

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	24
Program Memory Size	8KB (8K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323heh2808g

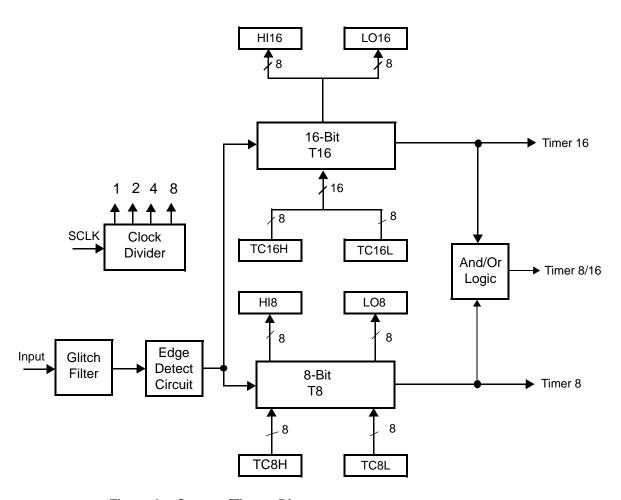


Figure 2. Counter/Timers Diagram

Pin Description

The pin configuration for the 20-pin PDIP/SOIC/SSOP is illustrated in Figure 3 and described in Table 4. The pin configuration for the 28-pin PDIP/SOIC/SSOP are depicted in Figure 4 and described in Table 5. The pin configurations for the 40-pin PDIP and 48-pin SSOP versions are illustrated in Figure 5, Figure 6, and described in Table 6.

For customer engineering code development, a UV eraseable windowed cerdip packaging is offered in 20-pin, 28-pin, and 40-pin configurations. ZiLOG does not recommend nor guarantee these packages for use in production.

PS023803-0305 Pin Description

Absolute Maximum Ratings

Stresses greater than those listed in Table 8 might cause permanent damage to the device. This rating is a stress rating only. Functional operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period might affect device reliability.

Table 7. Absolute Maximum Ratings

Parameter	Minimum	Maximum	Units	Notes
Ambient temperature under bias	-40	125	° C	1
Storage temperature	-65	+150	° C	
Voltage on any pin with respect to V _{SS}	-0.3	7.0	V	2
Voltage on V _{DD} pin with respect to V _{SS}	-0.3	7.0	V	
Maximum current on input and/or inactive output pin	- 5	+5	μΑ	
Maximum output current from active output pin	-25	+25	mA	
Maximum current into V _{DD} or out of V _{SS}		75	mA	

Notes:

- 1. See Ordering Information.
- 2. This voltage applies to all pins except the following: V_{DD}, P32, P33 and RESET.

Standard Test Conditions

The characteristics listed in this product specification apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (see Figure 7).

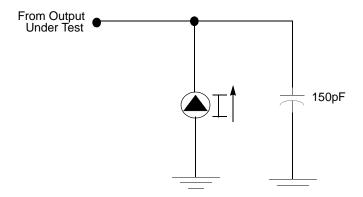


Figure 7. Test Load Diagram

Table 11. GP323HA DC Characteristics (Continued)

	T _A = -40°C to +125°C						
Symbol	Parameter	v_{cc}	Min	Typ(7)	Max	Units Conditions	Notes
V_{HVD}	Vcc High Voltage Detection			2.7		V	

Notes:

- 1. All outputs unloaded, inputs at rail.
- 2. CL1 = CL2 = 100 pF.
- 3. Oscillator stopped.
- 4. Oscillator stops when V_{CC} falls below V_{BO} limit.
- 5. It is strongly recommended to add a filter capacitor (minimum 0.1 μF), physically close to VCC and V_{SS} pins if operating voltage fluctuations are anticipated, such as those resulting from driving an Infrared LED.
- 6. Comparator and Timers are on. Interrupt disabled.
- 7. Typical values shown are at 25 degrees C.

