

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	16
Program Memory Size	8KB (8K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323has2008g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

iii

Revision History

Each instance in Table 1 reflects a change to this document from its previous revision. To see more detail, click the appropriate link in the table.

Table 1. Revision History of this Document

Date	Revision Level	Section	Description	Page #
2004 deleted mask op and 10. Added n		deleted mask option and 10. Added new	consumption, STOP and HALT mode current values, note, clarified temperature ranges in Tables 6 and 8 Tables 9 and 10. Also added Characterization data to ed Program/Erase Endurance value in Table 12.	11,12,
		Removed Preliminar	y designation	All
March 2005	03	Minor change to Tab pin CDIP parts in the	le 9 Electrical Characteristics. Added 20, 28 and 40-e Ordering Section.	11,90

PS023803-0305 Revision History

List of Tables

Table 1.	Revision History of this Document ii
Table 2.	Features
Table 3.	Power Connections 3
Table 4.	20-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification 5
Table 5.	28-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification 6
Table 6.	40- and 48-Pin Configuration
Table 7.	Absolute Maximum Ratings
Table 8.	Capacitance
Table 9.	GP323HS DC Characteristics
Table 10.	GP323HE DC Characteristics
Table 11.	GP323HA DC Characteristics
Table 12.	EPROM/OTP Characteristics
Table 13.	AC Characteristics
Table 14.	Port 3 Pin Function Summary
Table 15.	CTR1(0D)01H T8 and T16 Common Functions
Table 16.	Interrupt Types, Sources, and Vectors 52
Table 17.	IRQ Register
Table 18.	SMR2(F)0DH:Stop Mode Recovery Register 2* 58
Table 19.	Stop Mode Recovery Source 60
Table 20.	Watch-Dog Timer Time Select 63
Table 21.	EPROM Selectable Options 64

PS023803-0305 List of Tables

Table 10. GP323HE DC Characteristics (Continued)

			T _A = -40°0	C to +105	°C			
Symbol	Parameter	v_{cc}	Min	Typ(7)	Max	Units	Conditions	Notes
V _{OH2}	Output High Voltage (P36, P37, P00, P01)	2.0-5.5	V _{CC} -0.8			V	$I_{OH} = -7mA$	
V _{OL1}	Output Low Voltage	2.0-5.5			0.4	V	$I_{OL} = 4.0 \text{mA}$	
V _{OL2}	Output Low Voltage (P00, P01, P36, P37)	2.0-5.5			8.0	V	I _{OL} = 10mA	
V _{OFFSET}	Comparator Input Offset Voltage	2.0-5.5			25	mV		
V _{REF}	Comparator Reference Voltage	2.0-5.5	0		V _{DD} -1.75	V		
I _{IL}	Input Leakage	2.0-5.5	-1		1	μА	V _{IN} = 0V, V _{CC} Pull-ups disabled	
R _{PU}	Pull-up Resistance	2.0V	200.0		700.0	ΚΩ	V _{IN} = 0V; Pullups selected by mask	(
		3.6V	50.0		300.0	ΚΩ	option	
		5.0V	25.0		175.0	ΚΩ	_	-
I _{OL}	Output Leakage	2.0-5.5	-1		1	μΑ	$V_{IN} = 0V, V_{CC}$	
I _{CC}	Supply Current	2.0V		1	3	mA	at 8.0 MHz	1, 2
		3.6V		5	10	mΑ	at 8.0 MHz	1, 2
		5.5V		10	15	mA	at 8.0 MHz	1, 2
I _{CC1}	Standby Current	2.0V		0.5	1.6	mΑ	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
	(HALT Mode)	3.6V		8.0	2.0	mΑ	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
		5.5V		1.3	3.2	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
I_{CC2}	Standby Current (Stop			1.6	12	μΑ	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT not Running}$	3
	Mode)	3.6V		1.8	15	μΑ	$V_{IN} = 0 V, V_{CC} WDT not Running$	3
		5.5V		1.9	18	μΑ	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT not Running}$	3
		2.0V		5	30	μA	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT is Running}$	3
		3.6V		8	40	μΑ	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT is Running}$	3
		5.5V		15	60	μΑ	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT is Running}$	3
I _{LV}	Standby Current (Low Voltage)			1.2	6	μА	Measured at 1.3V	4
V_{BO}	V _{CC} Low Voltage Protection			1.9	2.15	V	8MHz maximum Ext. CLK Freq.	
V _{LVD}	V _{CC} Low Voltage Detection			2.4		V		
V _{HVD}	Vcc High Voltage Detection			2.7		V		

