Zilog - ZGP323HEH4808C Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	32
Program Memory Size	8KB (8K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-BSSOP (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323heh4808c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

This publication is subject to replacement by a later edition. To determine whether a later edition exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters 532 Race Street

San Jose, CA 95126-3432 Telephone: 408.558.8500 Fax: 408.558.8300 www.zilog.com

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other products and/or service names mentioned herein may be trademarks of the companies with which they are associated.

Document Disclaimer

©2005 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Devices sold by ZiLOG, Inc. are covered by warranty and limitation of liability provisions appearing in the ZiLOG, Inc. Terms and Conditions of Sale. ZiLOG, Inc. makes no warranty of merchantability or fitness for any purpose. Except with the express written approval of ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses are conveyed, implicitly or otherwise, by this document under any intellectual property rights.

Table 11. GP323HA DC Characteristics

T _A = -40°C to +125°C								
Symbol	Parameter	V _{CC}	Min	Typ(7)	Max	Units	Conditions	Notes
V _{CC}	Supply Voltage		2.0		5.5	V	See Note 5	5
V _{CH}	Clock Input High Voltage	2.0-5.5	0.8 V _{CC}		V _{CC} +0.3	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	2.0-5.5	V _{SS} -0.3		0.4	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	2.0-5.5	0.7 V _{CC}		V _{CC} +0.3	V		
V _{IL}	Input Low Voltage	2.0-5.5	V _{SS} 0.3		0.2 V _{CC}	V		
V _{OH1}	Output High Voltage	2.0-5.5	V _{CC} -0.4			V	I _{OH} = -0.5mA	
V _{OH2}	Output High Voltage (P36, P37, P00, P01)	2.0-5.5	V _{CC} -0.8			V	I _{OH} = -7mA	
V _{OL1}	Output Low Voltage	2.0-5.5			0.4	V	$I_{OL} = 4.0 \text{mA}$	
V _{OL2}	Output Low Voltage (P00, P01, P36, P37)	2.0-5.5			0.8	V	I _{OL} = 10mA	
V _{OFFSET}	Comparator Input Offset Voltage	2.0-5.5			25	mV		
V _{REF}	Comparator Reference Voltage	2.0-5.5	0		V _{DD} -1.75	V		
IIL	Input Leakage	2.0-5.5	-1		1	μΑ	V _{IN} = 0V, V _{CC} Pull-ups disabled	
R _{PU}	Pull-up Resistance	2.0V	200		700	KΩ	V _{IN} = 0V; Pullups selected by mask	C C
		3.6V	50		300	KΩ	option	
		5.0V	25		175	KΩ	-	
I _{OL}	Output Leakage	2.0-5.5	-1		1	μA	$V_{IN} = 0V, V_{CC}$	
I _{CC}	Supply Current	2.0V		1	3	mA	at 8.0 MHz	1, 2
		3.6V		5	10	mA	at 8.0 MHz	1, 2
	0	5.5V		10	15	mA	at 8.0 MHz	1, 2
I _{CC1}	Standby Current	2.0V		0.5	1.6	mA	$V_{IN} = 0V$, Clock at 8.0MHz	1, 2, 6
	(HALT Mode)	3.6V 5.5V		0.8	2.0 3.2	mA m A	$V_{IN} = 0V$, Clock at 8.0MHz	1, 2, 6
1	Standby Current (Stan	2.0V		1.3 1.6	15	mA	$V_{IN} = 0V$, Clock at 8.0MHz	1, 2, 6 3
I _{CC2}	Standby Current (Stop Mode)	2.0V 3.6V		1.8	20	μA μA	$V_{IN} = 0 V, V_{CC} WDT$ not Running $V_{IN} = 0 V, V_{CC} WDT$ not Running	3
	wode)	5.5V		1.9	20 25	μA μA	$V_{IN} = 0 V, V_{CC} WDT not Running$ $V_{IN} = 0 V, V_{CC} WDT not Running$	3
		2.0V		5	30	μA	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3
		3.6V		8	40	μA	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3
		5.5V		15	60	μA	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3
I _{LV}	Standby Current (Low Voltage)			1.2	6	μA	Measured at 1.3V	4
V _{BO}	V _{CC} Low Voltage Protection			1.9	2.15	V	8MHz maximum Ext. CLK Freq.	
V _{LVD}	V _{CC} Low Voltage Detection			2.4		V	•	

