# E·XFL



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                  |
|----------------------------|-----------------------------------------------------------|
| Core Processor             | Z8                                                        |
| Core Size                  | 8-Bit                                                     |
| Speed                      | 8MHz                                                      |
| Connectivity               | -                                                         |
| Peripherals                | HLVD, POR, WDT                                            |
| Number of I/O              | 16                                                        |
| Program Memory Size        | 8KB (8K x 8)                                              |
| Program Memory Type        | ОТР                                                       |
| EEPROM Size                | -                                                         |
| RAM Size                   | 237 x 8                                                   |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 5.5V                                                 |
| Data Converters            | -                                                         |
| Oscillator Type            | Internal                                                  |
| Operating Temperature      | -40°C ~ 125°C (TA)                                        |
| Mounting Type              | Surface Mount                                             |
| Package / Case             | 20-SOIC (0.295", 7.50mm Width)                            |
| Supplier Device Package    | -                                                         |
| Purchase URL               | https://www.e-xfl.com/product-detail/zilog/zgp323has2008c |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



This publication is subject to replacement by a later edition. To determine whether a later edition exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters 532 Race Street

San Jose, CA 95126-3432 Telephone: 408.558.8500 Fax: 408.558.8300 www.zilog.com

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other products and/or service names mentioned herein may be trademarks of the companies with which they are associated.

#### **Document Disclaimer**

©2005 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Devices sold by ZiLOG, Inc. are covered by warranty and limitation of liability provisions appearing in the ZiLOG, Inc. Terms and Conditions of Sale. ZiLOG, Inc. makes no warranty of merchantability or fitness for any purpose. Except with the express written approval of ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses are conveyed, implicitly or otherwise, by this document under any intellectual property rights.







#### Figure 3. 20-Pin PDIP/SOIC/SSOP/CDIP\* Pin Configuration

| Table 4. | 20-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification |
|----------|------------------------------------------------|
|          |                                                |

| Pin # | Symbol          | Function                                             | Direction                                   |
|-------|-----------------|------------------------------------------------------|---------------------------------------------|
| 1–3   | P25–P27         | Port 2, Bits 5,6,7                                   | Input/Output                                |
| 4     | P07             | Port 0, Bit 7                                        | Input/Output                                |
| 5     | V <sub>DD</sub> | Power Supply                                         |                                             |
| 6     | XTAL2           | Crystal Oscillator Clock                             | Output                                      |
| 7     | XTAL1           | Crystal Oscillator Clock                             | Input                                       |
| 8–10  | P31–P33         | Port 3, Bits 1,2,3                                   | Input                                       |
| 11,12 | P34. P36        | Port 3, Bits 4,6                                     | Output                                      |
| 13    | P00/Pref1/P30   | Port 0, Bit 0/Analog reference input<br>Port 3 Bit 0 | Input/Output for P00<br>Input for Pref1/P30 |
| 14    | P01             | Port 0, Bit 1                                        | Input/Output                                |
| 15    | V <sub>SS</sub> | Ground                                               |                                             |
| 16–20 | P20–P24         | Port 2, Bits 0,1,2,3,4                               | Input/Output                                |

### ZGP323H Product Specification



| 40-Pin PDIP # | 48-Pin SSOP # | Symbol          |
|---------------|---------------|-----------------|
| 33            | 40            | P13             |
| 8             | 9             | P14             |
| 9             | 10            | P15             |
| 12            | 15            | P16             |
| 13            | 16            | P17             |
| 35            | 42            | P20             |
| 36            | 43            | P21             |
| 37            | 44            | P22             |
| 38            | 45            | P23             |
| 39            | 46            | P24             |
| 2             | 2             | P25             |
| 3             | 3             | P26             |
| 4             | 4             | P27             |
| 16            | 19            | P31             |
| 17            | 20            | P32             |
| 18            | 21            | P33             |
| 19            | 22            | P34             |
| 22            | 26            | P35             |
| 24            | 28            | P36             |
| 23            | 27            | P37             |
| 20            | 23            | NC              |
| 40            | 47            | NC              |
| 1             | 1             | NC              |
| 21            | 25            | RESET           |
| 15            | 18            | XTAL1           |
| 14            | 17            | XTAL2           |
| 11            | 12, 13        | V <sub>DD</sub> |
| 31            | 24, 37, 38    | V <sub>SS</sub> |
| 25            | 29            | Pref1/P30       |
|               | 48            | NC              |
|               | 6             | NC              |
|               | 14            | NC              |
|               | 30            | NC              |
|               | 36            | NC              |

