

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	24
Program Memory Size	4KB (4K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.600", 15.24mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323hep2804g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

This publication is subject to replacement by a later edition. To determine whether a later edition exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters

532 Race Street San Jose, CA 95126-3432 Telephone: 408.558.8500

Fax: 408.558.8300 www.zilog.com

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other products and/or service names mentioned herein may be trademarks of the companies with which they are associated.

Document Disclaimer

©2005 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Devices sold by ZiLOG, Inc. are covered by warranty and limitation of liability provisions appearing in the ZiLOG, Inc. Terms and Conditions of Sale. ZiLOG, Inc. makes no warranty of merchantability or fitness for any purpose. Except with the express written approval of ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses are conveyed, implicitly or otherwise, by this document under any intellectual property rights.

Disclaimer PS023803-0305

Port 1: 0–3 pull-up transistors

Port 1: 4–7 pull-up transistors

Port 2: 0–7 pull-up transistors

EPROM Protection

WDT enabled at POR

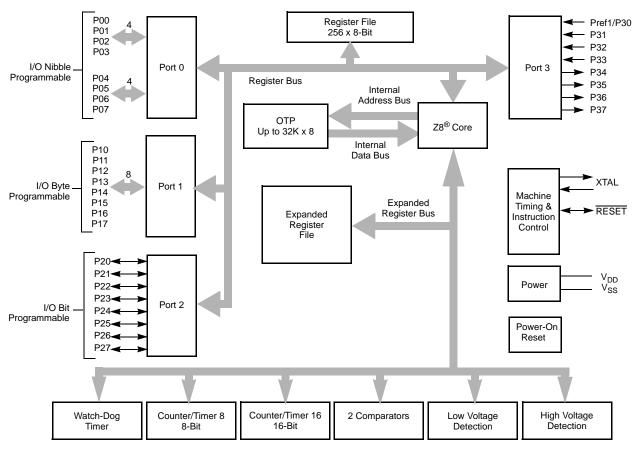
General Description

The ZGP323H is an OTP-based member of the MCU family of infrared microcontrollers. With 237B of general-purpose RAM and up to 32KB of OTP, ZiLOG[®], s CMOS microcontrollers offer fast-executing, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, automated pulse generation/reception, and internal key-scan pull-up transistors.

The ZGP323H architecture (Figure 1) is based on ZiLOG's 8-bit microcontroller core with an Expanded Register File allowing access to register-mapped peripherals, input/output (I/O) circuits, and powerful counter/timer circuitry. The Z8® offers a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features that are useful in many consumer, automotive, computer peripheral, and battery-operated hand-held applications.

There are three basic address spaces available to support a wide range of configurations: Program Memory, Register File and Expanded Register File. The register file is composed of 256 Bytes (B) of RAM. It includes 4 I/O port registers, 16 control and status registers, and 236 general-purpose registers. The Expanded Register File consists of two additional register groups (F and D).

To unburden the program from coping with such real-time problems as generating complex waveforms or receiving and demodulating complex waveform/pulses, the Z8 GP OTP offers a new intelligent counter/timer architecture with 8-bit and 16-bit counter/timers (see Figure 2). Also included are a large number of user-selectable modes and two on-board comparators to process analog signals with separate reference voltages.


Note: All signals with an overline, " ", are active Low. For example, B/W, in which WORD is active Low, and B/W, in which BYTE is active Low.

Power connections use the conventional descriptions listed in Table 3.

PS023803-0305 General Description

Table 3. Power Connections

Connection	Circuit	Device	
Power	V_{CC}	V_{DD}	
Ground	GND	V _{SS}	

Note: Refer to the specific package for available pins.

