
Zilog - ZGP323HEH2816C Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	24
Program Memory Size	16KB (16K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323heh2816c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

This publication is subject to replacement by a later edition. To determine whether a later edition exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters 532 Race Street

San Jose, CA 95126-3432 Telephone: 408.558.8500 Fax: 408.558.8300 www.zilog.com

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other products and/or service names mentioned herein may be trademarks of the companies with which they are associated.

Document Disclaimer

©2005 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Devices sold by ZiLOG, Inc. are covered by warranty and limitation of liability provisions appearing in the ZiLOG, Inc. Terms and Conditions of Sale. ZiLOG, Inc. makes no warranty of merchantability or fitness for any purpose. Except with the express written approval of ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses are conveyed, implicitly or otherwise, by this document under any intellectual property rights.

ZGP323H | Product Specification |

Table of Contents

Revision History iii
Development Features 1
General Description 2
Pin Description
Absolute Maximum Ratings 10
Standard Test Conditions 10
DC Characteristics 11
AC Characteristics
Pin Functions 18 XTAL1 Crystal 1 (Time-Based Input) 18 XTAL2 Crystal 2 (Time-Based Output) 18 Port 0 (P07–P00) 18 Port 1 (P17–P10) 19 Port 2 (P27–P20) 20 Port 3 (P37–P30) 21 RESET (Input, Active Low) 25
Functional Description25Program Memory25RAM25Expanded Register File26Register File30Stack31Timers32Counter/Timer Functional Blocks40
Expanded Register File Control Registers (0D)
Expanded Register File Control Registers (0F) 71
Standard Control Registers
Package Information
Ordering Information

	-			
		\bigcirc		
NC			40	⊐ NC
P25	2		39	⊐ P24
P26	- 3		38	⊐ P23
P27	4		37	⊐ P22
P04	5		36	コ P21
P05	6		35	⊐ P20
P06	7		34	□ P03
P14	8	40-Pin	33	コ P13
P15	9	PDIP	32	⊐ P12
P07	10	CDIP*	31	⊐ VSS
VDD	11		30	⊐ P02
P16	12		39	⊐ P11
P17	13		28	コ P10
XTAL2	14		27	D P01
XTAL1	15		26	P 00
P31	16		25	□ Pref1/P30
P32	17		24	⊐ P36
P33	18		23	D P37
P34	19		22	⊐ P35
NC	20		21	RESET

Figure 5. 40-Pin PDIP/CDIP* Pin Configuration

Note: *Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use.

AC Characteristics

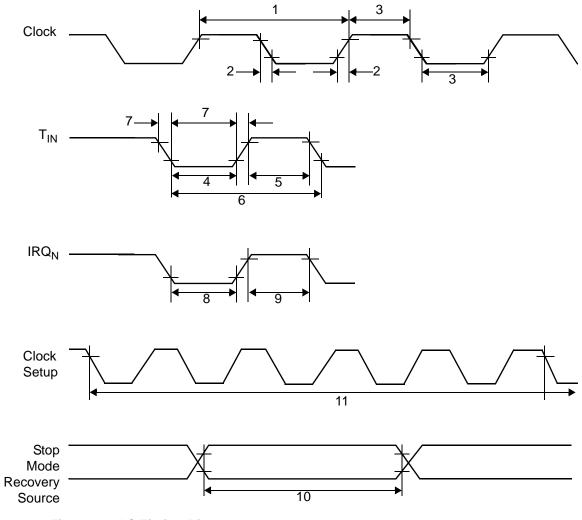


Figure 8. AC Timing Diagram

Comparator Inputs

In analog mode, P31 and P32 have a comparator front end. The comparator reference is supplied to P33 and Pref1. In this mode, the P33 internal data latch and its corresponding IRQ1 are diverted to the SMR sources (excluding P31, P32, and P33) as indicated in Figure 12 on page 22. In digital mode, P33 is used as D3 of the Port 3 input register, which then generates IRQ1.

Note: Comparators are powered down by entering Stop Mode. For P31–P33 to be used in a Stop Mode Recovery source, these inputs must be placed into digital mode.

Comparator Outputs

These channels can be programmed to be output on P34 and P37 through the PCON register.