Notes:

- 1. All outputs unloaded, inputs at rail.
- 2. CL1 = CL2 = 100 pF.
- 3. Oscillator stopped.
- 4. Oscillator stops when $\rm V_{CC}$ falls below $\rm V_{BO}$ limit.
- 5. It is strongly recommended to add a filter capacitor (minimum 0.1 μ F), physically close to VCC and V_{SS} pins if operating voltage fluctuations are anticipated, such as those resulting from driving an Infrared LED.
- 6. Comparator and Timers are on. Interrupt disabled.
- 7. Typical values shown are at 25 degrees C.

PS023803-0305 DC Characteristics

Table 11. GP323HA DC Characteristics (Continued)

	T _A = -40°C to +125°C						
Symbol	Parameter	v_{cc}	Min	Typ(7)	Max	Units Conditions	Notes
V_{HVD}	Vcc High Voltage Detection			2.7		V	

Notes:

- 1. All outputs unloaded, inputs at rail.
- 2. CL1 = CL2 = 100 pF.
- 3. Oscillator stopped.
- 4. Oscillator stops when V_{CC} falls below V_{BO} limit.
- 5. It is strongly recommended to add a filter capacitor (minimum 0.1 μF), physically close to VCC and V_{SS} pins if operating voltage fluctuations are anticipated, such as those resulting from driving an Infrared LED.
- 6. Comparator and Timers are on. Interrupt disabled.
- 7. Typical values shown are at 25 degrees C.

Table 12. EPROM/OTP Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes
	Erase Time	15			Minutes	1,3
	Data Retention @ use years		10		Years	2
	Program/Erase Endurance	100			Cycles	1

Notes:

1. For windowed cerdip package only.

2. Standard: 0°C to 70°C; Extended: -40°C to +105°C; Automotive: -40°C to +125°C. Determined using the Arrhenius model, which is an industry standard for estimating data retention of floating gate technologies:

 $AF = \exp[(Ea/k)^*(1/Tuse - 1/TStress)]$

Where:

Ea is the intrinsic activation energy (eV; typ. 0.8)

k is Boltzman's constant (8.67 x 10-5 eV/°K)

°K = -273.16°C

Tuse = Use Temperature in °K

TStress = Stress Temperature in °K

3. At a stable UV Lamp output of 20mW/CM²

PS023803-0305 DC Characteristics

Pin Functions

XTAL1 Crystal 1 (Time-Based Input)

This pin connects a parallel-resonant crystal or ceramic resonator to the on-chip oscillator input. Additionally, an optional external single-phase clock can be coded to the on-chip oscillator input.

XTAL2 Crystal 2 (Time-Based Output)

This pin connects a parallel-resonant crystal or ceramic resonant to the on-chip oscillator output.

Port 0 (P07-P00)

Port 0 is an 8-bit, bidirectional, CMOS-compatible port. These eight I/O lines are configured under software control as a nibble I/O port. The output drivers are push-pull or open-drain controlled by bit D2 in the PCON register.

If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 mode register. After a hardware reset, Port 0 is configured as an input port.

An optional pull-up transistor is available as a mask option on all Port 0 bits with nibble select.

Notes: Internal pull-ups are disabled on any given pin or group of port pins when programmed into output mode.

The Port O direction is reset to its default state following an

The Port 0 direction is reset to its default state following an SMR.