## Table 6. 40- and 48-Pin Configuration (Continued)



|                     | T <sub>Δ</sub> = -40°C to +105°C            |                 |                      |        |                          |       |                                                            |         |
|---------------------|---------------------------------------------|-----------------|----------------------|--------|--------------------------|-------|------------------------------------------------------------|---------|
| Symbol              | Parameter                                   | V <sub>CC</sub> | Min                  | Typ(7) | Max                      | Units | Conditions                                                 | Notes   |
| V <sub>OH2</sub>    | Output High Voltage<br>(P36, P37, P00, P01) | 2.0-5.5         | V <sub>CC</sub> -0.8 |        |                          | V     | I <sub>OH</sub> = -7mA                                     |         |
| V <sub>OL1</sub>    | Output Low Voltage                          | 2.0-5.5         |                      |        | 0.4                      | V     | $I_{OL} = 4.0 \text{mA}$                                   |         |
| V <sub>OL2</sub>    | Output Low Voltage<br>(P00, P01, P36, P37)  | 2.0-5.5         |                      |        | 0.8                      | V     | I <sub>OL</sub> = 10mA                                     |         |
| V <sub>OFFSET</sub> | Comparator Input<br>Offset Voltage          | 2.0-5.5         |                      |        | 25                       | mV    |                                                            |         |
| V <sub>REF</sub>    | Comparator<br>Reference<br>Voltage          | 2.0-5.5         | 0                    |        | V <sub>DD</sub><br>-1.75 | V     |                                                            |         |
| IIL                 | Input Leakage                               | 2.0-5.5         | -1                   |        | 1                        | μA    | V <sub>IN</sub> = 0V, V <sub>CC</sub><br>Pull-ups disabled |         |
| R <sub>PU</sub>     | Pull-up Resistance                          | 2.0V            | 200.0                |        | 700.0                    | KΩ    | V <sub>IN</sub> = 0V; Pullups selected by mask             |         |
|                     |                                             | 3.6V            | 50.0                 |        | 300.0                    | KΩ    | option                                                     |         |
|                     |                                             | 5.0V            | 25.0                 |        | 175.0                    | KΩ    | _                                                          |         |
| I <sub>OL</sub>     | Output Leakage                              | 2.0-5.5         | -1                   |        | 1                        | μA    | $V_{IN} = 0V, V_{CC}$                                      |         |
| I <sub>CC</sub>     | Supply Current                              | 2.0V            |                      | 1      | 3                        | mA    | at 8.0 MHz                                                 | 1, 2    |
|                     |                                             | 3.6V            |                      | 5      | 10                       | mA    | at 8.0 MHz                                                 | 1, 2    |
|                     |                                             | 5.5V            |                      | 10     | 15                       | mA    | at 8.0 MHz                                                 | 1, 2    |
| I <sub>CC1</sub>    | Standby Current                             | 2.0V            |                      | 0.5    | 1.6                      | mA    | V <sub>IN</sub> = 0V, Clock at 8.0MHz                      | 1, 2, 6 |
|                     | (HALT Mode)                                 | 3.6V            |                      | 0.8    | 2.0                      | mA    | V <sub>IN</sub> = 0V, Clock at 8.0MHz                      | 1, 2, 6 |
|                     |                                             | 5.5V            |                      | 1.3    | 3.2                      | mA    | V <sub>IN</sub> = 0V, Clock at 8.0MHz                      | 1, 2, 6 |
| I <sub>CC2</sub>    | Standby Current (Stop                       | 2.0V            |                      | 1.6    | 12                       | μA    | $V_{IN} = 0 V, V_{CC} WDT not Running$                     | 3       |
|                     | Mode)                                       | 3.6V            |                      | 1.8    | 15                       | μA    | $V_{IN} = 0 V, V_{CC} WDT not Running$                     | 3       |
|                     |                                             | 5.5V            |                      | 1.9    | 18                       | μA    | V <sub>IN</sub> = 0 V, V <sub>CC</sub> WDT not Running     | 3       |
|                     |                                             | 2.0V            |                      | 5      | 30                       | μA    | $V_{IN} = 0 V, V_{CC} WDT$ is Running                      | 3       |
|                     |                                             | 3.6V            |                      | 8      | 40                       | μA    | $V_{IN} = 0 V, V_{CC} WDT$ is Running                      | 3       |
|                     |                                             | 5.5V            |                      | 15     | 60                       | μA    | $V_{IN} = 0 V, V_{CC} WDT$ is Running                      | 3       |
| I <sub>LV</sub>     | Standby Current<br>(Low Voltage)            |                 |                      | 1.2    | 6                        | μA    | Measured at 1.3V                                           | 4       |
| V <sub>BO</sub>     | V <sub>CC</sub> Low Voltage<br>Protection   |                 |                      | 1.9    | 2.15                     | V     | 8MHz maximum<br>Ext. CLK Freq.                             |         |
| V <sub>LVD</sub>    | V <sub>CC</sub> Low Voltage<br>Detection    |                 |                      | 2.4    |                          | V     |                                                            |         |
| V <sub>HVD</sub>    | Vcc High Voltage<br>Detection               |                 |                      | 2.7    |                          | V     |                                                            |         |

