

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	24
Program Memory Size	16KB (16K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323has2816c00tr

ZGP323H Product Specification

	•
v	ı

Figure 34. SCLK Circuit	58
Figure 35. Stop Mode Recovery Source	59
Figure 36. Stop Mode Recovery Register 2 ((0F)DH:D2-D4, D6 Write Only).	61
Figure 37. Watch-Dog Timer Mode Register (Write Only)	62
Figure 38. Resets and WDT	63
Figure 39. TC8 Control Register ((0D)O0H: Read/Write Except Where Noted)	66
Figure 40. T8 and T16 Common Control Functions ((0D)01H: Read/Write)	67
Figure 41. T16 Control Register ((0D) 2H: Read/Write Except Where Noted) .	69
Figure 42. T8/T16 Control Register (0D)03H: Read/Write (Except Where	
Noted)	
Figure 43. Voltage Detection Register	
Figure 44. Port Configuration Register (PCON)(0F)00H: Write Only)	72
Figure 45. Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only)	73
Figure 46. Stop Mode Recovery Register 2 ((0F)0DH:D2–D4, D6 Write Only)	74
Figure 47. Watch-Dog Timer Register ((0F) 0FH: Write Only)	75
Figure 48. Port 2 Mode Register (F6H: Write Only)	75
Figure 49. Port 3 Mode Register (F7H: Write Only)	76
Figure 50. Port 0 and 1 Mode Register (F8H: Write Only)	77
Figure 51. Interrupt Priority Register (F9H: Write Only)	78
Figure 52. Interrupt Request Register (FAH: Read/Write)	79
Figure 53. Interrupt Mask Register (FBH: Read/Write)	79
Figure 54. Flag Register (FCH: Read/Write)	80
Figure 55. Register Pointer (FDH: Read/Write)	80
Figure 56. Stack Pointer High (FEH: Read/Write)	81
Figure 57. Stack Pointer Low (FFH: Read/Write)	81
Figure 58. 20-Pin CDIP Package	82
Figure 59. 20-Pin PDIP Package Diagram	82
Figure 60. 20-Pin SOIC Package Diagram	83
Figure 61. 20-Pin SSOP Package Diagram	84
Figure 62. 28-Pin SOIC Package Diagram	85
Figure 63. 28-Pin CDIP Package Diagram	86
Figure 64. 28-Pin PDIP Package Diagram	86
Figure 65. 28-Pin SSOP Package Diagram	87
Figure 66. 40-Pin PDIP Package Diagram	87
Figure 67. 40-Pin CDIP Package Diagram	88

PS023803-0305 List of Figures

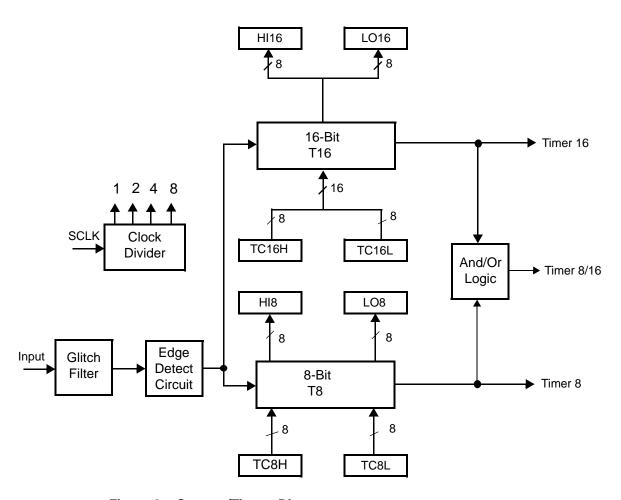


Figure 2. Counter/Timers Diagram

Pin Description

The pin configuration for the 20-pin PDIP/SOIC/SSOP is illustrated in Figure 3 and described in Table 4. The pin configuration for the 28-pin PDIP/SOIC/SSOP are depicted in Figure 4 and described in Table 5. The pin configurations for the 40-pin PDIP and 48-pin SSOP versions are illustrated in Figure 5, Figure 6, and described in Table 6.

For customer engineering code development, a UV eraseable windowed cerdip packaging is offered in 20-pin, 28-pin, and 40-pin configurations. ZiLOG does not recommend nor guarantee these packages for use in production.

PS023803-0305 Pin Description

AC Characteristics

Figure 8 and Table 13 describe the Alternating Current (AC) characteristics.