PS023803-0305 Pin Functions

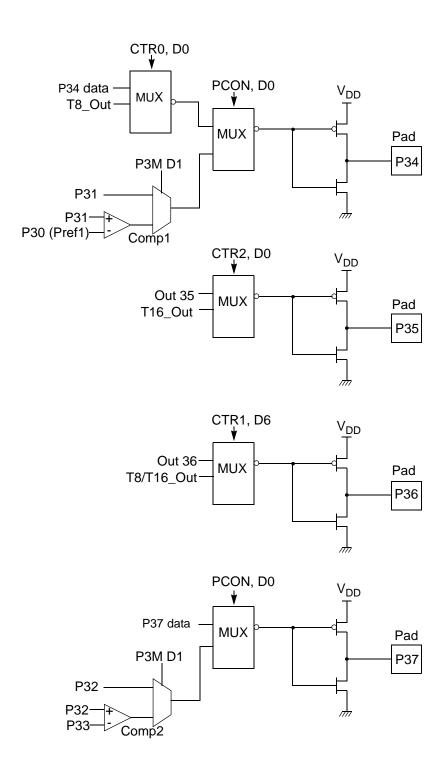


Figure 13. Port 3 Counter/Timer Output Configuration

PS023803-0305 Pin Functions

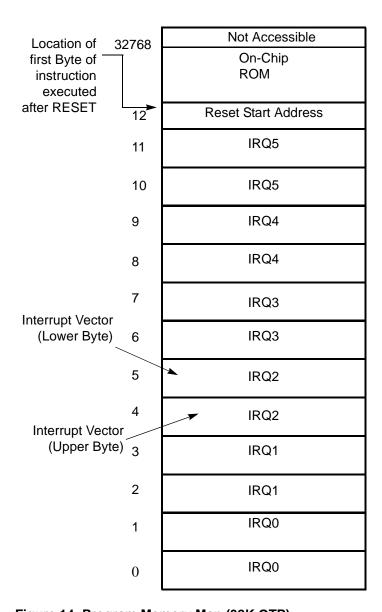


Figure 14. Program Memory Map (32K OTP)

Expanded Register File

The register file has been expanded to allow for additional system control registers and for mapping of additional peripheral devices into the register address area. The Z8[®] register address space (R0 through R15) has been implemented as 16 banks, with 16 registers per bank. These register groups are known as the

The upper nibble of the register pointer (see Figure 16) selects which working register group, of 16 bytes in the register file, is accessed out of the possible 256. The lower nibble selects the expanded register file bank and, in the case of the Z8 GP family, banks 0, F, and D are implemented. A $_{\rm OH}$ in the lower nibble allows the normal register file (bank 0) to be addressed. Any other value from $_{\rm 1H}$ to $_{\rm FH}$ exchanges the lower 16 registers to an expanded register bank.

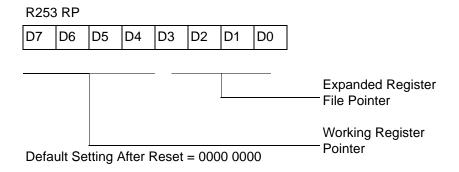


Figure 16. Register Pointer

Example: Z8 GP: (See Figure 15 on page 28)

R253 RP = 00h

R0 = Port 0

R1 = Port 1

R2 = Port 2

R3 = Port 3

But if:

R253 RP = 0Dh

R0 = CTR0

R1 = CTR1

R2 = CTR2

R3 = Reserved

Table 16. CTR1(0D)01H T8 and T16 Common Functions (Continued)

Field	Bit Position		Value	Description
Transmit_Submode/	32	R/W		Transmit Mode
Glitch_Filter			00*	Normal Operation
			01	Ping-Pong Mode
			10	T16_Out = 0
			11	T16_Out = 1
				Demodulation Mode
			00*	No Filter
			01	4 SCLK Cycle
			10	8 SCLK Cycle
			11	Reserved
Initial_T8_Out/	1-			Transmit Mode
Rising Edge		R/W	0*	T8_OUT is 0 Initially
			1	T8_OUT is 1 Initially
				Demodulation Mode
		R	0*	No Rising Edge
			1	Rising Edge Detected
		W	0	No Effect
			1	Reset Flag to 0
Initial_T16_Out/	0			Transmit Mode
Falling_Edge		R/W	0*	T16_OUT is 0 Initially
			1	T16_OUT is 1 Initially
				Demodulation Mode
		R	0*	No Falling Edge
			1	Falling Edge Detected
		W	0	No Effect
			1	Reset Flag to 0

Note:

Mode

If the result is 0, the counter/timers are in TRANSMIT mode; otherwise, they are in DEMODULATION mode.

