E·XFL

Zilog - ZGP323HEH2004C00TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	16
Program Memory Size	4KB (4K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	•
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323heh2004c00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ZGP323H Product Specification

List of Tables

Table 1.	Revision History of this Document iii
Table 2.	Features
Table 3.	Power Connections 3
Table 4.	20-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification
Table 5.	28-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification
Table 6.	40- and 48-Pin Configuration 8
Table 7.	Absolute Maximum Ratings 10
Table 8.	Capacitance
Table 9.	GP323HS DC Characteristics 11
Table 10.	GP323HE DC Characteristics 12
Table 11.	GP323HA DC Characteristics 14
Table 12.	EPROM/OTP Characteristics 15
Table 13.	AC Characteristics 17
Table 14.	Port 3 Pin Function Summary 23
Table 15.	CTR1(0D)01H T8 and T16 Common Functions
Table 16.	Interrupt Types, Sources, and Vectors
Table 17.	IRQ Register
Table 18.	SMR2(F)0DH:Stop Mode Recovery Register 2* 58
Table 19.	Stop Mode Recovery Source 60
Table 20.	Watch-Dog Timer Time Select 63
Table 21.	EPROM Selectable Options 64

Development Features

Table 2 lists the features of ZiLOG[®]'s ZGP323H members.

Table 2. Features

Device	OTP (KB)	RAM (Bytes)	I/O Lines	Voltage Range
ZGP323H OTP MCU Family	4, 8, 16, 32	237	32, 24 or 16	2.0V–5.5V

- Low power consumption–18mW (typical)
- T = Temperature
 - S = Standard 0° to +70°C
 - $E = Extended 40^{\circ} to + 105^{\circ}C$
 - A = Automotive -40° to $+125^{\circ}$ C
- Three standby modes:
 - STOP— (typical 1.8µA)
 - HALT— (typical 0.8mA)
 - Low voltage reset
- Special architecture to automate both generation and reception of complex pulses or signals:
 - One programmable 8-bit counter/timer with two capture registers and two load registers
 - One programmable 16-bit counter/timer with one 16-bit capture register pair and one 16-bit load register pair
 - Programmable input glitch filter for pulse reception
- Six priority interrupts
 - Three external
 - Two assigned to counter/timers
 - One low-voltage detection interrupt
- Low voltage detection and high voltage detection flags
- Programmable Watch-Dog Timer/Power-On Reset (WDT/POR) circuits
- Two independent comparators with programmable interrupt polarity
- Programmable EPROM options
 - Port 0: 0–3 pull-up transistors
 - Port 0: 4–7 pull-up transistors

Figure 2. Counter/Timers Diagram

Pin Description

The pin configuration for the 20-pin PDIP/SOIC/SSOP is illustrated in Figure 3 and described in Table 4. The pin configuration for the 28-pin PDIP/SOIC/SSOP are depicted in Figure 4 and described in Table 5. The pin configurations for the 40-pin PDIP and 48-pin SSOP versions are illustrated in Figure 5, Figure 6, and described in Table 6.

For customer engineering code development, a UV eraseable windowed cerdip packaging is offered in 20-pin, 28-pin, and 40-pin configurations. ZiLOG does not recommend nor guarantee these packages for use in production.

			T _A =0°C	to +70°C				
Symbol	Parameter	V _{CC}	Min	Typ(7)	Мах	Units	Conditions	Notes
I _{OL}	Output Leakage	2.0-5.5	-1		1	μA	$V_{IN} = 0V, V_{CC}$	
Icc	Supply Current	2.0V		1	3	mA	at 8.0 MHz	1, 2
00		3.6V		5	10	mA	at 8.0 MHz	1, 2
		5.5V		10	15	mA	at 8.0 MHz	1, 2
I _{CC1}	Standby Current	2.0V		0.5	1.6	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
	(HALT Mode)	3.6V		0.8	2.0	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
		5.5V		1.3	3.2	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
I _{CC2}	Standby Current (Stop	2.0V		1.6	8	μA	$V_{IN} = 0 V, V_{CC} WDT not Running$	3
	Mode)	3.6V		1.8	10	μA	$V_{IN} = 0 V, V_{CC} WDT not Running$	3
		5.5V		1.9	12	μΑ	$V_{IN} = 0 V, V_{CC} WDT not Running$	3
		2.0V		5	20	μΑ	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3
		3.6V		8	30	μA	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3
		5.5V		15	45	μΑ	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3
I _{LV}	Standby Current (Low Voltage)			1.2	6	μA	Measured at 1.3V	4
V _{BO}	V _{CC} Low Voltage			1.9	2.0	V	8MHz maximum	
20	Protection						Ext. CLK Freq.	
V _{LVD}	V _{CC} Low Voltage			2.4		V		
	Detection							
V _{HVD}	Vcc High Voltage			2.7		V		
	Detection							

