Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|---| | Product Status | Obsolete | | Core Processor | Z8 | | Core Size | 8-Bit | | Speed | 8MHz | | Connectivity | - | | Peripherals | HLVD, POR, WDT | | Number of I/O | 32 | | Program Memory Size | 4KB (4K x 8) | | Program Memory Type | OTP | | EEPROM Size | - | | RAM Size | 237 x 8 | | Voltage - Supply (Vcc/Vdd) | 2V ~ 5.5V | | Data Converters | - | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 105°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 48-BSSOP (0.295", 7.50mm Width) | | Supplier Device Package | - | | Purchase URL | https://www.e-xfl.com/product-detail/zilog/zgp323heh4804g | ## **Table of Contents** | Revision Historyiii | |---| | Development Features | | General Description | | Pin Description | | Absolute Maximum Ratings | | Standard Test Conditions | | DC Characteristics | | AC Characteristics | | Pin Functions 18 XTAL1 Crystal 1 (Time-Based Input) 18 XTAL2 Crystal 2 (Time-Based Output) 18 | | Port 0 (P07–P00) | | Port 2 (P27–P20) 20 Port 3 (P37–P30) 21 RESET (Input, Active Low) 25 | | Functional Description 25 Program Memory 25 RAM 25 Expanded Register File 26 Register File 30 Stack 31 Timers 32 Counter/Timer Functional Blocks 40 | | Expanded Register File Control Registers (0D) | | Expanded Register File Control Registers (0F) | | Standard Control Registers | | Package Information | | Ordering Information | PS023803-0305 Table of Contents # List of Figures | Figure 1. | Functional Block Diagram | 3 | |------------|---|----| | Figure 2. | Counter/Timers Diagram | 4 | | Figure 3. | 20-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration | 5 | | Figure 4. | 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration | 6 | | Figure 5. | 40-Pin PDIP/CDIP* Pin Configuration | 7 | | Figure 6. | 48-Pin SSOP Pin Configuration | 8 | | Figure 7. | Test Load Diagram | 10 | | Figure 8. | AC Timing Diagram | 16 | | Figure 9. | Port 0 Configuration | 19 | | Figure 10. | Port 1 Configuration | 20 | | Figure 11. | Port 2 Configuration | 21 | | Figure 12. | Port 3 Configuration | 22 | | Figure 13. | Port 3 Counter/Timer Output Configuration | 24 | | Figure 14. | Program Memory Map (32K OTP) | 26 | | Figure 15. | Expanded Register File Architecture | 28 | | Figure 16. | Register Pointer | 29 | | Figure 17. | Register Pointer—Detail | 31 | | Figure 18. | Glitch Filter Circuitry | 40 | | Figure 19. | Transmit Mode Flowchart | 41 | | Figure 20. | 8-Bit Counter/Timer Circuits | 42 | | Figure 21. | T8_OUT in Single-Pass Mode | 43 | | Figure 22. | T8_OUT in Modulo-N Mode | 43 | | Figure 23. | Demodulation Mode Count Capture Flowchart | 44 | | Figure 24. | Demodulation Mode Flowchart | 45 | | Figure 25. | 16-Bit Counter/Timer Circuits | 46 | | Figure 26. | T16_OUT in Single-Pass Mode | 47 | | Figure 27. | T16_OUT in Modulo-N Mode | 47 | | Figure 28. | Ping-Pong Mode Diagram | 49 | | Figure 29. | Output Circuit | 49 | | Figure 30. | Interrupt Block Diagram | 51 | | Figure 31. | Oscillator Configuration | 53 | | Figure 32. | Port Configuration Register (PCON) (Write Only) | 55 | | Figure 33. | STOP Mode Recovery Register | 57 | PS023803-0305 List of Figures Port 1: 0–3 pull-up transistors Port 1: 4–7 pull-up transistors Port 2: 0–7 pull-up transistors EPROM Protection WDT enabled at POR ### **General Description** The ZGP323H is an OTP-based member of the MCU family of infrared microcontrollers. With 237B of general-purpose RAM and up to 32KB of OTP, ZiLOG[®], s CMOS microcontrollers offer fast-executing, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, automated pulse generation/reception, and internal key-scan pull-up transistors. The ZGP323H architecture (Figure 1) is based on ZiLOG's 8-bit microcontroller core with an Expanded Register File allowing access to register-mapped peripherals, input/output (I/O) circuits, and powerful counter/timer circuitry. The Z8® offers a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features that are useful in many consumer, automotive, computer peripheral, and battery-operated hand-held applications. There are three basic address spaces available to support a wide range of configurations: Program Memory, Register File and Expanded Register File. The register file is composed of 256 Bytes (B) of RAM. It includes 4 I/O port registers, 16 control and status registers, and 236 general-purpose registers. The Expanded Register File consists of two additional register groups (F and D). To unburden the program from coping with such real-time problems as generating complex waveforms or receiving and demodulating complex waveform/pulses, the Z8 GP OTP offers a new intelligent counter/timer architecture with 8-bit and 16-bit counter/timers (see Figure 2). Also included are a large number of user-selectable modes and two on-board comparators to process analog signals with separate reference voltages. **Note:** All signals with an overline, " ", are active Low. For example, B/W, in which WORD is active Low, and B/W, in which BYTE is active Low. Power connections use the conventional descriptions listed in Table 3. PS023803-0305 General Description **Table 3. Power Connections** | Connection | Circuit | Device | |------------|-----------------|-----------------| | Power | V _{CC} | V_{DD} | | Ground | GND | V _{SS} | Note: Refer to the specific package for available pins. Figure 1. Functional Block Diagram PS023803-0305 General Description ## Capacitance Table 8 lists the capacitances. Table 8. Capacitance | Parameter | Maximum | |---|---| | Input capacitance | 12pF | | Output capacitance | 12pF | | I/O capacitance | 12pF | | Note: $T_A = 25^{\circ} C$, $V_{CC} = GND = 0$ | V, f = 1.0 MHz, unmeasured pins returned to GND | ### **DC Characteristics** Table 9. GP323HS DC Characteristics | | | | T _A =0°C to | +70°C | | | | | |---------------------|---|----------|------------------------|--------|-------------------------|-------|--|-------| | Symbol | Parameter | v_{cc} | Min | Typ(7) | Max | Units | Conditions | Notes | | V _{CC} | Supply Voltage | | 2.0 | | 5.5 | V | See Note 5 | 5 | | V _{CH} | Clock Input High
Voltage | 2.0-5.5 | 0.8 V _{CC} | | V _{CC} +0.3 | V | Driven by External
Clock Generator | | | V _{CL} | Clock Input Low
Voltage | 2.0-5.5 | V _{SS} -0.3 | | 0.4 | V | Driven by External
Clock Generator | | | V _{IH} | Input High Voltage | 2.0-5.5 | 0.7 V _{CC} | | V _{CC} +0.3 | V | | | | V_{IL} | Input Low Voltage | 2.0-5.5 | V _{SS} -0.3 | | 0.2 V _{CC} | V | | | | V _{OH1} | Output High Voltage | 2.0-5.5 | V _{CC} -0.4 | | | V | $I_{OH} = -0.5$ mA | | | V _{OH2} | Output High Voltage
(P36, P37, P00, P01) | 2.0-5.5 | V _{CC} -0.8 | | | V | $I_{OH} = -7 \text{mA}$ | | | V _{OL1} | Output Low Voltage | 2.0-5.5 | | | 0.4 | V | I _{OL} = 4.0mA | | | V _{OL2} | Output Low Voltage
(P00, P01, P36, P37) | 2.0-5.5 | | | 0.8 | V | I _{OL} = 10mA | | | V _{OFFSET} | Comparator Input
Offset Voltage | 2.0-5.5 | | | 25 | mV | | | | V _{REF} | Comparator
Reference
Voltage | 2.0-5.5 | 0 | | V _{CC}
1.75 | V | | | | I _{IL} | Input Leakage | 2.0-5.5 | -1 | | 1 | μΑ | V _{IN} = 0V, V _{CC}