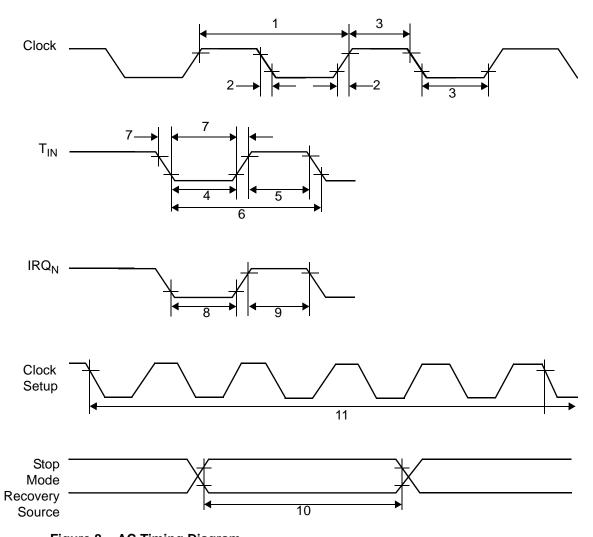
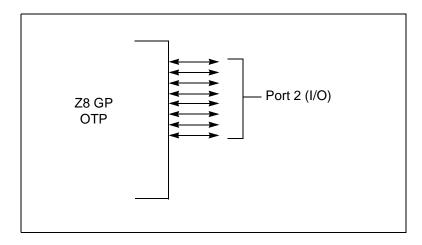



Figure 8. AC Timing Diagram

PS023803-0305 AC Characteristics

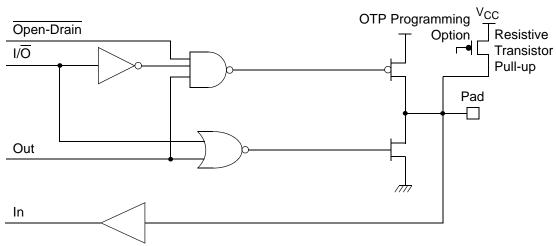


Figure 11. Port 2 Configuration

Port 3 (P37-P30)

Port 3 is a 8-bit, CMOS-compatible fixed I/O port (see Figure 12). Port 3 consists of four fixed input (P33–P30) and four fixed output (P37–P34), which can be configured under software control for interrupt and as output from the counter/timers. P30, P31, P32, and P33 are standard CMOS inputs; P34, P35, P36, and P37 are push-pull outputs.

PS023803-0305 Pin Functions

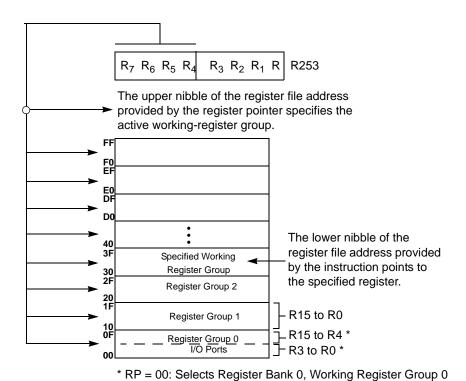


Figure 17. Register Pointer—Detail

Stack

The internal register file is used for the stack. An 8-bit Stack Pointer SPL (R255) is used for the internal stack that resides in the general-purpose registers (R4–R239). SPH (R254) can be used as a general-purpose register.

Capture_INT_Mask

Set this bit to allow an interrupt when data is captured into either LO8 or HI8 upon a positive or negative edge detection in demodulation mode.

Counter INT Mask

Set this bit to allow an interrupt when T8 has a timeout.

P34_Out

This bit defines whether P34 is used as a normal output pin or the T8 output.

T8 and T16 Common Functions—CTR1(0D)01H

This register controls the functions in common with the T8 and T16.

Table 16 lists and briefly describes the fields for this register.

Table 16. CTR1(0D)01H T8 and T16 Common Functions

Field	Bit Position		Value	Description
Mode	7	R/W	0*	Transmit Mode
				Demodulation Mode
P36_Out/	-6	R/W		Transmit Mode
Demodulator_Input			0*	Port Output
			1	T8/T16 Output
				Demodulation Mode
			0*	P31
			1	P20
T8/T16_Logic/	54	R/W		Transmit Mode
Edge _Detect			00**	AND
			01	OR
			10	NOR
			11	NAND
				Demodulation Mode
			00**	Falling Edge
			01	Rising Edge
			10	Both Edges
			11	Reserved

Table 18. CTR3 (D)03H: T8/T16 Control Register (Continued)

Field	Bit Position		Value	Description
Reserved	43210	R	1	Always reads 11111
		W	X	No Effect

^{*}Indicates the value upon Power-On Reset.