Table 9. GP323HS DC Characteristics (Continued)

Notes:

1. All outputs unloaded, inputs at rail.

2. CL1 = CL2 = 100 pF.

3. Oscillator stopped.

4. Oscillator stops when V_{CC} falls below V_{BO} limit.

 It is strongly recommended to add a filter capacitor (minimum 0.1 μF), physically close to VCC and V_{SS} pins if operating voltage fluctuations are anticipated, such as those resulting from driving an Infrared LED.

- 6. Comparator and Timers are on. Interrupt disabled.
- 7. Typical values shown are at 25 degrees C.

Table 10. GP323HE DC Characteristics

	T _A = -40°C to +105°C								
Symbol	Parameter	V _{CC}	Min	Typ(7)	Max	Units	Conditions	Notes	
V _{CC}	Supply Voltage		2.0		5.5	V	See Note 5	5	
V _{CH}	Clock Input High Voltage	2.0-5.5	0.8 V _{CC}		V _{CC} +0.3	V	Driven by External Clock Generator		
V _{CL}	Clock Input Low Voltage	2.0-5.5	V _{SS} -0.3		0.4	V	Driven by External Clock Generator		
V _{IH}	Input High Voltage	2.0-5.5	0.7 V _{CC}		V _{CC} +0.3	V			
V _{IL}	Input Low Voltage	2.0-5.5	V _{SS} 0.3		0.2 V _{CC}	V			
V _{OH1}	Output High Voltage	2.0-5.5	V _{CC} -0.4			V	I _{OH} = -0.5mA		

				T _A =0°C to +70°C (S) −40°C to +105°C (E) −40°C to +125°C (A) 8.0MHz					
No	Symbol	Parameter	V _{CC}	Minimum	Maximum	Units	Notes	(D1, D0)	
1	ТрС	Input Clock Period	2.0–5.5	121	DC	ns	1		
2	TrC,TfC	Clock Input Rise and Fall Times	2.0–5.5		25	ns	1		
3	TwC	Input Clock Width	2.0–5.5	37		ns	1		
4	TwTinL	Timer Input Low Width	2.0 5.5	100 70		ns	1		
5	TwTinH	Timer Input High Width	2.0–5.5	3ТрС			1		
6	TpTin	Timer Input Period	2.0–5.5	8TpC			1		
7	TrTin,TfTin	Timer Input Rise and Fall Timers	2.0–5.5		100	ns	1		
8	TwIL	Interrupt Request Low Time	2.0 5.5	100 70		ns	1, 2		
9	TwIH	Interrupt Request Input High Time	2.0–5.5	5TpC			1, 2		
10	Twsm	Stop-Mode Recovery Width	2.0–5.5	12		ns	3		
		Spec		5TpC			4		
11	Tost	Oscillator Start-Up Time	2.0–5.5		5TpC		4		
12	Twdt	Watch-Dog Timer	2.0–5.5	5		ms		0, 0	
		Delay Time	2.0–5.5	10		ms		0, 1	
			2.0-5.5	20		ms		1,0	
			2.0-0.0	ðU		ms		1, 1	
13	T _{POR}	Power-On Reset	2.0–5.5	2.5	10	ms			

Table 13. AC Characteristics

Notes:

1. Timing Reference uses 0.9 V_{CC} for a logic 1 and 0.1 V_{CC} for a logic 0. 2. Interrupt request through Port 3 (P33–P31).

3. SMR – D5 = 1.

4. SMR - D5 = 0.

Figure 10. Port 1 Configuration

Port 2 (P27-P20)

Port 2 is an 8-bit, bidirectional, CMOS-compatible I/O port (see Figure 11). These eight I/O lines can be independently configured under software control as inputs or outputs. Port 2 is always available for I/O operation. A mask option is available to connect eight pull-up transistors on this port. Bits programmed as outputs are globally programmed as either push-pull or open-drain. The POR resets with the eight bits of Port 2 configured as inputs.