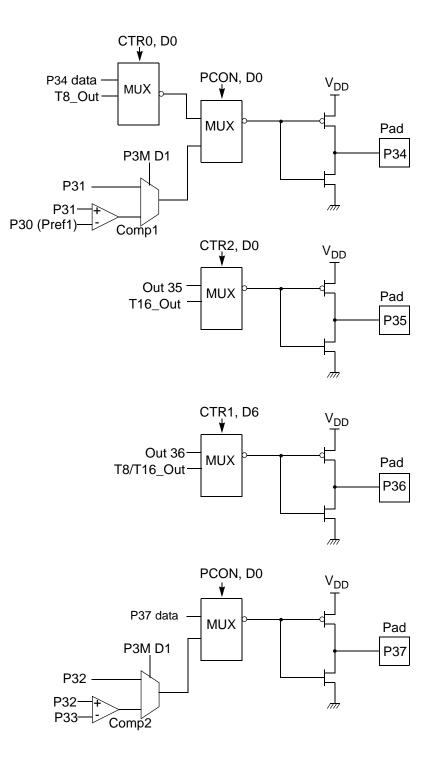


Figure 13. Port 3 Counter/Timer Output Configuration

Comparator Inputs

In analog mode, P31 and P32 have a comparator front end. The comparator reference is supplied to P33 and Pref1. In this mode, the P33 internal data latch and its corresponding IRQ1 are diverted to the SMR sources (excluding P31, P32, and P33) as indicated in Figure 12 on page 22. In digital mode, P33 is used as D3 of the Port 3 input register, which then generates IRQ1.

Note: Comparators are powered down by entering Stop Mode. For P31–P33 to be used in a Stop Mode Recovery source, these inputs must be placed into digital mode.

Comparator Outputs

These channels can be programmed to be output on P34 and P37 through the PCON register.

RESET (Input, Active Low)

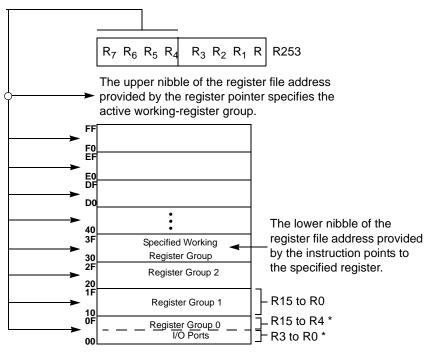
Reset initializes the MCU and is accomplished either through Power-On, Watch-Dog Timer, Stop Mode Recovery, Low-Voltage detection, or external reset. During Power-On Reset and Watch-Dog Timer Reset, the internally generated reset drives the reset pin Low for the POR time. Any devices driving the external reset line must be open-drain to avoid damage from a possible conflict during reset conditions. Pull-up is provided internally.

When the Z8 GP asserts (Low) the $\overline{\text{RESET}}$ pin, the internal pull-up is disabled. The Z8 GP does not assert the $\overline{\text{RESET}}$ pin when under VBO.

Note: The external Reset does not initiate an exit from STOP mode.

Functional Description

This device incorporates special functions to enhance the Z8[®], functionality in consumer and battery-operated applications.


Program Memory

This device addresses up to 32KB of OTP memory. The first 12 Bytes are reserved for interrupt vectors. These locations contain the six 16-bit vectors that correspond to the six available interrupts.

RAM

This device features 256B of RAM. See Figure 14.

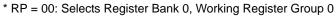


Figure 17. Register Pointer—Detail

Stack

The internal register file is used for the stack. An 8-bit Stack Pointer SPL (R255) is used for the internal stack that resides in the general-purpose registers (R4–R239). SPH (R254) can be used as a general-purpose register.