Table 12. EPROM/OTP Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes
	Erase Time	15			Minutes	1,3
	Data Retention @ use years		10		Years	2
	Program/Erase Endurance	100			Cycles	1

Notes:

1. For windowed cerdip package only.

2. Standard: 0°C to 70°C; Extended: -40°C to +105°C; Automotive: -40°C to +125°C. Determined using the Arrhenius model, which is an industry standard for estimating data retention of floating gate technologies:

 $AF = \exp[(Ea/k)^*(1/Tuse - 1/TStress)]$

Where:

Ea is the intrinsic activation energy (eV; typ. 0.8)

k is Boltzman's constant (8.67 x 10-5 eV/°K)

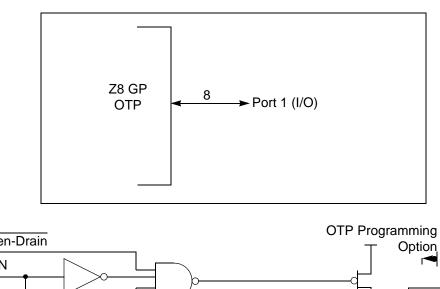
°K = -273.16°C

Tuse = Use Temperature in °K

TStress = Stress Temperature in °K

3. At a stable UV Lamp output of 20mW/CM²

PS023803-0305 DC Characteristics


Table 13. AC Characteristics

			T _A =0°C to +70°C (S) -40°C to +105°C (E) -40°C to +125°C (A) 8.0MHz					Watch-Dog Timer Mode Register
No	Symbol	Parameter	V _{CC}	Minimum	Maximum	Units	Notes	
1	ТрС	Input Clock Period	2.0-5.5	121	DC	ns	1	
2	TrC,TfC	Clock Input Rise and Fall Times	2.0-5.5		25	ns	1	
3	TwC	Input Clock Width	2.0-5.5	37		ns	1	
4	TwTinL	Timer Input Low Width	2.0 5.5	100 70		ns	1	
5	TwTinH	Timer Input High Width	2.0-5.5	ЗТрС			1	
6	TpTin	Timer Input Period	2.0-5.5	8ТрС			1	
7	TrTin,TfTin	Timer Input Rise and Fall Timers	2.0-5.5		100	ns	1	
8	TwlL	Interrupt Request Low Time	2.0 5.5	100 70		ns	1, 2	
9	TwlH	Interrupt Request Input High Time	2.0-5.5	5TpC			1, 2	
10	Twsm	Stop-Mode Recovery Width	2.0-5.5	12		ns	3	
		Spec		5TpC			4	
11	Tost	Oscillator Start-Up Time	2.0-5.5		5TpC		4	
12	Twdt	Watch-Dog Timer Delay Time	2.0-5.5 2.0-5.5 2.0-5.5 2.0-5.5	5 10 20 80		ms ms ms ms		0, 0 0, 1 1, 0 1, 1
13	T _{POR}	Power-On Reset	2.0-5.5	2.5	10	ms		

Notes:

- 1. Timing Reference uses 0.9 V_{CC} for a logic 1 and 0.1 V_{CC} for a logic 0. 2. Interrupt request through Port 3 (P33–P31).
- 3. SMR D5 = 1.
- 4. SMR D5 = 0.

PS023803-0305 **AC Characteristics**

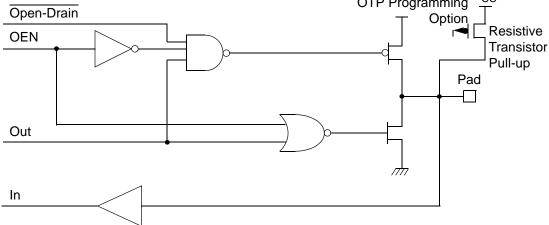


Figure 10. Port 1 Configuration

Port 2 (P27-P20)

Port 2 is an 8-bit, bidirectional, CMOS-compatible I/O port (see Figure 11). These eight I/O lines can be independently configured under software control as inputs or outputs. Port 2 is always available for I/O operation. A mask option is available to connect eight pull-up transistors on this port. Bits programmed as outputs are globally programmed as either push-pull or open-drain. The POR resets with the eight bits of Port 2 configured as inputs.