Port 2 also has an 8-bit input OR and AND gate, which can be used to wake up the part. P20 can be programmed to access the edge-detection circuitry in demodulation mode.

CTR1(0D)01H" on page 35). Other edge detect and IRQ modes are described in Table 14.

Note: Comparators are powered down by entering Stop Mode. For P31–P33 to be used in a Stop Mode Recovery (SMR) source, these inputs must be placed into digital mode.

Pin	I/O	Counter/Timers	Comparator	Interrupt
Pref1/P30	IN		RF1	
P31	IN	IN	AN1	IRQ2
P32	IN		AN2	IRQ0
P33	IN		RF2	IRQ1
P34	OUT	Т8	AO1	
P35	OUT	T16		
P36	OUT	T8/16		
P37	OUT		AO2	
P20	I/O	IN		

Table 14. Port 3 Pin Function Summary

>

Port 3 also provides output for each of the counter/timers and the AND/OR Logic (see Figure 13). Control is performed by programming bits D5–D4 of CTR1, bit 0 of CTR0, and bit 0 of CTR2.

The upper nibble of the register pointer (see Figure 16) selects which working register group, of 16 bytes in the register file, is accessed out of the possible 256. The lower nibble selects the expanded register file bank and, in the case of the Z8 GP family, banks 0, F, and D are implemented. A OH in the lower nibble allows the normal register file (bank 0) to be addressed. Any other value from 1H to FH exchanges the lower 16 registers to an expanded register bank.

Figure 16. Register Pointer

Example: Z8 GP: (See Figure 15 on page 28)

R253 RP = 00h R0 = Port 0 R1 = Port 1 R2 = Port 2 R3 = Port 3

But if:

R253 RP = 0Dh R0 = CTR0 R1 = CTR1 R2 = CTR2R3 = Reserved

In Demodulation Mode, when set to 0, T16 captures and reloads on detection of all the edges. When set to 1, T16 captures and detects on the first edge but ignores the subsequent edges. For details, see the description of T16 Demodulation Mode on page 47.

Time_Out

This bit is set when T16 times out (terminal count reached). To reset the bit, write a 1 to this location.

T16_Clock

This bit defines the frequency of the input signal to Counter/Timer16.

Capture_INT_Mask

This bit is set to allow an interrupt when data is captured into LO16 and HI16.

Counter_INT_Mask

Set this bit to allow an interrupt when T16 times out.

P35_Out

This bit defines whether P35 is used as a normal output pin or T16 output.

CTR3 T8/T16 Control Register—CTR3(D)03H

Table 18 lists and briefly describes the fields for this register. This register allows the T_8 and T_{16} counters to be synchronized.

Field	Bit Position		Value	Description
T ₁₆ Enable	7	R	0*	Counter Disabled
		R	1	Counter Enabled
		W	0	Stop Counter
		W	1	Enable Counter
T ₈ Enable	-6	R	0*	Counter Disabled
-		R	1	Counter Enabled
		W	0	Stop Counter
		W	1	Enable Counter
Sync Mode	5	R/W	0**	Disable Sync Mode
			1	Enable Sync Mode

Table 18. CTR3 (D)03H: T8/T16 Control Register

into LO8; if it is a negative edge, data is put into HI8. From that point, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt can be generated if enabled (CTR0, D2). Meanwhile, T8 is loaded with FFh and starts counting again. If T8 reaches 0, the timeout status bit (CTR0, D5) is set, and an interrupt can be generated if enabled (CTR0, D1). T8 then continues counting from FFH (see Figure 23 and Figure 24).

Figure 23. Demodulation Mode Count Capture Flowchart

T16 Transmit Mode

In NORMAL or PING-PONG mode, the output of T16 when not enabled, is dependent on CTR1, D0. If it is a 0, T16_OUT is a 1; if it is a 1, T16_OUT is 0. You can force the output of T16 to either a 0 or 1 whether it is enabled or not by programming CTR1 D3; D2 to a 10 or 11.

When T16 is enabled, TC16H * 256 + TC16L is loaded, and T16_OUT is switched to its initial value (CTR1, D0). When T16 counts down to 0, T16_OUT is toggled (in NORMAL or PING-PONG mode), an interrupt (CTR2, D1) is generated (if enabled), and a status bit (CTR2, D5) is set. See Figure 25.