Pull-ups disabled | | | R _{PU} | Pull-up Resistance | 2.0V | 225 | | 675 | ΚΩ | V _{IN} = 0V; Pullups selected by mask | | | | | 3.6V | 75 | | 275 | ΚΩ | option | | | | | 5.0V | 40 | | 160 | ΚΩ | - | | PS023803-0305 DC Characteristics ### **Pin Functions** ### **XTAL1 Crystal 1 (Time-Based Input)** This pin connects a parallel-resonant crystal or ceramic resonator to the on-chip oscillator input. Additionally, an optional external single-phase clock can be coded to the on-chip oscillator input. ### XTAL2 Crystal 2 (Time-Based Output) This pin connects a parallel-resonant crystal or ceramic resonant to the on-chip oscillator output. ### Port 0 (P07-P00) Port 0 is an 8-bit, bidirectional, CMOS-compatible port. These eight I/O lines are configured under software control as a nibble I/O port. The output drivers are push-pull or open-drain controlled by bit D2 in the PCON register. If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 mode register. After a hardware reset, Port 0 is configured as an input port. An optional pull-up transistor is available as a mask option on all Port 0 bits with nibble select. **Notes:** Internal pull-ups are disabled on any given pin or group of port pins when programmed into output mode. The Port O direction is reset to its default state following an The Port 0 direction is reset to its default state following an SMR. PS023803-0305 Pin Functions Figure 10. Port 1 Configuration ### Port 2 (P27-P20) Port 2 is an 8-bit, bidirectional, CMOS-compatible I/O port (see Figure 11). These eight I/O lines can be independently configured under software control as inputs or outputs. Port 2 is always available for I/O operation. A mask option is available to connect eight pull-up transistors on this port. Bits programmed as outputs are globally programmed as either push-pull or open-drain. The POR resets with the eight bits of Port 2 configured as inputs. Port 2 also has an 8-bit input OR and AND gate, which can be used to wake up the part. P20 can be programmed to access the edge-detection circuitry in demodulation mode. PS023803-0305 Pin Functions #### **Comparator Inputs** In analog mode, P31 and P32 have a comparator front end. The comparator reference is supplied to P33 and Pref1. In this mode, the P33 internal data latch and its corresponding IRQ1 are diverted to the SMR sources (excluding P31, P32, and P33) as indicated in Figure 12 on page 22. In digital mode, P33 is used as D3 of the Port 3 input register, which then generates IRQ1. Note: Comparators are powered down by entering Stop Mode. For P31–P33 to be used in a Stop Mode Recovery source, these inputs must be placed into digital mode. #### **Comparator Outputs** These channels can be programmed to be output on P34 and P37 through the PCON register. ### **RESET (Input, Active Low)** Reset initializes the MCU and is accomplished either through Power-On, Watch-Dog Timer, Stop Mode Recovery, Low-Voltage detection, or external reset. During Power-On Reset and Watch-Dog Timer Reset, the internally generated reset drives the reset pin Low for the POR time. Any devices driving the external reset line must be open-drain to avoid damage from a possible conflict during reset conditions. Pull-up is provided internally. When the Z8 GP asserts (Low) the RESET pin, the internal pull-up is disabled. The Z8 GP does not assert the RESET pin when under VBO. Note: The external Reset does not initiate an exit from STOP mode. ### **Functional Description** This device incorporates special functions to enhance the Z8[®], functionality in consumer and battery-operated applications. ### **Program Memory** This device addresses up to 32KB of OTP memory. The first 12 Bytes are reserved for interrupt vectors. These locations contain the six 16-bit vectors that correspond to the six available interrupts. #### **RAM** This device features 256B of RAM. See Figure 14. Table 16. CTR1(0D)01H T8 and T16 Common Functions (Continued) | Field | Bit Position | | Value | Description | |-------------------|--------------|-----|-------|------------------------| | Transmit_Submode/ | 32 | R/W | | Transmit Mode | | Glitch_Filter | | | 00* | Normal Operation | | | | | 01 | Ping-Pong Mode | | | | | 10 | T16_Out = 0 | | | | | 11 | T16_Out = 1 | | | | | | Demodulation Mode | | | | | 00* | No Filter | | | | | 01 | 4 SCLK Cycle | | | | | 10 | 8 SCLK Cycle | | | | | 