#### Table 10. GP323HE DC Characteristics (Continued)

Notes:

1. All outputs unloaded, inputs at rail.

2. CL1 = CL2 = 100 pF.

3. Oscillator stopped.

4. Oscillator stops when  $V_{CC}$  falls below  $V_{BO}$  limit.

 It is strongly recommended to add a filter capacitor (minimum 0.1 μF), physically close to VCC and V<sub>SS</sub> pins if operating voltage fluctuations are anticipated, such as those resulting from driving an Infrared LED.

6. Comparator and Timers are on. Interrupt disabled.

7. Typical values shown are at 25 degrees C.





Figure 10. Port 1 Configuration

# Port 2 (P27-P20)

Port 2 is an 8-bit, bidirectional, CMOS-compatible I/O port (see Figure 11). These eight I/O lines can be independently configured under software control as inputs or outputs. Port 2 is always available for I/O operation. A mask option is available to connect eight pull-up transistors on this port. Bits programmed as outputs are globally programmed as either push-pull or open-drain. The POR resets with the eight bits of Port 2 configured as inputs.

Port 2 also has an 8-bit input OR and AND gate, which can be used to wake up the part. P20 can be programmed to access the edge-detection circuitry in demodulation mode.



CTR1(0D)01H" on page 35). Other edge detect and IRQ modes are described in Table 14.

**Note:** Comparators are powered down by entering Stop Mode. For P31–P33 to be used in a Stop Mode Recovery (SMR) source, these inputs must be placed into digital mode.

| Pin       | I/O | Counter/Timers | Comparator | Interrupt |
|-----------|-----|----------------|------------|-----------|
| Pref1/P30 | IN  |                | RF1        |           |
| P31       | IN  | IN             | AN1        | IRQ2      |
| P32       | IN  |                | AN2        | IRQ0      |
| P33       | IN  |                | RF2        | IRQ1      |
| P34       | OUT | Т8             | AO1        |           |
| P35       | OUT | T16            |            |           |
| P36       | OUT | T8/16          |            |           |
| P37       | OUT |                | AO2        |           |
| P20       | I/O | IN             |            |           |

#### Table 14. Port 3 Pin Function Summary

>

Port 3 also provides output for each of the counter/timers and the AND/OR Logic (see Figure 13). Control is performed by programming bits D5–D4 of CTR1, bit 0 of CTR0, and bit 0 of CTR2.