Counter/Timer Functional Blocks

Input Circuit

The edge detector monitors the input signal on P31 or P20. Based on CTR1 D5–D4, a pulse is generated at the Pos Edge or Neg Edge line when an edge is detected. Glitches in the input signal that have a width less than specified (CTR1 D3, D2) are filtered out (see Figure 18).

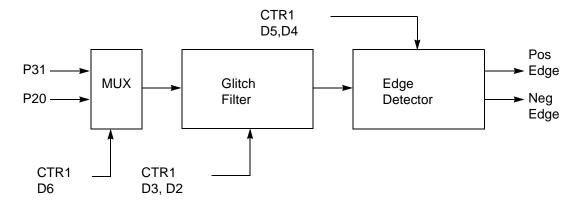


Figure 18. Glitch Filter Circuitry

T8 Transmit Mode

Before T8 is enabled, the output of T8 depends on CTR1, D1. If it is 0, T8_OUT is 1; if it is 1, T8_OUT is 0. See Figure 19.

^{**}Indicates the value upon Power-On Reset. Not reset with a Stop Mode recovery.

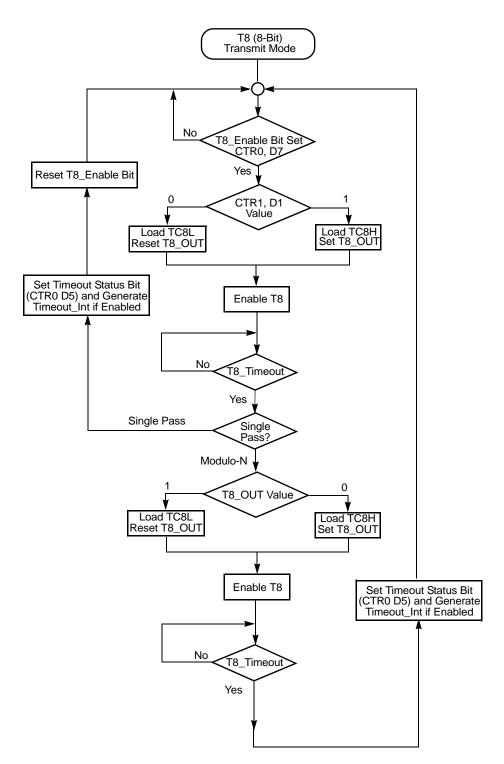


Figure 19. Transmit Mode Flowchart

Do not load these registers at the time the values are to be loaded into the counter/timer to ensure known operation. An initial count of 1 is not allowed. An initial count of 0 causes T16 to count from 0 to FFFFH to FFFEH. Transition from 0 to FFFFH is not a timeout condition.

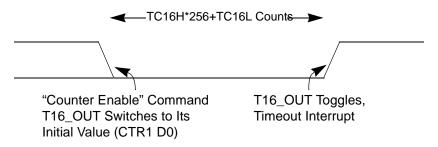


Figure 26. T16_OUT in Single-Pass Mode

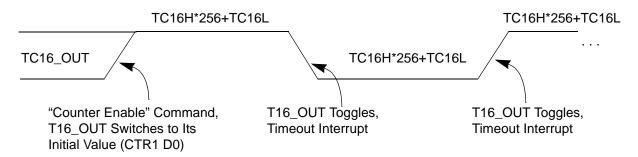


Figure 27. T16_OUT in Modulo-N Mode

T16 DEMODULATION Mode

The user must program TC16L and TC16H to FFH. After T16 is enabled, and the first edge (rising, falling, or both depending on CTR1 D5; D4) is detected, T16 captures H116 and LO16, reloads, and begins counting.

If D6 of CTR2 Is 0

When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current count in T16 is complemented and put into HI16 and LO16. When data is captured, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt is generated if enabled (CTR2, D2). T16 is loaded with FFFFH and starts again.

This T16 mode is generally used to measure space time, the length of time between bursts of carrier signal (marks).

Power-On Reset

A timer circuit clocked by a dedicated on-board RC-oscillator is used for the Power-On Reset (POR) timer function. The POR time allows V_{DD} and the oscillator circuit to stabilize before instruction execution begins.