11 | Reserved | | Initial_T8_Out/ | 1- | | | Transmit Mode | | Rising Edge | | R/W | 0* | T8_OUT is 0 Initially | | | | | 1 | T8_OUT is 1 Initially | | | | | | Demodulation Mode | | | | R | 0* | No Rising Edge | | | | | 1 | Rising Edge Detected | | | | W | 0 | No Effect | | | | | 1 | Reset Flag to 0 | | Initial_T16_Out/ | 0 | | | Transmit Mode | | Falling_Edge | | R/W | 0* | T16_OUT is 0 Initially | | | | | 1 | T16_OUT is 1 Initially | | | | | | Demodulation Mode | | | | R | 0* | No Falling Edge | | | | | 1 | Falling Edge Detected | | | | W | 0 | No Effect | | | | | 1 | Reset Flag to 0 | #### Note: #### Mode If the result is 0, the counter/timers are in TRANSMIT mode; otherwise, they are in DEMODULATION mode. #### P36_Out/Demodulator_Input In TRANSMIT Mode, this bit defines whether P36 is used as a normal output pin or the combined output of T8 and T16. In DEMODULATION Mode, this bit defines whether the input signal to the Counter/Timers is from P20 or P31. If the input signal is from Port 31, a capture event may also generate an IRQ2 interrupt. To prevent generating an IRQ2, either disable the IRQ2 interrupt by clearing its IMR bit D2 or use P20 as the input. ^{*}Default at Power-On Reset ^{*}Default at Power-On Reset. Not reset with Stop Mode recovery. When T8 is enabled, the output T8_OUT switches to the initial value (CTR1, D1). If the initial value (CTR1, D1) is 0, TC8L is loaded; otherwise, TC8H is loaded into the counter. In SINGLE-PASS Mode (CTR0, D6), T8 counts down to 0 and stops, T8_OUT toggles, the timeout status bit (CTR0, D5) is set, and a timeout interrupt can be generated if it is enabled (CTR0, D1). In Modulo-N Mode, upon reaching terminal count, T8_OUT is toggled, but no interrupt is generated. From that point, T8 loads a new count (if the T8_OUT level now is 0), TC8L is loaded; if it is 1, TC8H is loaded. T8 counts down to 0, toggles T8_OUT, and sets the timeout status bit (CTR0, D5), thereby generating an interrupt if enabled (CTR0, D1). One cycle is thus completed. T8 then loads from TC8H or TC8L according to the T8_OUT level and repeats the cycle. See Figure 20. Figure 20. 8-Bit Counter/Timer Circuits You can modify the values in TC8H or TC8L at any time. The new values take effect when they are loaded. \bigwedge Caution: To ensure known operation do not write these registers at the time the values are to be loaded into the counter/timer. *An initial count of 1 is not allowed (a non-function occurs).* An initial count of 0 causes TC8 to count from 0 to FFH to FEH. Figure 30. Interrupt Block Diagram 53 #### Clock The device's on-chip oscillator has a high-gain, parallel-resonant amplifier, for connection to a crystal or ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal must be AT cut, 1 MHz to 8 MHz maximum, with a series resistance (RS) less than or equal to 100 Ω . The on-chip oscillator can be driven with a suitable external clock source. The crystal must be connected across XTAL1 and XTAL2 using the recommended capacitors (capacitance greater than or equal to 22 pF) from each pin to ground. Figure 31. Oscillator Configuration ### SMR(0F)0BH - * Default after Power On Reset or Watch-Dog Reset - * * Default setting after Reset and Stop Mode Recovery - * * * At the XOR gate input - * * * * Default setting after reset. Must be 1 if using a crystal or resonator clock source. Figure 33. STOP Mode Recovery Register ### SCLK/TCLK Divide-by-16 Select (D0) D0 of the SMR controls a divide-by-16 prescaler of SCLK/TCLK (Figure 34). This control selectively reduces device power consumption during normal processor execution (SCLK control) and/or Halt Mode (where TCLK sources interrupt logic). After Stop Mode Recovery, this bit is set to a 0. 