Port 2 also has an 8-bit input OR and AND gate, which can be used to wake up the part. P20 can be programmed to access the edge-detection circuitry in demodulation mode.

PS023803-0305 Pin Functions

Comparator Inputs

In analog mode, P31 and P32 have a comparator front end. The comparator reference is supplied to P33 and Pref1. In this mode, the P33 internal data latch and its corresponding IRQ1 are diverted to the SMR sources (excluding P31, P32, and P33) as indicated in Figure 12 on page 22. In digital mode, P33 is used as D3 of the Port 3 input register, which then generates IRQ1.

Note: Comparators are powered down by entering Stop Mode. For P31–P33 to be used in a Stop Mode Recovery source, these inputs must be placed into digital mode.

Comparator Outputs

These channels can be programmed to be output on P34 and P37 through the PCON register.

RESET (Input, Active Low)

Reset initializes the MCU and is accomplished either through Power-On, Watch-Dog Timer, Stop Mode Recovery, Low-Voltage detection, or external reset. During Power-On Reset and Watch-Dog Timer Reset, the internally generated reset drives the reset pin Low for the POR time. Any devices driving the external reset line must be open-drain to avoid damage from a possible conflict during reset conditions. Pull-up is provided internally.

When the Z8 GP asserts (Low) the RESET pin, the internal pull-up is disabled. The Z8 GP does not assert the RESET pin when under VBO.

Note: The external Reset does not initiate an exit from STOP mode.

Functional Description

This device incorporates special functions to enhance the Z8[®], functionality in consumer and battery-operated applications.

Program Memory

This device addresses up to 32KB of OTP memory. The first 12 Bytes are reserved for interrupt vectors. These locations contain the six 16-bit vectors that correspond to the six available interrupts.

RAM

This device features 256B of RAM. See Figure 14.

ERF (Expanded Register File). Bits 7–4 of register RP select the working register group. Bits 3–0 of register RP select the expanded register file bank.

Note: An expanded register bank is also referred to as an expanded register group (see Figure 15).

T8/T16_Logic/Edge _Detect

In TRANSMIT Mode, this field defines how the outputs of T8 and T16 are combined (AND, OR, NOR, NAND).

In DEMODULATION Mode, this field defines which edge should be detected by the edge detector.

Transmit_Submode/Glitch Filter

In Transmit Mode, this field defines whether T8 and T16 are in the PING-PONG mode or in independent normal operation mode. Setting this field to "NORMAL OPERATION Mode" terminates the "PING-PONG Mode" operation. When set to 10, T16 is immediately forced to a 0; a setting of 11 forces T16 to output a 1.

In DEMODULATION Mode, this field defines the width of the glitch that must be filtered out.

Initial_T8_Out/Rising_Edge

In TRANSMIT Mode, if 0, the output of T8 is set to 0 when it starts to count. If 1, the output of T8 is set to 1 when it starts to count. When the counter is not enabled and this bit is set to 1 or 0, T8_OUT is set to the opposite state of this bit. This ensures that when the clock is enabled, a transition occurs to the initial state set by CTR1, D1.

In DEMODULATION Mode, this bit is set to 1 when a rising edge is detected in the input signal. In order to reset the mode, a 1 should be written to this location.

Initial_T16 Out/Falling _Edge

In TRANSMIT Mode, if it is 0, the output of T16 is set to 0 when it starts to count. If it is 1, the output of T16 is set to 1 when it starts to count. This bit is effective only in Normal or PING-PONG Mode (CTR1, D3; D2). When the counter is not enabled and this bit is set, T16_OUT is set to the opposite state of this bit. This ensures that when the clock is enabled, a transition occurs to the initial state set by CTR1, D0.

In DEMODULATION Mode, this bit is set to 1 when a falling edge is detected in the input signal. In order to reset it, a 1 should be written to this location.