# ZGP323H Product Specification



| Location of 3    | 2768 | Not Accessible      |
|------------------|------|---------------------|
| first Byte of    | _100 | On-Chip             |
| executed         |      | KOM                 |
| after RESET      | 12   | Reset Start Address |
|                  | 11   | IRQ5                |
|                  | 10   | IRQ5                |
|                  | 9    | IRQ4                |
|                  | 8    | IRQ4                |
|                  | 7    | IRQ3                |
| (Lower Byte)     | 6    | IRQ3                |
|                  | 5    | IRQ2                |
| Interrupt Vector | 4    | → IRQ2              |
| (Upper Byte)     | 3    | IRQ1                |
|                  | 2    | IRQ1                |
|                  | 1    | IRQ0                |
|                  | 0    | IRQ0                |



# **Expanded Register File**

The register file has been expanded to allow for additional system control registers and for mapping of additional peripheral devices into the register address area. The Z8<sup>®</sup> register address space (R0 through R15) has been implemented as 16 banks, with 16 registers per bank. These register groups are known as the



ERF (Expanded Register File). Bits 7–4 of register RP select the working register group. Bits 3–0 of register RP select the expanded register file bank.

**Note:** An expanded register bank is also referred to as an expanded register group (see Figure 15).



29

The upper nibble of the register pointer (see Figure 16) selects which working register group, of 16 bytes in the register file, is accessed out of the possible 256. The lower nibble selects the expanded register file bank and, in the case of the Z8 GP family, banks 0, F, and D are implemented. A OH in the lower nibble allows the normal register file (bank 0) to be addressed. Any other value from 1H to FH exchanges the lower 16 registers to an expanded register bank.





#### Figure 16. Register Pointer

#### Example: Z8 GP: (See Figure 15 on page 28)

R253 RP = 00h R0 = Port 0 R1 = Port 1 R2 = Port 2 R3 = Port 3

But if:

R253 RP = 0Dh R0 = CTR0 R1 = CTR1 R2 = CTR2R3 = Reserved



| Field            | Bit Position |     | Value | Description               |
|------------------|--------------|-----|-------|---------------------------|
| T16_Enable       | 7            | R   | 0*    | Counter Disabled          |
|                  |              |     | 1     | Counter Enabled           |
|                  |              | W   | 0     | Stop Counter              |
|                  |              |     | 1     | Enable Counter            |
| Single/Modulo-N  | -6           | R/W |       | Transmit Mode             |
|                  |              |     | 0*    | Modulo-N                  |
|                  |              |     | 1     | Single Pass               |
|                  |              |     |       | Demodulation Mode         |
|                  |              |     | 0     | T16 Recognizes Edge       |
|                  |              |     | 1     | T16 Does Not Recognize    |
|                  |              |     |       | Edge                      |
| Time_Out         | 5            | R   | 0*    | No Counter Timeout        |
|                  |              |     | 1     | Counter Timeout           |
|                  |              |     |       | Occurred                  |
|                  |              | W   | 0     | No Effect                 |
|                  |              |     | 1     | Reset Flag to 0           |
| T16 _Clock       | 43           | R/W | 00**  | SCLK                      |
|                  |              |     | 01    | SCLK/2                    |
|                  |              |     | 10    | SCLK/4                    |
|                  |              |     | 11    | SCLK/8                    |
| Capture_INT_Mask | 2            | R/W | 0**   | Disable Data Capture Int. |
|                  |              |     | 1     | Enable Data Capture Int.  |
| Counter_INT_Mask | 1-           | R/W | 0*    | Disable Timeout Int.      |
|                  |              |     |       | Enable Timeout Int.       |
| P35_Out          | 0            | R/W | 0*    | P35 as Port Output        |
|                  |              |     | 1     | T16 Output on P35         |

#### Table 17. CTR2(D)02H: Counter/Timer16 Control Register

Note:

\*Indicates the value upon Power-On Reset.

\*\*Indicates the value upon Power-On Reset. Not reset with a Stop Mode recovery.

#### T16\_Enable

This field enables T16 when set to 1.

#### Single/Modulo-N

In TRANSMIT Mode, when set to 0, the counter reloads the initial value when it reaches the terminal count. When set to 1, the counter stops when the terminal count is reached.