P36_Out/Demodulator_Input

In TRANSMIT Mode, this bit defines whether P36 is used as a normal output pin or the combined output of T8 and T16.

In DEMODULATION Mode, this bit defines whether the input signal to the Counter/Timers is from P20 or P31.

If the input signal is from Port 31, a capture event may also generate an IRQ2 interrupt. To prevent generating an IRQ2, either disable the IRQ2 interrupt by clearing its IMR bit D2 or use P20 as the input.

^{*}Default at Power-On Reset

^{*}Default at Power-On Reset. Not reset with Stop Mode recovery.

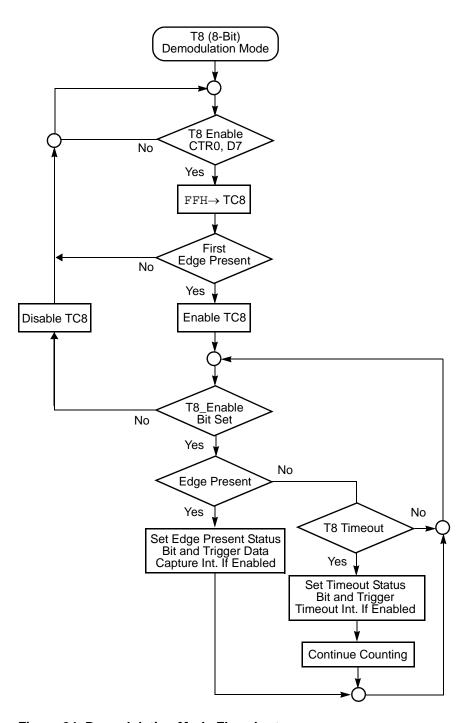


Figure 24. Demodulation Mode Flowchart

Do not load these registers at the time the values are to be loaded into the counter/timer to ensure known operation. An initial count of 1 is not allowed. An initial count of 0 causes T16 to count from 0 to FFFFH to FFFEH. Transition from 0 to FFFFH is not a timeout condition.

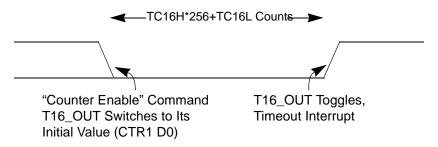


Figure 26. T16_OUT in Single-Pass Mode

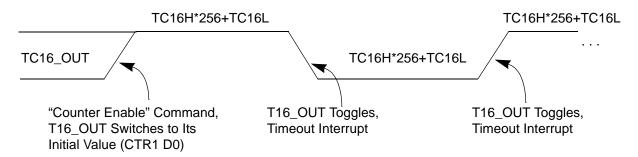


Figure 27. T16_OUT in Modulo-N Mode

T16 DEMODULATION Mode

The user must program TC16L and TC16H to FFH. After T16 is enabled, and the first edge (rising, falling, or both depending on CTR1 D5; D4) is detected, T16 captures H116 and LO16, reloads, and begins counting.

If D6 of CTR2 Is 0

When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current count in T16 is complemented and put into HI16 and LO16. When data is captured, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt is generated if enabled (CTR2, D2). T16 is loaded with FFFFH and starts again.

This T16 mode is generally used to measure space time, the length of time between bursts of carrier signal (marks).

If D6 of CTR2 Is 1

T16 ignores the subsequent edges in the input signal and continues counting down. A timeout of T8 causes T16 to capture its current value and generate an interrupt if enabled (CTR2, D2). In this case, T16 does not reload and continues counting. If the D6 bit of CTR2 is toggled (by writing a 0 then a 1 to it), T16 captures and reloads on the next edge (rising, falling, or both depending on CTR1, D5; D4), continuing to ignore subsequent edges.