Note: Modifying CTR1 (D1 or D0) while the counters are enabled causes unpredictable output from T8/16_OUT.

CTR2 Counter/Timer 16 Control Register—CTR2(D)02H

Table 17 lists and briefly describes the fields for this register.

In Demodulation Mode, when set to 0, T16 captures and reloads on detection of all the edges. When set to 1, T16 captures and detects on the first edge but ignores the subsequent edges. For details, see the description of T16 Demodulation Mode on page 47.

Time_Out

This bit is set when T16 times out (terminal count reached). To reset the bit, write a 1 to this location.

T16 Clock

This bit defines the frequency of the input signal to Counter/Timer16.

Capture_INT_Mask

This bit is set to allow an interrupt when data is captured into LO16 and HI16.

Counter_INT_Mask

Set this bit to allow an interrupt when T16 times out.

P35_Out

This bit defines whether P35 is used as a normal output pin or T16 output.

CTR3 T8/T16 Control Register—CTR3(D)03H

Table 18 lists and briefly describes the fields for this register. This register allows the T_8 and T_{16} counters to be synchronized.

Table 18. CTR3 (D)03H: T8/T16 Control Register

Field	Bit Position		Value	Description
T ₁₆ Enable	7	R	0*	Counter Disabled
		R	1	Counter Enabled
		W	0	Stop Counter
		W	1	Enable Counter
T ₈ Enable	-6	R	0*	Counter Disabled
-		R	1	Counter Enabled
		W	0	Stop Counter
		W	1	Enable Counter
Sync Mode	5	R/W	0**	Disable Sync Mode
-			1	Enable Sync Mode

When T8 is enabled, the output T8_OUT switches to the initial value (CTR1, D1). If the initial value (CTR1, D1) is 0, TC8L is loaded; otherwise, TC8H is loaded into the counter. In SINGLE-PASS Mode (CTR0, D6), T8 counts down to 0 and stops, T8_OUT toggles, the timeout status bit (CTR0, D5) is set, and a timeout interrupt can be generated if it is enabled (CTR0, D1). In Modulo-N Mode, upon reaching terminal count, T8_OUT is toggled, but no interrupt is generated. From that point, T8 loads a new count (if the T8_OUT level now is 0), TC8L is loaded; if it is 1, TC8H is loaded. T8 counts down to 0, toggles T8_OUT, and sets the timeout status bit (CTR0, D5), thereby generating an interrupt if enabled (CTR0, D1). One cycle is thus completed. T8 then loads from TC8H or TC8L according to the T8_OUT level and repeats the cycle. See Figure 20.

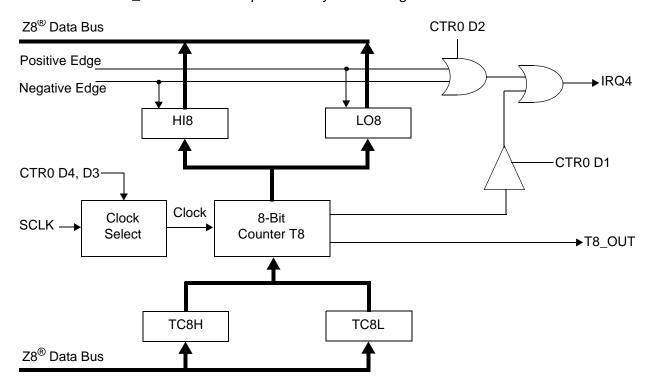


Figure 20. 8-Bit Counter/Timer Circuits

You can modify the values in TC8H or TC8L at any time. The new values take effect when they are loaded.

 \bigwedge

Caution

To ensure known operation do not write these registers at the time the values are to be loaded into the counter/timer. *An initial count of 1 is not allowed (a non-function occurs).* An initial count of 0 causes TC8 to count from 0 to FFH to FEH.

Do not load these registers at the time the values are to be loaded into the counter/timer to ensure known operation. An initial count of 1 is not allowed. An initial count of 0 causes T16 to count from 0 to FFFFH to FFFEH. Transition from 0 to FFFFH is not a timeout condition.