Table 15.CTR0(D)00H Counter/Timer8 Control Register (Continued)

Field	Bit Position		Value	Description
Counter_INT_Mask	1-	R/W	0** 1	Disable Time-Out Interrupt Enable Time-Out Interrupt
P34_Out	0	R/W	0* 1	P34 as Port Output T8 Output on P34

Note:

*Indicates the value upon Power-On Reset.

**Indicates the value upon Power-On Reset. Not reset with a Stop Mode recovery.

T8 Enable

This field enables T8 when set (written) to 1.

Single/Modulo-N

When set to 0 (Modulo-N), the counter reloads the initial value when the terminal count is reached. When set to 1 (single-pass), the counter stops when the terminal count is reached.

Timeout

This bit is set when T8 times out (terminal count reached). To reset this bit, write a 1 to its location.

Caution: Writing a 1 is the only way to reset the Terminal Count status condition. Reset this bit before using/enabling the counter/timers.

The first clock of T8 might not have complete clock width and can occur any time when enabled.

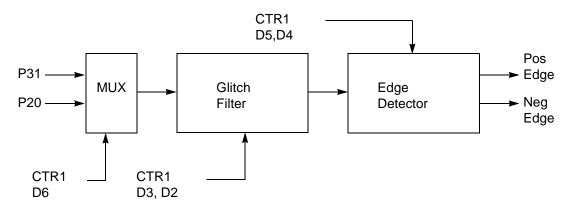
Note: Take care when using the OR or AND commands to manipulate CTR0, bit 5 and CTR1, bits 0 and 1 (Demodulation Mode). These instructions use a Read-Modify-Write sequence in which the current status from the CTR0 and CTR1 registers is ORed or ANDed with the designated value and then written back into the registers.

T8 Clock

This bit defines the frequency of the input signal to T8.

Table 18. CTR3 (D)03H: T8/T16 Control Register (Continued)

Field	Bit Position		Value	Description	
Reserved	43210	R	1	Always reads 11111	
		W	х	No Effect	


*Indicates the value upon Power-On Reset.

**Indicates the value upon Power-On Reset. Not reset with a Stop Mode recovery.

Counter/Timer Functional Blocks

Input Circuit

The edge detector monitors the input signal on P31 or P20. Based on CTR1 D5– D4, a pulse is generated at the Pos Edge or Neg Edge line when an edge is detected. Glitches in the input signal that have a width less than specified (CTR1 D3, D2) are filtered out (see Figure 18).

Figure 18. Glitch Filter Circuitry

T8 Transmit Mode

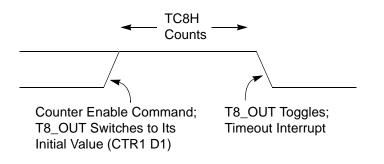
Before T8 is enabled, the output of T8 depends on CTR1, D1. If it is 0, T8_OUT is 1; if it is 1, T8_OUT is 0. See Figure 19.

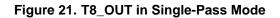
When T8 is enabled, the output T8_OUT switches to the initial value (CTR1, D1). If the initial value (CTR1, D1) is 0, TC8L is loaded; otherwise, TC8H is loaded into the counter. In SINGLE-PASS Mode (CTR0, D6), T8 counts down to 0 and stops, T8_OUT toggles, the timeout status bit (CTR0, D5) is set, and a timeout interrupt can be generated if it is enabled (CTR0, D1). In Modulo-N Mode, upon reaching terminal count, T8_OUT is toggled, but no interrupt is generated. From that point, T8 loads a new count (if the T8_OUT level now is 0), TC8L is loaded; if it is 1, TC8H is loaded. T8 counts down to 0, toggles T8_OUT, and sets the timeout status bit (CTR0, D5), thereby generating an interrupt if enabled (CTR0, D1). One cycle is thus completed. T8 then loads from TC8H or TC8L according to the T8_OUT level and repeats the cycle. See Figure 20.

Figure 20. 8-Bit Counter/Timer Circuits

You can modify the values in TC8H or TC8L at any time. The new values take effect when they are loaded.