This T16 mode generally measures mark time, the length of an active carrier signal burst.

If T16 reaches 0, T16 continues counting from FFFFh. Meanwhile, a status bit (CTR2 D5) is set, and an interrupt timeout can be generated if enabled (CTR2 D1).

Ping-Pong Mode

This operation mode is only valid in TRANSMIT Mode. T8 and T16 must be programmed in Single-Pass mode (CTR0, D6; CTR2, D6), and Ping-Pong mode must be programmed in CTR1, D3; D2. The user can begin the operation by enabling either T8 or T16 (CTR0, D7 or CTR2, D7). For example, if T8 is enabled, T8_OUT is set to this initial value (CTR1, D1). According to T8_OUT's level, TC8H or TC8L is loaded into T8. After the terminal count is reached, T8 is disabled, and T16 is enabled. T16_OUT then switches to its initial value (CTR1, D0), data from TC16H and TC16L is loaded, and T16 starts to count. After T16 reaches the terminal count, it stops, T8 is enabled again, repeating the entire cycle. Interrupts can be allowed when T8 or T16 reaches terminal control (CTR0, D1; CTR2, D1). To stop the ping-pong operation, write 00 to bits D3 and D2 of CTR1. See Figure 28.

Note: Enabling ping-pong operation while the counter/timers are running might cause intermittent counter/timer function. Disable the counter/timers and reset the status flags before instituting this operation.

Table 22. Stop Mode Recovery Source

SMR:432			Operation		
D4	D3	D2	Description of Action		
0	0	0	POR and/or external reset recovery		
0	0	1	Reserved		
0	1	0	P31 transition		
0	1	1	P32 transition		
1	0	0	P33 transition		
1	0	1	P27 transition		
1	1	0	Logical NOR of P20 through P23		
1	1	1	Logical NOR of P20 through P27		

Note: Any Port 2 bit defined as an output drives the corresponding input to the default state. This condition allows the remaining inputs to control the AND/OR function. Refer to SMR2 register on page 61 for other recover sources.

Stop Mode Recovery Delay Select (D5)

This bit, if Low, disables the T_{POR} delay after Stop Mode Recovery. The default configuration of this bit is 1. If the "fast" wake up is selected, the Stop Mode Recovery source must be kept active for at least 5 TpC.

Note: This bit must be set to 1 if using a crystal or resonator clock source. The T_{POR} delay allows the clock source to stabilize before executing instructions.

Stop Mode Recovery Edge Select (D6)

A 1 in this bit position indicates that a High level on any one of the recovery sources wakes the device from Stop Mode. A 0 indicates Low level recovery. The default is 0 on POR.

Cold or Warm Start (D7)

This bit is read only. It is set to 1 when the device is recovered from Stop Mode. The bit is set to 0 when the device reset is other than Stop Mode Recovery (SMR).

WDTMR During STOP (D3)

This bit determines whether or not the WDT is active during STOP Mode. Because the XTAL clock is stopped during STOP Mode, the on-board RC has to be selected as the clock source to the WDT/POR counter. A 1 indicates active during Stop. The default is 1.

EPROM Selectable Options

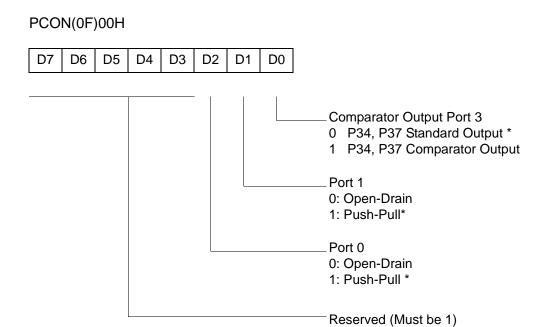
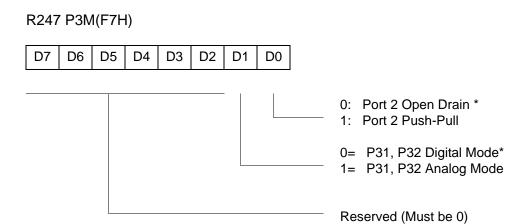

There are seven EPROM Selectable Options to choose from based on ROM code requirements. These options are listed in Table 24.

