H: Write Only)

SMR(0F)0BH

- * Default setting after reset
- * * Set after Stop Mode Recovery
- * * * At the XOR gate input
- * * * * Default setting after reset. Must be 1 if using a crystal or resonator clock source.
- * * * * * Default setting after Power On Reset. Not reset with a Stop Mode recovery.

Figure 45. Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only)

R247 P3M(F7H)

* Default setting after reset. Not reset with a Stop Mode recovery.

Figure 49. Port 3 Mode Register (F7H: Write Only)

R252 Flags(FCH)

Figure 54. Flag Register (FCH: Read/Write)

R253 RP(FDH)

Default setting after reset = 0000 0000

Figure 55. Register Pointer (FDH: Read/Write)

Figure 58. 20-Pin CDIP Package

Figure 59. 20-Pin PDIP Package Diagram

CONTROLLING DIMENSIONS : INCH

8KB Standard Temperature: 0° to +70°C

Part Number	Description	Part Number	Description
ZGP323HSH4808C	48-pin SSOP 8K OTP	ZGP323HSS2808C	28-pin SOIC 8K OTP
ZGP323HSP4008C	40-pin PDIP 8K OTP	ZGP323HSH2008C	20-pin SSOP 8K OTP
ZGP323HSH2808C	28-pin SSOP 8K OTP	ZGP323HSP2008C	20-pin PDIP 8K OTP
ZGP323HSP2808C	28-pin PDIP 8K OTP	ZGP323HSS2008C	20-pin SOIC 8K OTP

8KB Extended Temperature: -40° to +105°C

Part Number	Description	Part Number	Description
ZGP323HEH4808C	48-pin SSOP 8K OTP	ZGP323HES2808C	28-pin SOIC 8K OTP
ZGP323HEP4008C	40-pin PDIP 8K OTP	ZGP323HEH2008C	20-pin SSOP 8K OTP
ZGP323HEH2808C	28-pin SSOP 8K OTP	ZGP323HEP2008C	20-pin PDIP 8K OTP
ZGP323HEP2808C	28-pin PDIP 8K OTP	ZGP323HES2008C	20-pin SOIC 8K OTP

8KB Automotive Temperature: -40° to +125°C

Part Number	Description	Part Number	Description			
	Becchption	T alt Hallbol	Beeenpaien			
ZGP323HAH4808C	48-pin SSOP 8K OTP	ZGP323HAS2808C	28-pin SOIC 8K OTP			
ZGP323HAP4008C	40-pin PDIP 8K OTP	ZGP323HAH2008C	20-pin SSOP 8K OTP			
ZGP323HAH2808C	28-pin SSOP 8K OTP	ZGP323HAP2008C	20-pin PDIP 8K OTP			
ZGP323HAP2808C	28-pin PDIP 8K OTP	ZGP323HAS2008C	20-pin SOIC 8K OTP			
Replace C with G for Lead-Free Packaging						

ZGP323H Z8[®] OTP Microcontroller with IR Timers

28-pin DIP/SOIC/SSOP 6 40- and 48-pin 8 40-pin DIP 7 48-pin SSOP 8 pin functions port 0 (P07 - P00) 18 port 0 (P17 - P10) 19 port 0 configuration 19 port 1 configuration 20 port 2 (P27 - P20) 20 port 2 (P37 - P30) 21 port 2 configuration 21 port 3 configuration 22 port 3 counter/timer configuration 24 reset) 25 XTAL1 (time-based input 18 XTAL2 (time-based output) 18 ping-pong mode 48 port 0 configuration 19 port 0 pin function 18 port 1 configuration 20 port 1 pin function 19 port 2 configuration 21 port 2 pin function 20 port 3 configuration 22 port 3 pin function 21 port 3counter/timer configuration 24 port configuration register 55 power connections 3 power supply 5 program memory 25 map 26 R ratings, absolute maximum 10 register 61 CTR(D)01h 35 CTR0(D)00h 33 CTR2(D)02h 37 CTR3(D)03h 39 flag 80 HI16(D)09h 32

HI8(D)0Bh 32 interrupt priority 78 interrupt request 79 interruptmask 79 L016(D)08h 32 L08(D)0Ah 32 LVD(D)0Ch 65 pointer 80 port 0 and 1 77 port 2 configuration 75 port 3 mode 76 port configuration 55, 75 SMR2(F)0Dh 40 stack pointer high 81 stack pointer low 81 stop mode recovery 57 stop mode recovery 2 61 stop-mode recovery 73 stop-mode recovery 274 T16 control 69 T8 and T16 common control functions 67 T8/T16 control 70 TC16H(D)07h 32 TC16L(D)06h 33 TC8 control 66 TC8H(D)05h 33 TC8L(D)04h 33 voltage detection 71 watch-dog timer 75 register description Counter/Timer2 LS-Byte Hold 33 Counter/Timer2 MS-Byte Hold 32 Counter/Timer8 Control 33 Counter/Timer8 High Hold 33 Counter/Timer8 Low Hold 33 CTR2 Counter/Timer 16 Control 37 CTR3 T8/T16 Control 39 Stop Mode Recovery2 40 T16 Capture LO 32 T8 and T16 Common functions 35 T8_Capture_HI 32