RESET (Input, Active Low)

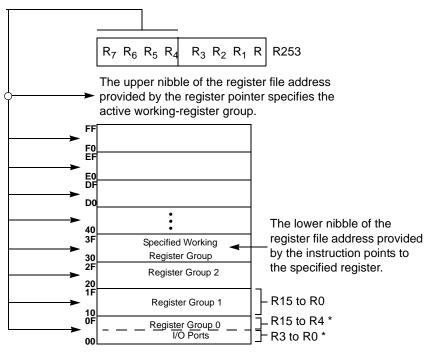
Reset initializes the MCU and is accomplished either through Power-On, Watch-Dog Timer, Stop Mode Recovery, Low-Voltage detection, or external reset. During Power-On Reset and Watch-Dog Timer Reset, the internally generated reset drives the reset pin Low for the POR time. Any devices driving the external reset line must be open-drain to avoid damage from a possible conflict during reset conditions. Pull-up is provided internally.

When the Z8 GP asserts (Low) the $\overline{\text{RESET}}$ pin, the internal pull-up is disabled. The Z8 GP does not assert the $\overline{\text{RESET}}$ pin when under VBO.

Note: The external Reset does not initiate an exit from STOP mode.

Functional Description

This device incorporates special functions to enhance the Z8[®], functionality in consumer and battery-operated applications.


Program Memory

This device addresses up to 32KB of OTP memory. The first 12 Bytes are reserved for interrupt vectors. These locations contain the six 16-bit vectors that correspond to the six available interrupts.

RAM

This device features 256B of RAM. See Figure 14.

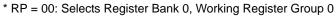


Figure 17. Register Pointer—Detail

Stack

The internal register file is used for the stack. An 8-bit Stack Pointer SPL (R255) is used for the internal stack that resides in the general-purpose registers (R4–R239). SPH (R254) can be used as a general-purpose register.

Counter/Timer2 LS-Byte Hold Register—TC16L(D)06H

Field Bit Position		Description	
T16_Data_LO	[7:0]	R/W	Data

Counter/Timer8 High Hold Register—TC8H(D)05H

Field Bit Position			Description
T8_Level_HI	[7:0]	R/W	Data

Counter/Timer8 Low Hold Register—TC8L(D)04H

Field	Bit Position		Description
T8_Level_LO	[7:0]	R/W	Data

CTR0 Counter/Timer8 Control Register—CTR0(D)00H

Table 15 lists and briefly describes the fields for this register.

Field	Bit Position		Value	Description
T8_Enable	7	R/W	0*	Counter Disabled
			1	Counter Enabled
			0	Stop Counter
			1	Enable Counter
Single/Modulo-N	-6	R/W	0*	Modulo-N
			1	Single Pass
Time_Out	5	R/W	0**	No Counter Time-Out
			1	Counter Time-Out Occurred
			0	No Effect
			1	Reset Flag to 0
T8 _Clock	43	R/W	0 0**	SCLK
			0 1	SCLK/2
			10	SCLK/4
			11	SCLK/8
Capture_INT_Mask	2	R/W	0**	Disable Data Capture Interrupt
-			1	Enable Data Capture Interrupt

In Demodulation Mode, when set to 0, T16 captures and reloads on detection of all the edges. When set to 1, T16 captures and detects on the first edge but ignores the subsequent edges. For details, see the description of T16 Demodulation Mode on page 47.

Time_Out

This bit is set when T16 times out (terminal count reached). To reset the bit, write a 1 to this location.

T16_Clock

This bit defines the frequency of the input signal to Counter/Timer16.

Capture_INT_Mask

This bit is set to allow an interrupt when data is captured into LO16 and HI16.

Counter_INT_Mask

Set this bit to allow an interrupt when T16 times out.

P35_Out

This bit defines whether P35 is used as a normal output pin or T16 output.

CTR3 T8/T16 Control Register—CTR3(D)03H

Table 18 lists and briefly describes the fields for this register. This register allows the T_8 and T_{16} counters to be synchronized.

Field	Bit Position		Value	Description
T ₁₆ Enable	7	R	0*	Counter Disabled
10		R	1	Counter Enabled
		W	0	Stop Counter
		W	1	Enable Counter
T ₈ Enable	-6	R	0*	Counter Disabled
		R	1	Counter Enabled
		W	0	Stop Counter
		W	1	Enable Counter
Sync Mode	5	R/W	0**	Disable Sync Mode
			1	Enable Sync Mode

Table 18. CTR3 (D)03H: T8/T16 Control Register

During PING-PONG Mode

The enable bits of T8 and T16 (CTR0, D7; CTR2, D7) are set and cleared alternately by hardware. The timeout bits (CTR0, D5; CTR2, D5) are set every time the counter/timers reach the terminal count.

Interrupts

The ZGP323H features six different interrupts (Table 19). The interrupts are maskable and prioritized (Figure 30). The six sources are divided as follows: three sources are claimed by Port 3 lines P33–P31, two by the counter/timers (Table 19) and one for low voltage detection. The Interrupt Mask Register (globally or individually) enables or disables the six interrupt requests.