Figure 26. T16_OUT in Single-Pass Mode

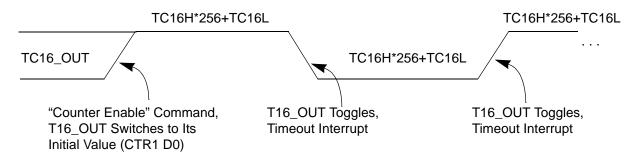


Figure 27. T16_OUT in Modulo-N Mode

T16 DEMODULATION Mode

The user must program TC16L and TC16H to FFH. After T16 is enabled, and the first edge (rising, falling, or both depending on CTR1 D5; D4) is detected, T16 captures H116 and LO16, reloads, and begins counting.

If D6 of CTR2 Is 0

When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current count in T16 is complemented and put into HI16 and LO16. When data is captured, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt is generated if enabled (CTR2, D2). T16 is loaded with FFFFH and starts again.

This T16 mode is generally used to measure space time, the length of time between bursts of carrier signal (marks).

During PING-PONG Mode

The enable bits of T8 and T16 (CTR0, D7; CTR2, D7) are set and cleared alternately by hardware. The timeout bits (CTR0, D5; CTR2, D5) are set every time the counter/timers reach the terminal count.

Interrupts

The ZGP323H features six different interrupts (Table 19). The interrupts are maskable and prioritized (Figure 30). The six sources are divided as follows: three sources are claimed by Port 3 lines P33–P31, two by the counter/timers (Table 19) and one for low voltage detection. The Interrupt Mask Register (globally or individually) enables or disables the six interrupt requests.

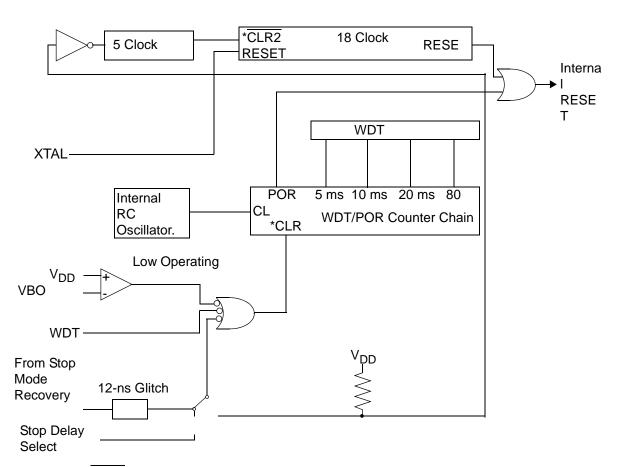

The source for IRQ is determined by bit 1 of the Port 3 mode register (P3M). When in digital mode, Pin P33 is the source. When in analog mode the output of the Stop mode recovery source logic is used as the source for the interrupt. See Figure 35, Stop Mode Recovery Source, on page 59.

Table 23. Watch-Dog Timer Time Select

D1	D0	Timeout of Internal RC-Oscillator
0	0	5ms min.
0	1	10ms min.
1	0	20ms min.
1	1	80ms min.

WDTMR During Halt (D2)

This bit determines whether or not the WDT is active during HALT Mode. A 1 indicates active during HALT. The default is 1. See Figure 38.

^{*} CLR1 and CLR2 enable the WDT/POR and 18 Clock Reset timers respectively upon a Low-to-

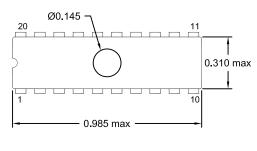
Figure 38. Resets and WDT

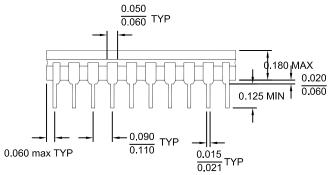
Low-Voltage Detection Register—LVD(D)0Ch

Note: Voltage detection does not work at Stop mode. It must be disabled during Stop mode in order to reduce current.