59 Figure 35. Stop Mode Recovery Source ### **Stop Mode Recovery Register 2 (SMR2)** This register determines the mode of Stop Mode Recovery for SMR2 (Figure 36). SMR2(0F)DH Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery. - * Default setting after reset - * * At the XOR gate input Figure 36. Stop Mode Recovery Register 2 ((0F)DH:D2-D4, D6 Write Only) If SMR2 is used in conjunction with SMR, either of the specified events causes a Stop Mode Recovery. Note: Port pins configured as outputs are ignored as an SMR or SMR2 recovery source. For example, if the NAND or P23–P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23–P21) form the NAND equation. ### **Expanded Register File Control Registers (0D)** The expanded register file control registers (0D) are depicted in Figure 39 through Figure 43. ^{*} Default setting after reset. Figure 39. TC8 Control Register ((0D)O0H: Read/Write Except Where Noted) ^{* *} Default setting after Reset.. Not reset with a Stop-Mode recovery. Figure 65. 28-Pin SSOP Package Diagram Figure 66. 40-Pin PDIP Package Diagram PS023803-0305 Package Information Figure 67. 40-Pin CDIP Package Diagram PS023803-0305 Package Information | SYMBOL | MILLI | METER | INCH | | | |--------|-------|--------|-------|--------|--| | SIMBOL | MIN | MAX | MIN | MAX | | | A | 2.41 | 2.79 | 0.095 | 0.110 | | | A1 | 0.23 | 0.38 | 0.009 | 0.015 | | | A2 | 2.18 | 2.39 | 0.086 | 0.094 | | | ь | 0.20 | 0.34 | 0.008 | 0.0135 | | | С | 0.13 | 0.25 | 0.005 | 0.010 | | | D | 15.75 | 16.00 | 0.620 | 0.630 | | | E | 7.39 | 7.59 | 0.291 | 0.299 | | | e | 0.6 | 35 BSC | 0.0 | 25 BSC | | | Н | 10.16 | 10.41 | 0.400 | 0.410 | | | L | 0.51 | 1.016 | 0.020 | 0.040 | | CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH Figure 68. 48-Pin SSOP Package Design **Note:** Check with ZiLOG on the actual bonding diagram and coordinate for chip-on-board assembly. PS023803-0305 Package Information | 28 nin DID/SOIC/SSOD 6 | HI8/D)0Dh 22 | |---------------------------------------|--| | 28-pin DIP/SOIC/SSOP 6 | HI8(D)0Bh 32 | | 40- and 48-pin 8 | interrupt priority 78 | | 40-pin DIP 7 | interrupt request 79 | | 48-pin SSOP 8 | interruptmask 79 | | pin functions | L016(D)08h 32 | | port 0 (P07 - P00) 18 | L08(D)0Ah 32 | | port 0 (P17 - P10) 19 | LVD(D)0Ch 65 | | port 0 configuration 19 | pointer 80 | | port 1 configuration 20 | port 0 and 1 77 | | port 2 (P27 - P20) 20 | port 2 configuration 75 | | port 2 (P37 - P30) 21 | port 3 mode 76 | | port 2 configuration 21 | port configuration 55, 75 | | port 3 configuration 22 | SMR2(F)0Dh 40 | | port 3 counter/timer configuration 24 | stack pointer high 81 | | reset) 25 | stack pointer low 81 | | XTAL1 (time-based input 18 | stop mode recovery 57 | | XTAL2 (time-based output) 18 | stop mode recovery 2 61 | | ping-pong mode 48 | stop-mode recovery 73 | | port 0 configuration 19 | stop-mode recovery 2 74 | | port 0 pin function 18 | T16 control 69 | | port 1 configuration 20 | T8 and T16 common control functions 67 | | port 1 pin function 19 | T8/T16 control 70 | | port 2 configuration 21 | TC16H(D)07h 32 | | port 2 pin function 20 | TC16L(D)06h 33 | | port 3 configuration 22 | TC8 control 66 | | port 3 pin function 21 | TC8H(D)05h 33 | | port 3counter/timer configuration 24 | TC8L(D)04h 33 | | port configuration register 55 | voltage detection 71 | | power connections 3 | watch-dog timer 75 | | power supply 5 | register description | | program memory 25 | Counter/Timer2 LS-Byte Hold 33 | | map 26 | Counter/Timer2 MS-Byte Hold 32 | | R | Counter/Timer8 Control 33 | | ratings, absolute maximum 10 | Counter/Timer8 High Hold 33 | | register 61 | Counter/Timer8 Low Hold 33 | | CTR(D)01h 35 | CTR2 Counter/Timer 16 Control 37 | | CTR0(D)00h 33 | CTR3 T8/T16 Control 39 | | CTR2(D)02h 37 | Stop Mode Recovery2 40 | | CTR3(D)03h 39 | T16_Capture_LO 32 | | flag 80 | T8 and T16 Common functions 35 | | HI16(D)09h 32 | T8_Capture_HI 32 | | | - |