The POR timer circuit is a one-shot timer triggered by one of three conditions:

- Power Fail to Power OK status, including Waking up from V_{BO} Standby
- Stop-Mode Recovery (if D5 of SMR = 1)
- WDT Timeout

The POR timer is 2.5 ms minimum. Bit 5 of the Stop-Mode Register determines whether the POR timer is bypassed after Stop-Mode Recovery (typical for external clock).

HALT Mode

This instruction turns off the internal CPU clock, but not the XTAL oscillation. The counter/timers and external interrupts IRQ0, IRQ1, IRQ2, IRQ3, IRQ4, and IRQ5 remain active. The devices are recovered by interrupts, either externally or internally generated. An interrupt request must be executed (enabled) to exit HALT Mode. After the interrupt service routine, the program continues from the instruction after HALT Mode.

STOP Mode

This instruction turns off the internal clock and external crystal oscillation, reducing the standby current to 10 μ A or less. STOP Mode is terminated only by a reset, such as WDT timeout, POR, SMR or external reset. This condition causes the processor to restart the application program at address 000CH. To enter STOP (or HALT) mode, first flush the instruction pipeline to avoid suspending execution in mid-instruction. Execute a NOP (Opcode = FFH) immediately before the appropriate sleep instruction, as follows:

WDTMR During STOP (D3)

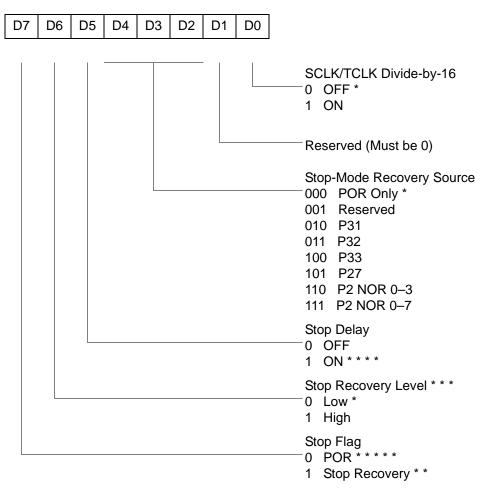
This bit determines whether or not the WDT is active during STOP Mode. Because the XTAL clock is stopped during STOP Mode, the on-board RC has to be selected as the clock source to the WDT/POR counter. A 1 indicates active during Stop. The default is 1.

EPROM Selectable Options

There are seven EPROM Selectable Options to choose from based on ROM code requirements. These options are listed in Table 24.

Table 24. EPROM Selectable Options

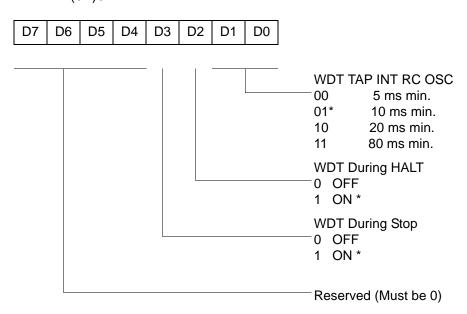
Port 00-03 Pull-Ups	On/Off
Port 04–07 Pull-Ups	On/Off
Port 10–13 Pull-Ups	On/Off
Port 14–17 Pull-Ups	On/Off
Port 20–27 Pull-Ups	On/Off
EPROM Protection	On/Off
Watch-Dog Timer at Power-On Reset	On/Off


Voltage Brown-Out/Standby

An on-chip Voltage Comparator checks that the V_{DD} is at the required level for correct operation of the device. Reset is globally driven when V_{DD} falls below V_{BO} . A small drop in V_{DD} causes the XTAL1 and XTAL2 circuitry to stop the crystal or resonator clock. If the V_{DD} is allowed to stay above V_{RAM} , the RAM content is preserved. When the power level is returned to above V_{BO} , the device performs a POR and functions normally.

Notes: Take care in differentiating the Transmit Mode from Demodulation Mode. Depending on which of these two modes is operating, the CTR1 bit has different functions.

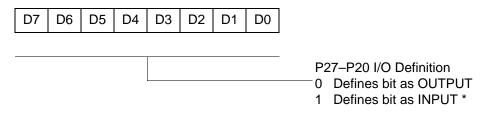
> Changing from one mode to another cannot be performed without disabling the counter/timers.