Field	Bit Position			Description
LVD	76543			Reserved No Effect
	2	R	1 0*	HVD flag set HVD flag reset
	1-	R	1 0*	LVD flag set LVD flag reset
	0	R/W	1 0*	Enable VD Disable VD
*Default	after POR			

Note: Do not modify register P01M while checking a low-voltage condition. Switching noise of both ports 0 and 1 together might trigger the LVD flag.

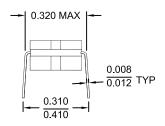

Voltage Detection and Flags


The Voltage Detection register (LVD, register <code>0CH</code> at the expanded register bank <code>0Dh</code>) offers an option of monitoring the V_{CC} voltage. The Voltage Detection is enabled when bit 0 of LVD register is set. Once Voltage Detection is enabled, the the V_{CC} level is monitored in real time. The flags in the LVD register valid 20uS after Voltage Detection is enabled. The HVD flag (bit 2 of the LVD register) is set only if V_{CC} is higher than V_{HVD}. The LVD flag (bit 1 of the LVD register) is set only if V_{CC} is lower than the V_{LVD}. When Voltage Detection is enabled, the LVD flag also triggers IRQ5. The IRQ bit 5 latches the low voltage condition until it is cleared by instructions or reset. The IRQ5 interrupt is served if it is enabled in the IMR register. Otherwise, bit 5 of IRQ register is latched as a flag only.

Notes: If it is necessary to receive an LVD interrupt upon power-up at an operating voltage lower than the low battery detect threshold, enable interrupts using the Enable Interrupt instruction (EI) prior to enabling the voltage detection.

Notes: Take care in differentiating the Transmit Mode from Demodulation Mode. Depending on which of these two modes is operating, the CTR1 bit has different functions.

> Changing from one mode to another cannot be performed without disabling the counter/timers.



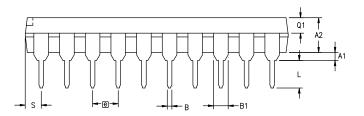
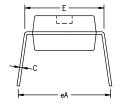
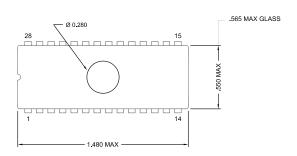
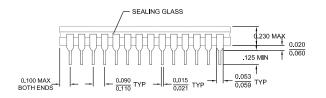



Figure 58. 20-Pin CDIP Package

SYMBOL	SYMBOL MILLIMETER			Н
STWIDOL	MIN	MAX	MIN	MAX
A1	0.38	0.81	.015	.032
A2	3.25	3.68	.128	.145
В	0.41	0.51	.016	.020
B1	1.47	1.57	.058	.062
С	0.20	0.30	.008	.012
D	25.65	26.16	1.010	1.030
E	7.49	8.26	.295	.325
E1	6.10	6.65	.240	.262
е	2.54	BSC	.100	BSC
eA	7.87	9.14	.310	.360
L	3.18	3.43	.125	.135
Q1	1.42	1.65	.056	.065
S	1.52	1.65	.060	.065





CONTROLLING DIMENSIONS : INCH

Figure 59. 20-Pin PDIP Package Diagram

PS023803-0305 Package Information

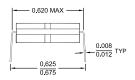
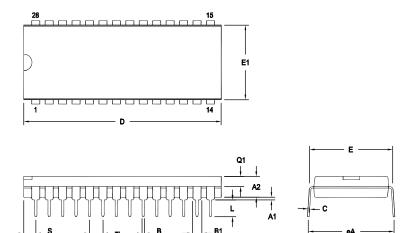