Figure 30. Interrupt Block Diagram



#### Table 23. Watch-Dog Timer Time Select

| D1 | D0 | Timeout of Internal RC-Oscillator |
|----|----|-----------------------------------|
| 0  | 0  | 5ms min.                          |
| 0  | 1  | 10ms min.                         |
| 1  | 0  | 20ms min.                         |
| 1  | 1  | 80ms min.                         |

#### WDTMR During Halt (D2)

This bit determines whether or not the WDT is active during HALT Mode. A 1 indicates active during HALT. The default is 1. See Figure 38.



\* CLR1 and CLR2 enable the WDT/POR and 18 Clock Reset timers respectively upon a Low-to-

#### Figure 38. Resets and WDT





#### Low-Voltage Detection Register—LVD(D)0Ch

**Note:** Voltage detection does not work at Stop mode. It must be disabled during Stop mode in order to reduce current.

| Field    | Bit Position |     |         | Description                    |
|----------|--------------|-----|---------|--------------------------------|
| LVD      | 76543        |     |         | Reserved<br>No Effect          |
|          | 2            | R   | 1<br>0* | HVD flag set<br>HVD flag reset |
|          | 1-           | R   | 1<br>0* | LVD flag set<br>LVD flag reset |
|          | 0            | R/W | 1<br>0* | Enable VD<br>Disable VD        |
| *Default | after POR    |     |         |                                |

**Note:** Do not modify register P01M while checking a low-voltage condition. Switching noise of both ports 0 and 1 together might trigger the LVD flag.

#### **Voltage Detection and Flags**

The Voltage Detection register (LVD, register 0CH at the expanded register bank 0Dh) offers an option of monitoring the V<sub>CC</sub> voltage. The Voltage Detection is enabled when bit 0 of LVD register is set. Once Voltage Detection is enabled, the the V<sub>CC</sub> level is monitored in real time. The flags in the LVD register valid 20uS after Voltage Detection is enabled. The HVD flag (bit 2 of the LVD register) is set only if V<sub>CC</sub> is higher than V<sub>HVD</sub>. The LVD flag (bit 1 of the LVD register) is set only if V<sub>CC</sub> is lower than the V<sub>LVD</sub>. When Voltage Detection is enabled, the LVD flag also triggers IRQ5. The IRQ bit 5 latches the low voltage condition until it is cleared by instructions or reset. The IRQ5 interrupt is served if it is enabled in the IMR register. Otherwise, bit 5 of IRQ register is latched as a flag only.

**Notes:** If it is necessary to receive an LVD interrupt upon power-up at an operating voltage lower than the low battery detect threshold, enable interrupts using the Enable Interrupt instruction (EI) prior to enabling the voltage detection.



#### R247 P3M(F7H)



\* Default setting after reset. Not reset with a Stop Mode recovery.

Figure 49. Port 3 Mode Register (F7H: Write Only)



#### R248 P01M(F8H)



\* Default setting after reset; only P00, P01 and P07 are available on 20-pin configurations.

#### Figure 50. Port 0 and 1 Mode Register (F8H: Write Only)



#### R254 SPH(FEH)



#### Figure 56. Stack Pointer High (FEH: Read/Write)

#### R255 SPL(FFH)



Stack Pointer Low Byte (SP7–SP0)

Figure 57. Stack Pointer Low (FFH: Read/Write)

# **Package Information**

Package information for all versions of ZGP323H is depicted in Figures 59 through Figure 68.











Figure 63. 28-Pin CDIP Package Diagram



| SVMBOI    | OPT # | MILLIMETER |       | INCH     |       |  |
|-----------|-------|------------|-------|----------|-------|--|
| SIMDOL    | 011#  | MíN        | MAX   | MIN      | MAX   |  |
| A1        |       | 0.38       | 1.02  | .015     | .040  |  |
| A2        |       | 3.18       | 4.19  | .125     | .165  |  |
| В         |       | 0.38       | 0.53  | .015     | .021  |  |
| <b>P1</b> | 01    | 1.40       | 1.65  | .055     | .065  |  |
|           | 02    | 1.14       | 1.40  | .045     | .055  |  |
| С         |       | 0.23       | 0.38  | .009     | .015  |  |
| D         | 01    | 36.58      | 37.34 | 1.440    | 1.470 |  |
|           | 02    | 35.31      | 35.94 | 1.390    | 1.415 |  |
| E         |       | 15.24      | 15.75 | .600     | .620  |  |
| E1        | 01    | 13.59      | 14.10 | .535     | .555  |  |
|           | 02    | 12.83      | 13.08 | .505     | .515  |  |
| e         |       | 2.54       | TYP   | .100 BSC |       |  |
| eA        |       | 15.49      | 16.76 | .610     | .660  |  |
| L         |       | 3.05       | 3.81  | .120     | .150  |  |
| 01        | 01    | 1.40       | 1.91  | .055     | .075  |  |
|           | 02    | 1.40       | 1.78  | .055     | .070  |  |
| •         | 01    | 1.52       | 2.29  | .060     | .090  |  |
| 5         | 02    | 1.02       | 1.52  | .040     | .060  |  |