Table 24. EPROM Selectable Options

Port 00-03 Pull-Ups	On/Off
Port 04–07 Pull-Ups	On/Off
Port 10–13 Pull-Ups	On/Off
Port 14–17 Pull-Ups	On/Off
Port 20–27 Pull-Ups	On/Off
EPROM Protection	On/Off
Watch-Dog Timer at Power-On Reset	On/Off


Voltage Brown-Out/Standby

An on-chip Voltage Comparator checks that the V_{DD} is at the required level for correct operation of the device. Reset is globally driven when V_{DD} falls below V_{BO} . A small drop in V_{DD} causes the XTAL1 and XTAL2 circuitry to stop the crystal or resonator clock. If the V_{DD} is allowed to stay above V_{RAM} , the RAM content is preserved. When the power level is returned to above V_{BO} , the device performs a POR and functions normally.

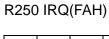

^{*} Default setting after reset

Figure 44. Port Configuration Register (PCON)(0F)00H: Write Only)

^{*} Default setting after reset. Not reset with a Stop Mode recovery.

Figure 49. Port 3 Mode Register (F7H: Write Only)

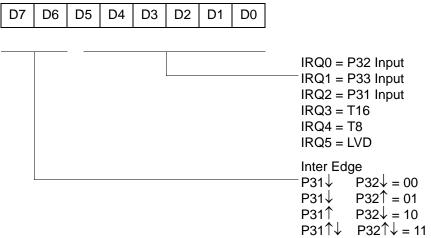
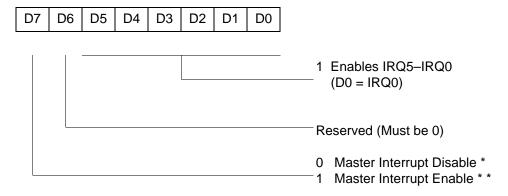
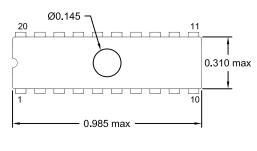
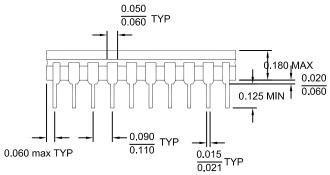



Figure 52. Interrupt Request Register (FAH: Read/Write)


R251 IMR(FBH)



^{*} Default setting after reset

Figure 53. Interrupt Mask Register (FBH: Read/Write)

^{* *} Only by using EI, DI instruction; DI is required before changing the IMR register

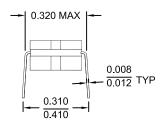
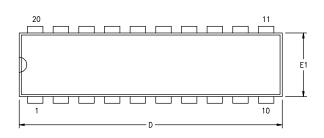
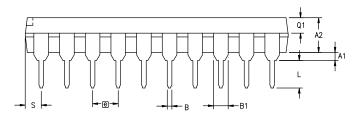
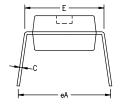





Figure 58. 20-Pin CDIP Package

SYMBOL	SYMBOL MILLIMETER			Н
STWIDOL	MIN	MAX	MIN	MAX
A1	0.38	0.81	.015	.032
A2	3.25	3.68	.128	.145
В	0.41	0.51	.016	.020
B1	1.47	1.57	.058	.062
С	0.20	0.30	.008	.012
D	25.65	26.16	1.010	1.030
E	7.49	8.26	.295	.325
E1	6.10	6.65	.240	.262
е	2.54	BSC	.100	BSC
eA	7.87	9.14	.310	.360
L	3.18	3.43	.125	.135
Q1	1.42	1.65	.056	.065
S	1.52	1.65	.060	.065