Caution: To ensure known operation do not write these registers at the time the values are to be loaded into the counter/timer. *An initial count of 1 is not allowed (a non-function occurs).* An initial count of 0 causes TC8 to count from 0 to FFH to FEH.


Note: The letter h denotes hexadecimal values.


Transition from 0 to FFh is not a timeout condition.

Caution: Using the same instructions for stopping the counter/timers and setting the status bits is not recommended.

Two successive commands are necessary. First, the counter/timers must be stopped. Second, the status bits must be reset. These commands are required because it takes one counter/timer clock interval for the initiated event to actually occur. See Figure 21 and Figure 22.

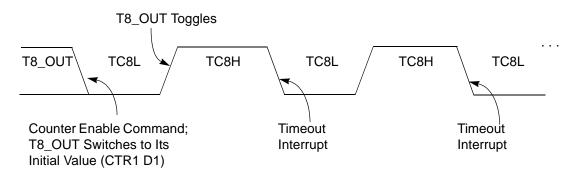


Figure 22. T8_OUT in Modulo-N Mode

T8 Demodulation Mode

The user must program TC8L and TC8H to FFH. After T8 is enabled, when the first edge (rising, falling, or both depending on CTR1, D5; D4) is detected, it starts to count down. When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current value of T8 is complemented and put into one of the capture registers. If it is a positive edge, data is put

into LO8; if it is a negative edge, data is put into HI8. From that point, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt can be generated if enabled (CTR0, D2). Meanwhile, T8 is loaded with FFh and starts counting again. If T8 reaches 0, the timeout status bit (CTR0, D5) is set, and an interrupt can be generated if enabled (CTR0, D1). T8 then continues counting from FFH (see Figure 23 and Figure 24).

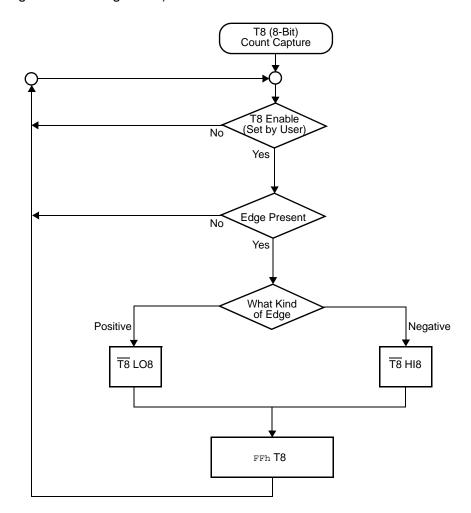


Figure 23. Demodulation Mode Count Capture Flowchart

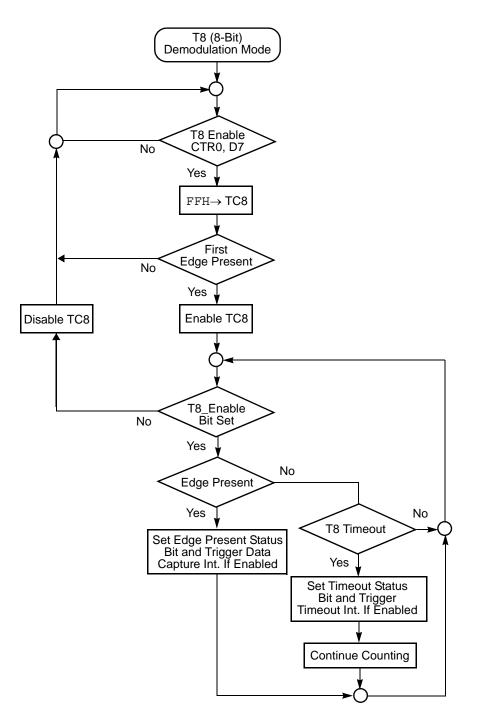


Figure 24. Demodulation Mode Flowchart

Power-On Reset

A timer circuit clocked by a dedicated on-board RC-oscillator is used for the Power-On Reset (POR) timer function. The POR time allows V_{DD} and the oscillator circuit to stabilize before instruction execution begins.