CONTROLLING DIMENSIONS : INCH



01

02

STANDARD

Figure 64. 28-Pin PDIP Package Diagram



#### 16KB Standard Temperature: 0° to +70°C

| Part Number    | Description         | Part Number    | Description         |
|----------------|---------------------|----------------|---------------------|
| ZGP323HSH4816C | 48-pin SSOP 16K OTP | ZGP323HSS2816C | 28-pin SOIC 16K OTP |
| ZGP323HSP4016C | 40-pin PDIP 16K OTP | ZGP323HSH2016C | 20-pin SSOP 16K OTP |
| ZGP323HSH2816C | 28-pin SSOP 16K OTP | ZGP323HSP2016C | 20-pin PDIP 16K OTP |
| ZGP323HSP2816C | 28-pin PDIP 16K OTP | ZGP323HSS2016C | 20-pin SOIC 16K OTP |

| 16KB Extended Temperature: -40° to +105°C |                     |                |                     |
|-------------------------------------------|---------------------|----------------|---------------------|
| Part Number                               | Description         | Part Number    | Description         |
| ZGP323HEH4816C                            | 48-pin SSOP 16K OTP | ZGP323HES2816C | 28-pin SOIC 16K OTP |
| ZGP323HEP4016C                            | 40-pin PDIP 16K OTP | ZGP323HEH2016C | 20-pin SSOP 16K OTP |
| ZGP323HEH2816C                            | 28-pin SSOP 16K OTP | ZGP323HEP2016C | 20-pin PDIP 16K OTP |
| ZGP323HEP2816C                            | 28-pin PDIP 16K OTP | ZGP323HES2016C | 20-pin SOIC 16K OTP |

# 16KB Automotive Temperature: -40° to +125°CPart NumberDescriptionPart NumberDescriptionZGP323HAH4816C48-pin SSOP 16K OTPZGP323HAS2816C28-pin SOIC 16K OTPZGP323HAP4016C40-pin PDIP 16K OTPZGP323HAH2016C20-pin SSOP 16K OTPZGP323HAH2816C28-pin SSOP 16K OTPZGP323HAP2016C20-pin PDIP 16K OTPZGP323HAP2816C28-pin PDIP 16K OTPZGP323HAS2016C20-pin SOIC 16K OTPZGP323HAP2816C28-pin PDIP 16K OTPZGP323HAS2016C20-pin SOIC 16K OTPReplace C with G for Lead-Free Packaging





#### 4KB Standard Temperature: 0° to +70°C

| Part Number    | Description        | Part Number    | Description        |
|----------------|--------------------|----------------|--------------------|
| ZGP323HSH4804C | 48-pin SSOP 4K OTP | ZGP323HSS2804C | 28-pin SOIC 4K OTP |
| ZGP323HSP4004C | 40-pin PDIP 4K OTP | ZGP323HSH2004C | 20-pin SSOP 4K OTP |
| ZGP323HSH2804C | 28-pin SSOP 4K OTP | ZGP323HSP2004C | 20-pin PDIP 4K OTP |
| ZGP323HSP2804C | 28-pin PDIP 4K OTP | ZGP323HSS2004C | 20-pin SOIC 4K OTP |