CONTROLLING DIMENSIONS : INCH

Figure 59. 20-Pin PDIP Package Diagram

PS023803-0305 Package Information

8KB Standard Temperature: 0° to +70°C						
Part Number	Description	Part Number	Description			
ZGP323HSH4808C	48-pin SSOP 8K OTP	ZGP323HSS2808C	28-pin SOIC 8K OTP			
ZGP323HSP4008C	40-pin PDIP 8K OTP	ZGP323HSH2008C	20-pin SSOP 8K OTP			
ZGP323HSH2808C	28-pin SSOP 8K OTP	ZGP323HSP2008C	20-pin PDIP 8K OTP			
ZGP323HSP2808C	28-pin PDIP 8K OTP	ZGP323HSS2008C	20-pin SOIC 8K OTP			

8KB Extended Temperature: -40° to +105°C						
Part Number	Description	Part Number	Description			
ZGP323HEH4808C	48-pin SSOP 8K OTP	ZGP323HES2808C	28-pin SOIC 8K OTP			
ZGP323HEP4008C	40-pin PDIP 8K OTP	ZGP323HEH2008C	20-pin SSOP 8K OTP			
ZGP323HEH2808C	28-pin SSOP 8K OTP	ZGP323HEP2008C	20-pin PDIP 8K OTP			
ZGP323HEP2808C	28-pin PDIP 8K OTP	ZGP323HES2008C	20-pin SOIC 8K OTP			

Part Number Description Part Number Description			
rait Nullibei	Description	Part Number	Description
ZGP323HAH4808C	48-pin SSOP 8K OTP	ZGP323HAS2808C	28-pin SOIC 8K OTP
ZGP323HAP4008C	40-pin PDIP 8K OTP	ZGP323HAH2008C	20-pin SSOP 8K OTP
ZGP323HAH2808C	28-pin SSOP 8K OTP	ZGP323HAP2008C	20-pin PDIP 8K OTP
ZGP323HAP2808C	28-pin PDIP 8K OTP	ZGP323HAS2008C	20-pin SOIC 8K OTP
Replace C with G fo	r Lead-Free Packaging		

PS023803-0305 Ordering Information

pin 4	program memory map 26	
E	RAM 25	
EPROM	register description 65	
selectable options 64	register file 30	
expanded register file 26	register pointer 29	
expanded register file architecture 28	register pointer detail 31	
expanded register file control registers 71	SMR2(F)0D1h register 40	
flag 80	stack 31	
interrupt mask register 79	TC16H(D)07h register 32	
interrupt priority register 78	TC16L(D)06h register 33	
interrupt request register 79	TC8H(D)05h register 33	
port 0 and 1 mode register 77	TC8L(D)04h register 33	
port 2 configuration register 75	G	
port 3 mode register 76	glitch filter circuitry 40	
port configuration register 75	H	
register pointer 80	halt instruction, counter/timer 54	
stack pointer high register 81	I	
stack pointer low register 81	input circuit 40	
stop-mode recovery register 73	interrupt block diagram, counter/timer 5	
stop-mode recovery register 2 74	interrupt types, sources and vectors 52	
T16 control register 69	L	
T8 and T16 common control functions reg-	low-voltage detection register 65	
ister 67	M	
T8/T16 control register 70	memory, program 25	
TC8 control register 66	modulo-N mode	
watch-dog timer register 75	T16_OUT 47	
F	T8_OUT 43	
features	0	
standby modes 1	oscillator configuration 53	
functional description	output circuit, counter/timer 49	
counter/timer functional blocks 40	P	
CTR(D)01h register 35	package information	
CTR0(D)00h register 33	20-pin DIP package diagram 82	
CTR2(D)02h register 37	20-pin SSOP package diagram 84	
CTR3(D)03h register 39	28-pin DIP package diagram 86	
expanded register file 26	28-pin SOIC package diagram 85	
expanded register file architecture 28		
HI16(D)09h register 32	28-pin SSOP package diagram 87	
HI8(D)09h register 32	40-pin DIP package diagram 87	
L08(D)0Ah register 32	48-pin SSOP package diagram 89	
` '	pin configuration	
L0I6(D)08h register 32	20-pin DIP/SOIC/SSOP 5	