Figure 25. 16-Bit Counter/Timer Circuits

Note: Global interrupts override this function as described in "Interrupts" on page 50.

If T16 is in SINGLE-PASS mode, it is stopped at this point (see Figure 26). If it is in Modulo-N Mode, it is loaded with TC16H * 256 + TC16L, and the counting continues (see Figure 27).

You can modify the values in TC16H and TC16L at any time. The new values take effect when they are loaded.

FF	NOP	;	clear	the pipeline
6F	Stop	;	enter	Stop Mode
or				
FF	NOP	;	clear	the pipeline
7F	HALT	;	enter	HALT Mode

Port Configuration Register

The Port Configuration (PCON) register (Figure 32) configures the comparator output on Port 3. It is located in the expanded register 2 at Bank F, location 00.

PCON(FH)00H

* Default setting after reset

Figure 32. Port Configuration Register (PCON) (Write Only)

Comparator Output Port 3 (D0)

Bit 0 controls the comparator used in Port 3. A 1 in this location brings the comparator outputs to P34 and P37, and a 0 releases the Port to its standard I/O configuration.

Port 1 Output Mode (D1)

Bit 1 controls the output mode of port 1. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.

Port 0 Output Mode (D2)

Bit 2 controls the output mode of port 0. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.

Stop-Mode Recovery Register (SMR)

This register selects the clock divide value and determines the mode of Stop Mode Recovery (Figure 33). All bits are write only except bit 7, which is read only. Bit 7 is a flag bit that is hardware set on the condition of Stop recovery and reset by a power-on cycle. Bit 6 controls whether a low level or a high level at the XORgate input (Figure 35 on page 59) is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits D2, D3, and D4 of the SMR register specify the source of the Stop Mode Recovery signal. Bits D0 determines if SCLK/ TCLK are divided by 16 or not. The SMR is located in Bank F of the Expanded Register Group at address OBH.

SMR(0F)0BH

* Default after Power On Reset or Watch-Dog Reset

* * Default setting after Reset and Stop Mode Recovery

* * * At the XOR gate input

* * * * Default setting after reset. Must be 1 if using a crystal or resonator clock source.

Figure 33. STOP Mode Recovery Register

SCLK/TCLK Divide-by-16 Select (D0)

D0 of the SMR controls a divide-by-16 prescaler of SCLK/TCLK (Figure 34). This control selectively reduces device power consumption during normal processor execution (SCLK control) and/or Halt Mode (where TCLK sources interrupt logic). After Stop Mode Recovery, this bit is set to a 0.

WDTMR During STOP (D3)

This bit determines whether or not the WDT is active during STOP Mode. Because the XTAL clock is stopped during STOP Mode, the on-board RC has to be selected as the clock source to the WDT/POR counter. A 1 indicates active during Stop. The default is 1.

EPROM Selectable Options

There are seven EPROM Selectable Options to choose from based on ROM code requirements. These options are listed in Table 24.

Table 24. EPROM Selectable Options

Port 00–03 Pull-Ups	On/Off
Port 04–07 Pull-Ups	On/Off
Port 10–13 Pull-Ups	On/Off
Port 14–17 Pull-Ups	On/Off
Port 20–27 Pull-Ups	On/Off
EPROM Protection	On/Off
Watch-Dog Timer at Power-On Reset	On/Off

Voltage Brown-Out/Standby

An on-chip Voltage Comparator checks that the V_{DD} is at the required level for correct operation of the device. Reset is globally driven when V_{DD} falls below V_{BO}. A small drop in V_{DD} causes the XTAL1 and XTAL2 circuitry to stop the crystal or resonator clock. If the V_{DD} is allowed to stay above V_{RAM}, the RAM content is preserved. When the power level is returned to above V_{BO}, the device performs a POR and functions normally.

Low-Voltage Detection Register—LVD(D)0Ch

Note: Voltage detection does not work at Stop mode. It must be disabled during Stop mode in order to reduce current.

Field	Bit Position			Description
LVD	76543			Reserved No Effect
	2	R	1 0*	HVD flag set HVD flag reset
	1-	R	1 0*	LVD flag set LVD flag reset
	0	R/W	1 0*	Enable VD Disable VD
*Default	after POR			

Note: Do not modify register P01M while checking a low-voltage condition. Switching noise of both ports 0 and 1 together might trigger the LVD flag.