#### 4KB Extended Temperature: -40° to +105°C

| Part Number    | Description        | Part Number    | Description        |
|----------------|--------------------|----------------|--------------------|
| ZGP323HEH4804C | 48-pin SSOP 4K OTP | ZGP323HES2804C | 28-pin SOIC 4K OTP |
| ZGP323HEP4004C | 40-pin PDIP 4K OTP | ZGP323HEH2004C | 20-pin SSOP 4K OTP |
| ZGP323HEH2804C | 28-pin SSOP 4K OTP | ZGP323HEP2004C | 20-pin PDIP 4K OTP |
| ZGP323HEP2804C | 28-pin PDIP 4K OTP | ZGP323HES2004C | 20-pin SOIC 4K OTP |

#### 4KB Automotive Temperature: -40° to +125°C

| Part Number                              | Description        | Part Number    | Description        |
|------------------------------------------|--------------------|----------------|--------------------|
| ZGP323HAH4804C                           | 48-pin SSOP 4K OTP | ZGP323HAS2804C | 28-pin SOIC 4K OTP |
| ZGP323HAP4004C                           | 40-pin PDIP 4K OTP | ZGP323HAH2004C | 20-pin SSOP 4K OTP |
| ZGP323HAH2804C                           | 28-pin SSOP 4K OTP | ZGP323HAP2004C | 20-pin PDIP 4K OTP |
| ZGP323HAP2804C                           | 28-pin PDIP 4K OTP | ZGP323HAS2004C | 20-pin SOIC 4K OTP |
| Replace C with G for Lead-Free Packaging |                    |                |                    |

| Additional Components                          |                     |                              |                    |
|------------------------------------------------|---------------------|------------------------------|--------------------|
| Part Number                                    | Description         | Part Number                  | Description        |
| ZGP323ICE01ZEM<br>(For 3.6V Emulation<br>only) | Emulator/programmer | ZGP32300100ZPR<br>(Ethernet) | Programming system |
|                                                |                     | ZGP32300200ZPR<br>(USB)      | Programming system |

#### ZGP323H Z8<sup>®</sup> OTP Microcontroller with IR Timers



28-pin DIP/SOIC/SSOP 6 40- and 48-pin 8 40-pin DIP 7 48-pin SSOP 8 pin functions port 0 (P07 - P00) 18 port 0 (P17 - P10) 19 port 0 configuration 19 port 1 configuration 20 port 2 (P27 - P20) 20 port 2 (P37 - P30) 21 port 2 configuration 21 port 3 configuration 22 port 3 counter/timer configuration 24 reset) 25 XTAL1 (time-based input 18 XTAL2 (time-based output) 18 ping-pong mode 48 port 0 configuration 19 port 0 pin function 18 port 1 configuration 20 port 1 pin function 19 port 2 configuration 21 port 2 pin function 20 port 3 configuration 22 port 3 pin function 21 port 3counter/timer configuration 24 port configuration register 55 power connections 3 power supply 5 program memory 25 map 26 R ratings, absolute maximum 10 register 61 CTR(D)01h 35 CTR0(D)00h 33 CTR2(D)02h 37 CTR3(D)03h 39 flag 80 HI16(D)09h 32

HI8(D)0Bh 32 interrupt priority 78 interrupt request 79 interruptmask 79 L016(D)08h 32 L08(D)0Ah 32 LVD(D)0Ch 65 pointer 80 port 0 and 1 77 port 2 configuration 75 port 3 mode 76 port configuration 55, 75 SMR2(F)0Dh 40 stack pointer high 81 stack pointer low 81 stop mode recovery 57 stop mode recovery 2 61 stop-mode recovery 73 stop-mode recovery 274 T16 control 69 T8 and T16 common control functions 67 T8/T16 control 70 TC16H(D)07h 32 TC16L(D)06h 33 TC8 control 66 TC8H(D)05h 33 TC8L(D)04h 33 voltage detection 71 watch-dog timer 75 register description Counter/Timer2 LS-Byte Hold 33 Counter/Timer2 MS-Byte Hold 32 Counter/Timer8 Control 33 Counter/Timer8 High Hold 33 Counter/Timer8 Low Hold 33 CTR2 Counter/Timer 16 Control 37 CTR3 T8/T16 Control 39 Stop Mode Recovery2 40 T16 Capture LO 32 T8 and T16 Common functions 35 T8\_Capture\_HI 32