The POR timer circuit is a one-shot timer triggered by one of three conditions:

- Power Fail to Power OK status, including Waking up from V_{BO} Standby
- Stop-Mode Recovery (if D5 of SMR = 1)
- WDT Timeout

The POR timer is 2.5 ms minimum. Bit 5 of the Stop-Mode Register determines whether the POR timer is bypassed after Stop-Mode Recovery (typical for external clock).

HALT Mode

This instruction turns off the internal CPU clock, but not the XTAL oscillation. The counter/timers and external interrupts IRQ0, IRQ1, IRQ2, IRQ3, IRQ4, and IRQ5 remain active. The devices are recovered by interrupts, either externally or internally generated. An interrupt request must be executed (enabled) to exit HALT Mode. After the interrupt service routine, the program continues from the instruction after HALT Mode.

STOP Mode

This instruction turns off the internal clock and external crystal oscillation, reducing the standby current to 10 μ A or less. STOP Mode is terminated only by a reset, such as WDT timeout, POR, SMR or external reset. This condition causes the processor to restart the application program at address 000CH. To enter STOP (or HALT) mode, first flush the instruction pipeline to avoid suspending execution in mid-instruction. Execute a NOP (Opcode = FFH) immediately before the appropriate sleep instruction, as follows:

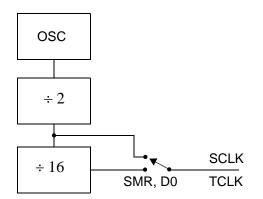


Figure 34. SCLK Circuit

Stop-Mode Recovery Source (D2, D3, and D4)

These three bits of the SMR specify the wake-up source of the Stop recovery (Figure 35 and Table 22).

Stop-Mode Recovery Register 2—SMR2(F)0DH

Table 21 lists and briefly describes the fields for this register.

Field	Bit Position		Value	Description
Reserved	7		0	Reserved (Must be 0)
Recovery Level	-6	W	0 [†]	Low
-			1	High
Reserved	5		0	Reserved (Must be 0)
Source	432	W	000 [†]	A. POR Only
			001	B. NAND of P23–P20
			010	C. NAND of P27–P20
			011	D. NOR of P33–P31
			100	E. NAND of P33–P31
			101	F. NOR of P33–P31, P00, P07
			110	G. NAND of P33–P31, P00, P07
			111	H. NAND of P33–P31, P22–P20
Reserved	10		00	Reserved (Must be 0)

Notes:

* Port pins configured as outputs are ignored as a SMR recovery source. † Indicates the value upon Power-On Reset

ZGP323H Product Specification

Table 22. Stop Mode Recovery Source

SMR	:432		Operation
D4	D3	D2	Description of Action
0	0	0	POR and/or external reset recovery
0	0	1	Reserved
0	1	0	P31 transition
0	1	1	P32 transition
1	0	0	P33 transition
1	0	1	P27 transition
1	1	0	Logical NOR of P20 through P23
1	1	1	Logical NOR of P20 through P27

Note: Any Port 2 bit defined as an output drives the corresponding input to the default state. This condition allows the remaining inputs to control the AND/OR function. Refer to SMR2 register on page 61 for other recover sources.

Stop Mode Recovery Delay Select (D5)

This bit, if Low, disables the T_{POR} delay after Stop Mode Recovery. The default configuration of this bit is 1. If the "fast" wake up is selected, the Stop Mode Recovery source must be kept active for at least 5 TpC.

Note: This bit must be set to 1 if using a crystal or resonator clock source. The T_{POR} delay allows the clock source to stabilize before executing instructions.

Stop Mode Recovery Edge Select (D6)

A 1 in this bit position indicates that a High level on any one of the recovery sources wakes the device from Stop Mode. A 0 indicates Low level recovery. The default is 0 on POR.

Cold or Warm Start (D7)

This bit is read only. It is set to 1 when the device is recovered from Stop Mode. The bit is set to 0 when the device reset is other than Stop Mode Recovery (SMR).