Voltage Detection and Flags

The Voltage Detection register (LVD, register 0CH at the expanded register bank 0Dh) offers an option of monitoring the V_{CC} voltage. The Voltage Detection is enabled when bit 0 of LVD register is set. Once Voltage Detection is enabled, the the V_{CC} level is monitored in real time. The flags in the LVD register valid 20uS after Voltage Detection is enabled. The HVD flag (bit 2 of the LVD register) is set only if V_{CC} is higher than V_{HVD}. The LVD flag (bit 1 of the LVD register) is set only if V_{CC} is lower than the V_{LVD}. When Voltage Detection is enabled, the LVD flag also triggers IRQ5. The IRQ bit 5 latches the low voltage condition until it is cleared by instructions or reset. The IRQ5 interrupt is served if it is enabled in the IMR register. Otherwise, bit 5 of IRQ register is latched as a flag only.

Notes: If it is necessary to receive an LVD interrupt upon power-up at an operating voltage lower than the low battery detect threshold, enable interrupts using the Enable Interrupt instruction (EI) prior to enabling the voltage detection.

Notes: Take care in differentiating the Transmit Mode from Demodulation Mode. Depending on which of these two modes is operating, the CTR1 bit has different functions.

Changing from one mode to another cannot be performed without disabling the counter/timers.

CTR2(0D)02H

Figure 41. T16 Control Register ((0D) 2H: Read/Write Except Where Noted)

	MILLIMETER		INCH			
MIN	NOM	INCH MAX MIN NOM 1.98 0.068 0.073 0.21 0.002 0.005 1.83 0.066 0.068 0.38 0.010 0.012 0.22 0.005 0.006 7.33 0.278 0.283 5.38 0.205 0.029 3C 7.90 0.301 0.307 0.94 0.022 0.030	NOM	MAX		
1.73	1.85	1.98	0.068	0.073	0.078	
0.05	0.13	0.21	0.002	0.005	0.008	
1.68	1.73	1.83	0.066	0.068	0.072	
0.25	0.30	0.38	0.010	0.012	0.015	
0.13	0.15	0.22	0.005	0.006	0.009	
7.07	7.20	7.33	0.278	0.283	0.289	
5.20	5.30	5.38	0.205	0.209	0.212	
	0.65 BSC		0.0256 BSC			
7.65	7.80	7.90	0.301	0.307	0.311	
0.56	0.75	0.94	0.022	0.030	0.037	
0.74	0.78	0.82	0.029	0.031	0.032	
	MIN 1.73 0.05 1.68 0.25 0.13 7.07 5.20 7.65 0.56 0.74	MILLIMETER MIN NOM 1.73 1.85 0.05 0.13 1.68 1.73 0.25 0.30 0.13 0.15 7.07 7.20 5.20 5.30 0.65 BSC 7.65 7.80 0.56 0.75 0.74 0.78	MILLIMETER MIN NOM MAX 1.73 1.85 1.98 0.05 0.13 0.21 1.68 1.73 1.83 0.25 0.30 0.38 0.13 0.15 0.22 7.07 7.20 7.33 5.20 5.30 5.38 0.65 BSC 7.65 7.80 7.90 0.56 0.75 0.94 0.74 0.78 0.82	MILLIMETER MIN NOM MAX MIN 1.73 1.85 1.98 0.068 0.05 0.13 0.21 0.002 1.68 1.73 1.83 0.066 0.25 0.30 0.38 0.010 0.13 0.15 0.22 0.005 7.07 7.20 7.33 0.278 5.20 5.30 5.38 0.205 0.65 BSC - - 7.65 7.80 7.90 0.301 0.56 0.75 0.94 0.022 0.74 0.78 0.82 0.029	MILLIMETER INCH MIN NOM MAX MIN NOM 1.73 1.85 1.98 0.068 0.073 0.05 0.13 0.21 0.002 0.005 1.68 1.73 1.83 0.066 0.068 0.25 0.30 0.38 0.010 0.012 0.13 0.15 0.22 0.005 0.006 7.07 7.20 7.33 0.278 0.283 5.20 5.30 5.38 0.205 0.209 O.055 BSC 7.65 7.80 7.90 0.301 0.307 0.56 0.75 0.94 0.022 0.030 0.74 0.78 0.82 0.029 0.31	

DETAIL A

Н

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

Figure 61. 20-Pin SSOP Package Diagram

Figure 62. 28-Pin SOIC Package Diagram