The source for IRQ is determined by bit 1 of the Port 3 mode register (P3M). When in digital mode, Pin P33 is the source. When in analog mode the output of the Stop mode recovery source logic is used as the source for the interrupt. See Figure 35, Stop Mode Recovery Source, on page 59.

ED
52

Name	Source	Vector Location	Comments
IRQ0	P32	0,1	External (P32), Rising, Falling Edge Triggered
IRQ1	P33	2,3	External (P33), Falling Edge Triggered
IRQ2	P31, T _{IN}	4,5	External (P31), Rising, Falling Edge Triggered
IRQ3	T16	6,7	Internal
IRQ4	T8	8,9	Internal
IRQ5	LVD	10,11	Internal

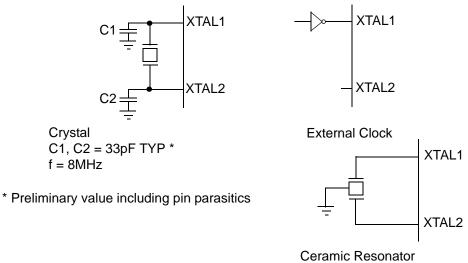
Table 19. Interrupt Types, Sources, and Vectors

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder controlled by the Interrupt Priority Register. An interrupt machine cycle activates when an interrupt request is granted. As a result, all subsequent interrupts are disabled, and the Program Counter and Status Flags are saved. The cycle then branches to the program memory vector location reserved for that interrupt. All ZGP323H interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request. To accommodate polled interrupt systems, interrupt inputs are masked, and the Interrupt Request register is polled to determine which of the interrupt requests require service.

An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQ0. Interrupts IRQ2 and IRQ0 can be rising, falling, or both edge triggered. These interrupts are programmable by the user. The software can poll to identify the state of the pin.

Programming bits for the Interrupt Edge Select are located in the IRQ Register (R250), bits D7 and D6. The configuration is indicated in Table 20.

IRQ		Interrupt Edge		
D7	D6	IRQ2 (P31)	IRQ0 (P32)	
0	0	F	F	
0	1	F	R	
1	0	R	F	
1	1	R/F	R/F	
Note: F = Falling Edge; R = Rising Edge				


Table 20. IRQ Register

Clock

The device's on-chip oscillator has a high-gain, parallel-resonant amplifier, for connection to a crystal or ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal must be AT cut, 1 MHz to 8 MHz maximum, with a series resistance (RS) less than or equal to 100 Ω . The on-chip oscillator can be driven with a suitable external clock source.

The crystal must be connected across XTAL1 and XTAL2 using the recommended capacitors (capacitance greater than or equal to 22 pF) from each pin to ground.

f = 8mHz

Figure 31. Oscillator Configuration

Power-On Reset

A timer circuit clocked by a dedicated on-board RC-oscillator is used for the Power-On Reset (POR) timer function. The POR time allows V_{DD} and the oscillator circuit to stabilize before instruction execution begins.

The POR timer circuit is a one-shot timer triggered by one of three conditions:

- Power Fail to Power OK status, including Waking up from V_{BO} Standby
- Stop-Mode Recovery (if D5 of SMR = 1)
- WDT Timeout

The POR timer is 2.5 ms minimum. Bit 5 of the Stop-Mode Register determines whether the POR timer is bypassed after Stop-Mode Recovery (typical for external clock).

HALT Mode

This instruction turns off the internal CPU clock, but not the XTAL oscillation. The counter/timers and external interrupts IRQ0, IRQ1, IRQ2, IRQ3, IRQ4, and IRQ5 remain active. The devices are recovered by interrupts, either externally or internally generated. An interrupt request must be executed (enabled) to exit HALT Mode. After the interrupt service routine, the program continues from the instruction after HALT Mode.

STOP Mode

This instruction turns off the internal clock and external crystal oscillation, reducing the standby current to 10 μ A or less. STOP Mode is terminated only by a reset, such as WDT timeout, POR, SMR or external reset. This condition causes the processor to restart the application program at address 000CH. To enter STOP (or HALT) mode, first flush the instruction pipeline to avoid suspending execution in mid-instruction. Execute a NOP (Opcode = FFH) immediately before the appropriate sleep instruction, as follows:

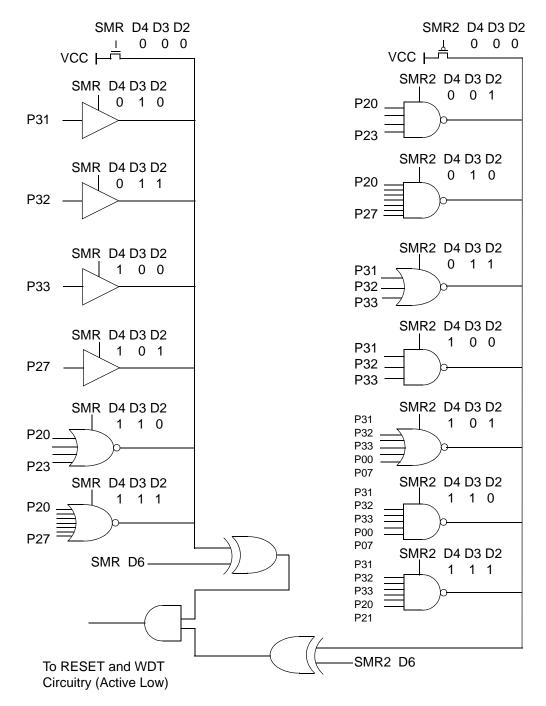


Figure 35. Stop Mode Recovery Source

Stop Mode Recovery Register 2 (SMR2)

This register determines the mode of Stop Mode Recovery for SMR2 (Figure 36).

SMR2(0F)DH

D7	D6	D5	D4	D3	D2	D1	D0	
								 Reserved (Must be 0) Reserved (Must be 0) Stop-Mode Recovery Source 2 000 POR Only * 001 NAND P20, P21, P22, P23 010 NAND P20, P21, P22, P23, P24, P25, P26, P27 011 NOR P31, P32, P33 100 NAND P31, P32, P33 101 NOR P31, P32, P33, P00, P07 110 NAND P31, P32, P33, P00, P07 111 NAND P31, P32, P33, P20, P21, P22
								Reserved (Must be 0)
								Recovery Level * * 0 Low * 1 High
								Reserved (Must be 0)

Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery.

* Default setting after reset

* * At the XOR gate input

Figure 36. Stop Mode Recovery Register 2 ((0F)DH:D2–D4, D6 Write Only)

If SMR2 is used in conjunction with SMR, either of the specified events causes a Stop Mode Recovery.

Note: Port pins configured as outputs are ignored as an SMR or SMR2 recovery source. For example, if the NAND or P23–P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23–P21) form the NAND equation.

Expanded Register File Control Registers (0D)

The expanded register file control registers (0D) are depicted in Figure 39 through Figure 43.

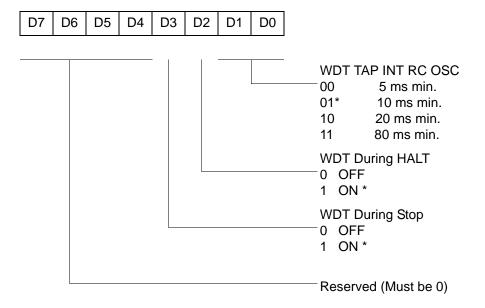
CTR0(0D)00H

			1	1		1		
D7	D6	D5	D4	D3	D2	D1	D0	
								 0 P34 as Port Output * 1 Timer8 Output 0 Disable T8 Timeout Interrupt * * 1 Enable T8 Timeout Interrupt 0 Disable T8 Data Capture Interrupt * * 1 Enable T8 Data Capture Interrupt * * 1 Enable T8 Data Capture Interrupt * * 1 Enable T8 Data Capture Interrupt 00 SCLK on T8* * 01 SCLK/2 on T8 10 SCLK/4 on T8 11 SCLK/8 on T8 R 0 No T8 Counter Timeout * * R 1 T8 Counter Timeout Occurred W 0 No Effect W 1 Reset Flag to 0 0 Modulo-N * 1 Single Pass R 0 T8 Disabled * R 1 T8 Enabled W 0 Stop T8 W 1 Enable T8

* Default setting after reset.

* * Default setting after Reset.. Not reset with a Stop-Mode recovery.