Low-Voltage Detection Register—LVD(D)0Ch

Note: Voltage detection does not work at Stop mode. It must be disabled during Stop mode in order to reduce current.

Field	Bit Position			Description
LVD	76543			Reserved No Effect
	2	R	1 0*	HVD flag set HVD flag reset
	1-	R	1 0*	LVD flag set LVD flag reset
	0	R/W	1 0*	Enable VD Disable VD
*Default	after POR			

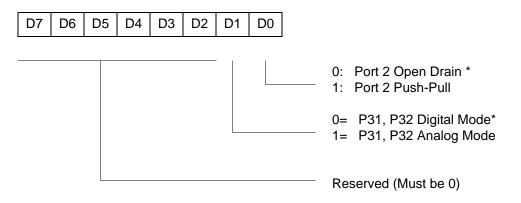
Note: Do not modify register P01M while checking a low-voltage condition. Switching noise of both ports 0 and 1 together might trigger the LVD flag.

Voltage Detection and Flags

The Voltage Detection register (LVD, register 0CH at the expanded register bank 0Dh) offers an option of monitoring the V_{CC} voltage. The Voltage Detection is enabled when bit 0 of LVD register is set. Once Voltage Detection is enabled, the the V_{CC} level is monitored in real time. The flags in the LVD register valid 20uS after Voltage Detection is enabled. The HVD flag (bit 2 of the LVD register) is set only if V_{CC} is higher than V_{HVD}. The LVD flag (bit 1 of the LVD register) is set only if V_{CC} is lower than the V_{LVD}. When Voltage Detection is enabled, the LVD flag also triggers IRQ5. The IRQ bit 5 latches the low voltage condition until it is cleared by instructions or reset. The IRQ5 interrupt is served if it is enabled in the IMR register. Otherwise, bit 5 of IRQ register is latched as a flag only.

Notes: If it is necessary to receive an LVD interrupt upon power-up at an operating voltage lower than the low battery detect threshold, enable interrupts using the Enable Interrupt instruction (EI) prior to enabling the voltage detection.

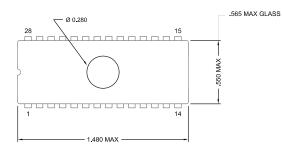
CTR3(0D)03H


D7	D6	D5	D4	D3	D2	D1	D0	
								Reserved No effect when written Always reads 11111 Sync Mode 0* Disable Sync Mode** 1 Enable Sync Mode T ₈ Enable R 0* T ₈ Disabled R 1 T ₈ Enabled W0 Stop T ₈
								W1 Enable T_8 T_{16} Enable R 0* T_{16} Disabled R 1 T_{16} Enabled W 0 Stop T_{16} W 1 Enable T_{16}

* Default setting after reset. ** Default setting after reset. Not reset with a Stop Mode recovery.

Figure 42. T8/T16 Control Register (0D)03H: Read/Write (Except Where Noted)

R247 P3M(F7H)



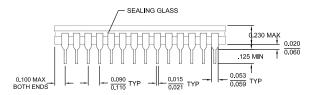

* Default setting after reset. Not reset with a Stop Mode recovery.

Figure 49. Port 3 Mode Register (F7H: Write Only)

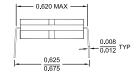
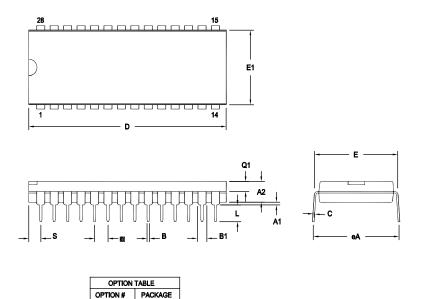
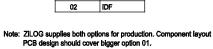