SMR(0F)0BH

- * Default setting after reset
- * * Set after Stop Mode Recovery
- * * * At the XOR gate input
- * * * * Default setting after reset. Must be 1 if using a crystal or resonator clock source.
- * * * * * Default setting after Power On Reset. Not reset with a Stop Mode recovery.

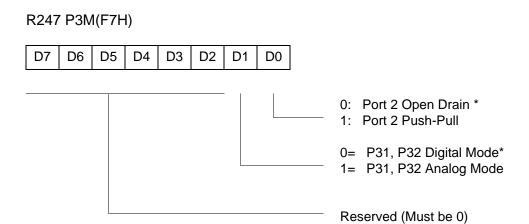
Figure 45. Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only)

WDTMR(0F)0FH



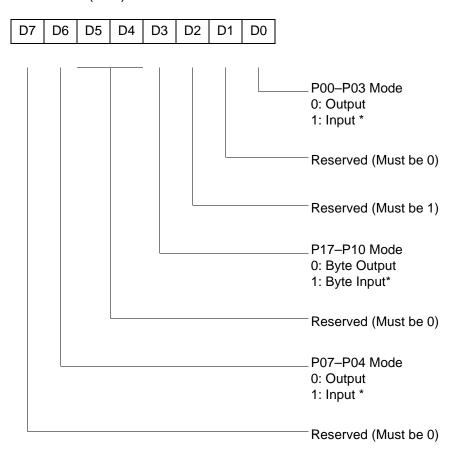
^{*} Default setting after reset. Not reset with a Stop Mode recovery.

Figure 47. Watch-Dog Timer Register ((0F) 0FH: Write Only)


Standard Control Registers

R246 P2M(F6H)

^{*} Default setting after reset. Not reset with a Stop Mode recovery.


Figure 48. Port 2 Mode Register (F6H: Write Only)

^{*} Default setting after reset. Not reset with a Stop Mode recovery.

Figure 49. Port 3 Mode Register (F7H: Write Only)

R248 P01M(F8H)

^{*} Default setting after reset; only P00, P01 and P07 are available on 20-pin configurations.

Figure 50. Port 0 and 1 Mode Register (F8H: Write Only)

R252 Flags(FCH)

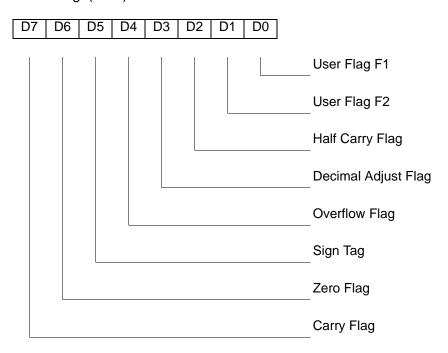
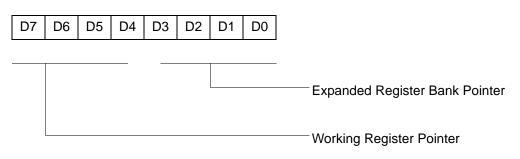



Figure 54. Flag Register (FCH: Read/Write)

R253 RP(FDH)

Default setting after reset = 0000 0000

Figure 55. Register Pointer (FDH: Read/Write)

The Standard Tellip	perature: 0° to +70°C	I	
Part Number	Description	Part Number	Description
ZGP323HSH4804C	48-pin SSOP 4K OTP	ZGP323HSS2804C	28-pin SOIC 4K OTP
ZGP323HSP4004C	40-pin PDIP 4K OTP	ZGP323HSH2004C	20-pin SSOP 4K OTP
ZGP323HSH2804C	28-pin SSOP 4K OTP	ZGP323HSP2004C	20-pin PDIP 4K OTP
ZGP323HSP2804C	28-pin PDIP 4K OTP	ZGP323HSS2004C	20-pin SOIC 4K OTP
4KB Extended Tem	perature: -40° to +105°0		
Part Number	Description	Dort Number	
Fait Number	Description	Part Number	Description
ZGP323HEH4804C			Description 28-pin SOIC 4K OTP
ZGP323HEH4804C		ZGP323HES2804C	
ZGP323HEH4804C ZGP323HEP4004C	48-pin SSOP 4K OTP	ZGP323HES2804C ZGP323HEH2004C	28-pin SOIC 4K OTP
ZGP323HEH4804C ZGP323HEP4004C ZGP323HEH2804C	48-pin SSOP 4K OTP 40-pin PDIP 4K OTP	ZGP323HES2804C ZGP323HEH2004C ZGP323HEP2004C	28-pin SOIC 4K OTP 20-pin SSOP 4K OTP