Figure 63. 28-Pin CDIP Package Diagram

SYMBOL	OPT#	MILLIN	IETER	INCH		
GIMBOL	011#	MIN	MAX	MIN	MAX	
A1		0.38	1.02	.015	.040	
A2		3.18	4.19	.125	.165	
В		0.38	0.53	.015	.021	
B1	01	1.40	1.65	.055	.065	
В	02	1.14	1.40	.045	.055	
С		0.23	0.38	.009	.015	
D	01	36.58	37.34	1.440	1.470	
	02	35.31	35.94	1.390	1.415	
E		15.24	15.75	.600	.620	
E1	01	13.59	14.10	.535	.555	
	02	12.83	13.08	.505	.515	
е		2.54	TYP	.100 BSC		
eA		15.49	16.76	.610	.660	
L		3.05	3.81	.120	.150	
Q1	01	1.40	1.91	.055	.075	
_ .	02	1.40	1.78	.055	.070	
	01	1.52	2.29	.060	.090	
S	02	1.02	1.52	.040	.060	

CONTROLLING DIMENSIONS: INCH

OPTION TABLE				
OPTION # PACKAGE				
01	STANDARD			
02	IDF			

Note: ZiLOG supplies both options for production. Component layout PCB design should cover bigger option 01.

Figure 64. 28-Pin PDIP Package Diagram

PS023803-0305 Package Information

Ordering Information

32KB Standard Temperature: 0° to +70°C						
Part Number	Description	Part Number	Description			
ZGP323HSH4832C	48-pin SSOP 32K OTP	ZGP323HSS2832C	28-pin SOIC 32K OTP			
ZGP323HSP4032C	40-pin PDIP 32K OTP	ZGP323HSH2032C	20-pin SSOP 32K OTP			
ZGP323HSK2832E	28-pin CDIP 32K OTP	ZGP323HSK2032E	20-pin CDIP 32K OTP			
ZGP323HSK4032E	40-pin CDIP 32K OTP	ZGP323HSP2032C	20-pin PDIP 32K OTP			
ZGP323HSH2832C	28-pin SSOP 32K OTP	ZGP323HSS2032C	20-pin SOIC 32K OTP			
ZGP323HSP2832C	28-pin PDIP 32K OTP					

32KB Extended Temperature: -40° to +105°C				
Part Number	Description	Part Number	Description	
ZGP323HEH4832C	48-pin SSOP 32K OTP	ZGP323HES2832C	28-pin SOIC 32K OTP	
ZGP323HEP4032C	40-pin PDIP 32K OTP	ZGP323HEH2032C	20-pin SSOP 32K OTP	
ZGP323HEH2832C	28-pin SSOP 32K OTP	ZGP323HEP2032C	20-pin PDIP 32K OTP	
ZGP323HEP2832C	28-pin PDIP 32K OTP	ZGP323HES2032C	20-pin SOIC 32K OTP	

32KB Automotive Temperature: -40° to +125°C				
Part Number	Description	Part Number	Description	
ZGP323HAH4832C	48-pin SSOP 32K OTP	ZGP323HAS2832C	28-pin SOIC 32K OTP	
ZGP323HAP4032C	40-pin PDIP 32K OTP	ZGP323HAH2032C	20-pin SSOP 32K OTP	
ZGP323HAH2832C	28-pin SSOP 32K OTP	ZGP323HAP2032C	20-pin PDIP 32K OTP	
ZGP323HAP2832C	28-pin PDIP 32K OTP	ZGP323HAS2032C	20-pin SOIC 32K OTP	
Replace C with G fo	r Lead-Free Packaging			