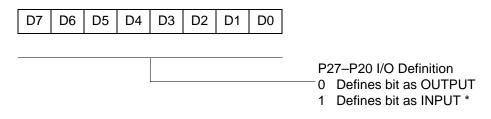
Figure 39. TC8 Control Register ((0D)O0H: Read/Write Except Where Noted)



)7	D6	D5	D4	D3	D2	D1	D0	
		_		_				Transmit Mode* R/W 0 T16_OUT is 0 initially 1 T16_OUT is 1 initially Demodulation Mode R 0 No Falling Edge Detection R 1 Falling Edge Detection W 0 No Effect W 1 Reset Flag to 0 Transmit Mode*
								R/W 0 T8_OUT is 0 initially* 1 T8_OUT is 1 initially Demodulation Mode R 0 No Rising Edge Detection R 1 Rising Edge Detection W 0 No Effect
								W 1 Reset Flag to 0 Transmit Mode* 0 0 Normal Operation* 0 1 Ping-Pong Mode 1 0 T16_OUT = 0 1 1 T16_OUT = 1
								Demodulation Mode 0 0 No Filter 0 1 4 SCLK Cycle Filter 1 0 8 SCLK Cycle Filter 1 1 Reserved
								Transmit Mode/T8/T16 Logic 0 0 AND** 0 1 OR 1 0 NOR 1 1 NAND
								Demodulation Mode 0 0 Falling Edge Detection 0 1 Rising Edge Detection 1 0 Both Edge Detection 1 1 Reserved
								Transmit Mode* 0 P36 as Port Output * 1 P36 as T8/T16_OUT Demodulation Mode
								0 P31 as Demodulator Inpu 1 P20 as Demodulator Inpu Transmit/Demodulation Mode
	fault se fault se				reset	with a 9	Stop Mor	0 Transmit Mode * 1 Demodulation Mode

Figure 40. T8 and T16 Common Control Functions ((0D)01H: Read/Write)

WDTMR(0F)0FH

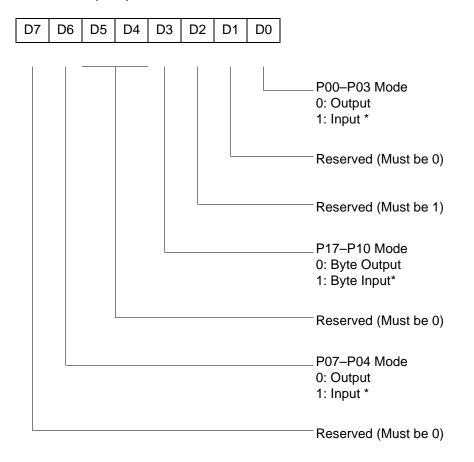


* Default setting after reset. Not reset with a Stop Mode recovery.

Figure 47. Watch-Dog Timer Register ((0F) 0FH: Write Only)

Standard Control Registers

R246 P2M(F6H)



* Default setting after reset. Not reset with a Stop Mode recovery.

Figure 48. Port 2 Mode Register (F6H: Write Only)

R248 P01M(F8H)

* Default setting after reset; only P00, P01 and P07 are available on 20-pin configurations.

Figure 50. Port 0 and 1 Mode Register (F8H: Write Only)

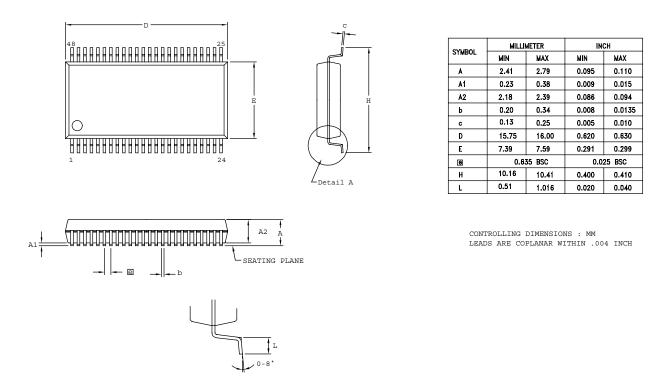


Figure 68. 48-Pin SSOP Package Design

Note: Check with ZiLOG on the actual bonding diagram and coordinate for chip-on-board assembly.

ZGP323H Z8[®] OTP Microcontroller with IR Timers

T8_Capture_LO 32 register file 30 expanded 26 register pointer 29 detail 31 reset pin function 25 resets and WDT 63 S SCLK circuit 58 single-pass mode T16_OUT 47 T8_OUT 43 stack 31 standard test conditions 10 standby modes 1 stop instruction, counter/timer 54 stop mode recovery 2 register 61 source 59 stop mode recovery 2 61 stop mode recovery register 57 Т T16 transmit mode 46 T16_Capture_HI 32 T8 transmit mode 40 T8_Capture_HI 32 test conditions, standard 10 test load diagram 10 timing diagram, AC 16 transmit mode flowchart 41 V VCC 5 voltage brown-out/standby 64 detection and flags 65 voltage detection register 71 W watch-dog timer mode registerwatch-dog timer mode register 62 time select 63

X XTAL1 5 XTAL1 pin function 18 XTAL2 5 XTAL2 pin function 18