4KB Automotive Temperature: -40° to +125°C			
Part Number	Description	Part Number	Description
ZGP323HAH4804C	48-pin SSOP 4K OTP	ZGP323HAS2804C	28-pin SOIC 4K OTP
ZGP323HAP4004C	40-pin PDIP 4K OTP	ZGP323HAH2004C	20-pin SSOP 4K OTP
ZGP323HAH2804C	28-pin SSOP 4K OTP	ZGP323HAP2004C	20-pin PDIP 4K OTP
ZGP323HAP2804C	28-pin PDIP 4K OTP	ZGP323HAS2004C	20-pin SOIC 4K OTP
Replace C with G for	Lead-Free Packaging		

Additional Components			
Part Number	Description	Part Number	Description
ZGP323ICE01ZEM (For 3.6V Emulation only)	Emulator/programmer	ZGP32300100ZPR (Ethernet)	Programming system
		ZGP32300200ZPR (USB)	Programming system

PS023803-0305 Ordering Information

28 nin DID/SOIC/SSOD 6	HI8/D)0Dh 22
28-pin DIP/SOIC/SSOP 6	HI8(D)0Bh 32
40- and 48-pin 8	interrupt priority 78
40-pin DIP 7	interrupt request 79
48-pin SSOP 8	interruptmask 79
pin functions	L016(D)08h 32
port 0 (P07 - P00) 18	L08(D)0Ah 32
port 0 (P17 - P10) 19	LVD(D)0Ch 65
port 0 configuration 19	pointer 80
port 1 configuration 20	port 0 and 1 77
port 2 (P27 - P20) 20	port 2 configuration 75
port 2 (P37 - P30) 21	port 3 mode 76
port 2 configuration 21	port configuration 55, 75
port 3 configuration 22	SMR2(F)0Dh 40
port 3 counter/timer configuration 24	stack pointer high 81
reset) 25	stack pointer low 81
XTAL1 (time-based input 18	stop mode recovery 57
XTAL2 (time-based output) 18	stop mode recovery 2 61
ping-pong mode 48	stop-mode recovery 73
port 0 configuration 19	stop-mode recovery 2 74
port 0 pin function 18	T16 control 69
port 1 configuration 20	T8 and T16 common control functions 67
port 1 pin function 19	T8/T16 control 70
port 2 configuration 21	TC16H(D)07h 32
port 2 pin function 20	TC16L(D)06h 33
port 3 configuration 22	TC8 control 66
port 3 pin function 21	TC8H(D)05h 33
port 3counter/timer configuration 24	TC8L(D)04h 33
port configuration register 55	voltage detection 71
power connections 3	watch-dog timer 75
power supply 5	register description
program memory 25	Counter/Timer2 LS-Byte Hold 33
map 26	Counter/Timer2 MS-Byte Hold 32
R	Counter/Timer8 Control 33
ratings, absolute maximum 10	Counter/Timer8 High Hold 33
register 61	Counter/Timer8 Low Hold 33
CTR(D)01h 35	CTR2 Counter/Timer 16 Control 37
CTR0(D)00h 33	CTR3 T8/T16 Control 39
CTR2(D)02h 37	Stop Mode Recovery2 40
CTR3(D)03h 39	T16_Capture_LO 32
flag 80	T8 and T16 Common functions 35
HI16(D)09h 32	T8_Capture_HI 32
	-

T8_Capture_LO 32
register file 30
expanded 26
register pointer 29
detail 31
reset pin function 25
resets and WDT 63
S
SCLK circuit 58
single-pass mode
T16_OUT 47
T8_OUT 43
stack 31
standard test conditions 10
standby modes 1
stop instruction, counter/timer 54
stop mode recovery
2 register 61
source 59
stop mode recovery 2 61
stop mode recovery register 57
T
T16 transmit mode 46
T16_Capture_HI 32
T8 transmit mode 40
T8_Capture_HI 32
test conditions, standard 10
test load diagram 10
timing diagram, AC 16
transmit mode flowchart 41
V
VCC 5
voltage
brown-out/standby 64
detection and flags 65
voltage detection register 71 W
watch-dog timer
mode registerwatch-dog timer mode register 62
time select 63

X XTAL1 5 XTAL1 pin function 18 XTAL2 5 XTAL2 pin function 18