PS023803-0305 Ordering Information

pin 4	program memory map 26		
E	RAM 25		
EPROM	register description 65		
selectable options 64	register file 30		
expanded register file 26	register pointer 29		
expanded register file architecture 28	register pointer detail 31		
expanded register file control registers 71	SMR2(F)0D1h register 40		
flag 80	stack 31		
interrupt mask register 79	TC16H(D)07h register 32		
interrupt priority register 78	TC16L(D)06h register 33		
interrupt request register 79	TC8H(D)05h register 33		
port 0 and 1 mode register 77	TC8L(D)04h register 33		
port 2 configuration register 75	G		
port 3 mode register 76	glitch filter circuitry 40		
port configuration register 75	H		
register pointer 80	halt instruction, counter/timer 54		
stack pointer high register 81	I		
stack pointer low register 81	input circuit 40		
stop-mode recovery register 73	interrupt block diagram, counter/timer 5		
stop-mode recovery register 2 74	interrupt types, sources and vectors 52		
T16 control register 69	L		
T8 and T16 common control functions reg-	low-voltage detection register 65		
ister 67	M		
T8/T16 control register 70	memory, program 25		
TC8 control register 66	modulo-N mode		
watch-dog timer register 75	T16_OUT 47		
F	T8_OUT 43		
features	0		
standby modes 1	oscillator configuration 53		
functional description	output circuit, counter/timer 49		
counter/timer functional blocks 40	P		
CTR(D)01h register 35	package information		
CTR0(D)00h register 33	20-pin DIP package diagram 82		
CTR2(D)02h register 37	20-pin SSOP package diagram 84		
CTR3(D)03h register 39	28-pin DIP package diagram 86		
expanded register file 26	28-pin SOIC package diagram 85		
expanded register file architecture 28	28-pin SOIC package diagram 87		
HI16(D)09h register 32	40-pin DIP package diagram 87		
HI8(D)09h register 32	48-pin SSOP package diagram 89		
L08(D)0Ah register 32			
` '	pin configuration		
L0I6(D)08h register 32	20-pin DIP/SOIC/SSOP 5		

28 nin DID/SOIC/SSOD 6	H19/D\0Dk 22		
28-pin DIP/SOIC/SSOP 6	HI8(D)0Bh 32		
40- and 48-pin 8 40-pin DIP 7	interrupt priority 78		
48-pin SSOP 8	interrupt request 79		
pin functions	interruptmask 79		
port 0 (P07 - P00) 18	L016(D)08h 32		
port 0 (P17 - P10) 18 port 0 (P17 - P10) 19	L08(D)0Ah 32 LVD(D)0Ch 65		
port 0 (F17 - F10) 19 port 0 configuration 19			
1 0	pointer 80		
port 1 configuration 20	port 2 configuration 75		
port 2 (P27 - P20) 20	port 2 configuration 75		
port 2 (P37 - P30) 21	port 3 mode 76		
port 2 configuration 21	port configuration 55, 75		
port 3 configuration 22	SMR2(F)0Dh 40		
port 3 counter/timer configuration 24	stack pointer high 81		
reset) 25	stack pointer low 81		
XTAL1 (time-based input 18	stop mode recovery 57		
XTAL2 (time-based output) 18	stop mode recovery 2 61		
ping-pong mode 48	stop-mode recovery 73		
port 0 configuration 19	stop-mode recovery 2 74		
port 0 pin function 18	T16 control 69		
port 1 configuration 20	T8 and T16 common control functions 67		
port 1 pin function 19	T8/T16 control 70		
port 2 configuration 21	TC16H(D)07h 32		
port 2 pin function 20	TC16L(D)06h 33		
port 3 configuration 22	TC8 control 66		
port 3 pin function 21	TC8H(D)05h 33		
port 3counter/timer configuration 24	TC8L(D)04h 33		
port configuration register 55	voltage detection 71		
power connections 3	watch-dog timer 75		
power supply 5	register description		
program memory 25	Counter/Timer2 LS-Byte Hold 33		
map 26	Counter/Timer2 MS-Byte Hold 32		
R	Counter/Timer8 Control 33		
ratings, absolute maximum 10	Counter/Timer8 High Hold 33		
register 61	Counter/Timer8 Low Hold 33		
CTR(D)01h 35	CTR2 Counter/Timer 16 Control 37		
CTR0(D)00h 33	CTR3 T8/T16 Control 39		
CTR2(D)02h 37	Stop Mode Recovery2 40		
CTR3(D)03h 39	T16_Capture_LO 32		
flag 80	T8 and T16 Common functions 35		
HI16(D)09h 32	T8_Capture_HI 32		