Figure 63. 28-Pin CDIP Package Diagram

SYMBOL	OPT #	MILLIN	IETER	INCH		
SIMDUL	OPT#	MíN	MAX	MÍN	MAX	
A1		0.38	1.02	.015	.040	
A2		3.18	4.19	.125	.165	
в		0.38	0.53	.015	.021	
B1	01	1.40	1.65	.055	.065	
	02	1.14	1.40	.045	.055	
С		0.23	0.38	.009	.015	
D	01	36.58	37.34	1.440	1.470	
5	02	35.31	35.94	1.390	1.415	
Е		15.24	15.75	.600	.620	
E1	01	13.59	14.10	.535	.555	
E1	02	12.83	13.08	.505	.515	
e		2.54	TYP	.100 BSC		
eA		15.49	16.76	.610	.660	
L		3.05	3.81	.120	.150	
Q1	01	1.40	1.91	.055	.075	
- 1	02	1.40	1.78	.055	.070	
•	01	1.52	2.29	.060	.090	
S	02	1.02	1.52	.040	.060	

CONTROLLING DIMENSIONS : INCH

01

02

STANDARD

Figure 64. 28-Pin PDIP Package Diagram

For fast results, contact your local ZiLOG sales office for assistance in ordering the part desired.

Codes

ZG = ZiLOG General Purpose Family

P = OTP

- 323 = Family Designation
- H = High Voltage
- T = Temparature
 - S = Standard 0° to +70°C
 - $E = Extended 40^{\circ} to + 105^{\circ}C$
 - A = Automotive -40° to $+125^{\circ}C$
- P = Package Type:
 - K = CDIP
 - P = PDIP
 - H = SSOP
 - S = SOIC

= Number of Pins

- CC = Memory Size
- M = Molding Compound
- C = Standard Plastic Packaging Molding Compound
- G = Green Plastic Molding Compound
- E = Standard Cer Dip flow

ZGP323H Z8[®] OTP Microcontroller with IR Timers

28-pin DIP/SOIC/SSOP 6 40- and 48-pin 8 40-pin DIP 7 48-pin SSOP 8 pin functions port 0 (P07 - P00) 18 port 0 (P17 - P10) 19 port 0 configuration 19 port 1 configuration 20 port 2 (P27 - P20) 20 port 2 (P37 - P30) 21 port 2 configuration 21 port 3 configuration 22 port 3 counter/timer configuration 24 reset) 25 XTAL1 (time-based input 18 XTAL2 (time-based output) 18 ping-pong mode 48 port 0 configuration 19 port 0 pin function 18 port 1 configuration 20 port 1 pin function 19 port 2 configuration 21 port 2 pin function 20 port 3 configuration 22 port 3 pin function 21 port 3counter/timer configuration 24 port configuration register 55 power connections 3 power supply 5 program memory 25 map 26 R ratings, absolute maximum 10 register 61 CTR(D)01h 35 CTR0(D)00h 33 CTR2(D)02h 37 CTR3(D)03h 39 flag 80 HI16(D)09h 32

HI8(D)0Bh 32 interrupt priority 78 interrupt request 79 interruptmask 79 L016(D)08h 32 L08(D)0Ah 32 LVD(D)0Ch 65 pointer 80 port 0 and 1 77 port 2 configuration 75 port 3 mode 76 port configuration 55, 75 SMR2(F)0Dh 40 stack pointer high 81 stack pointer low 81 stop mode recovery 57 stop mode recovery 2 61 stop-mode recovery 73 stop-mode recovery 274 T16 control 69 T8 and T16 common control functions 67 T8/T16 control 70 TC16H(D)07h 32 TC16L(D)06h 33 TC8 control 66 TC8H(D)05h 33 TC8L(D)04h 33 voltage detection 71 watch-dog timer 75 register description Counter/Timer2 LS-Byte Hold 33 Counter/Timer2 MS-Byte Hold 32 Counter/Timer8 Control 33 Counter/Timer8 High Hold 33 Counter/Timer8 Low Hold 33 CTR2 Counter/Timer 16 Control 37 CTR3 T8/T16 Control 39 Stop Mode Recovery2 40 T16 Capture LO 32 T8 and T16 Common functions 35 T8_Capture_HI 32