Figure 1. Functional Block Diagram

PS023803-0305 General Description

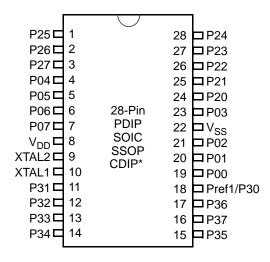


Figure 4. 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration

Table 5. 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification

Pin	Symbol	Direction	Description
1-3	P25-P27	Input/Output	Port 2, Bits 5,6,7
4-7	P04-P07	Input/Output	Port 0, Bits 4,5,6,7
8	V_{DD}		Power supply
9	XTAL2	Output	Crystal, oscillator clock
10	XTAL1	Input	Crystal, oscillator clock
11-13	P31-P33	Input	Port 3, Bits 1,2,3
14	P34	Output	Port 3, Bit 4
15	P35	Output	Port 3, Bit 5
16	P37	Output	Port 3, Bit 7
17	P36	Output	Port 3, Bit 6
18	Pref1/P30	Input	Analog ref input; connect to V _{CC} if not used
	Port 3 Bit 0		Input for Pref1/P30
19-21	P00-P02	Input/Output	Port 0, Bits 0,1,2
22	V _{SS}		Ground
23	P03	Input/Output	Port 0, Bit 3
24-28	P20-P24	Input/Output	Port 2, Bits 0-4

PS023803-0305 Pin Description

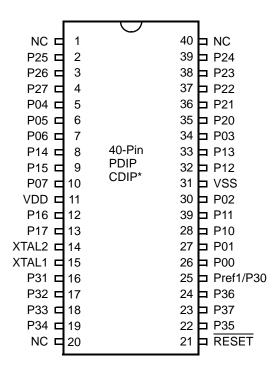


Figure 5. 40-Pin PDIP/CDIP* Pin Configuration

Note: *Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use.

PS023803-0305 Pin Description

Table 10. GP323HE DC Characteristics (Continued)

			T _A = -40°0	C to +105	°C			
Symbol	Parameter	v_{cc}	Min	Typ(7)	Max	Units	Conditions	Notes
V _{OH2}	Output High Voltage (P36, P37, P00, P01)	2.0-5.5	V _{CC} -0.8			V	$I_{OH} = -7mA$	
V _{OL1}	Output Low Voltage	2.0-5.5			0.4	V	$I_{OL} = 4.0 \text{mA}$	
V _{OL2}	Output Low Voltage (P00, P01, P36, P37)	2.0-5.5			0.8	V	I _{OL} = 10mA	
V _{OFFSET}	Comparator Input Offset Voltage	2.0-5.5			25	mV		
V _{REF}	Comparator Reference Voltage	2.0-5.5	0		V _{DD} -1.75	V		
I _{IL}	Input Leakage	2.0-5.5	-1		1	μА	V _{IN} = 0V, V _{CC} Pull-ups disabled	
R _{PU}	Pull-up Resistance	2.0V	200.0		700.0	ΚΩ	V _{IN} = 0V; Pullups selected by mask	
		3.6V	50.0		300.0	ΚΩ	option	
		5.0V	25.0		175.0	ΚΩ	_	
I _{OL}	Output Leakage	2.0-5.5	-1		1	μА	$V_{IN} = 0V, V_{CC}$	
I _{CC}	Supply Current	2.0V		1	3	mA	at 8.0 MHz	1, 2
		3.6V		5	10	mΑ	at 8.0 MHz	1, 2
		5.5V		10	15	mA	at 8.0 MHz	1, 2
I _{CC1}	Standby Current	2.0V		0.5	1.6	mΑ	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
	(HALT Mode)	3.6V		0.8	2.0	mA	$V_{IN} = 0V$, Clock at 8.0MHz	1, 2, 6
	0: " 0 : (0:	5.5V		1.3	3.2	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
I _{CC2}	Standby Current (Stop Mode)	2.0V 3.6V		1.6 1.8	12 15	μA	V _{IN} = 0 V, V _{CC} WDT not Running	3
	wode)	5.5V		1.9	18	μA μA	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT not Running}$ $V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT not Running}$	3 3
		2.0V		5	30	μΑ	$V_{IN} = 0$ V, V_{CC} WDT is Running	3
		3.6V		8	40	μA	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT is Running}$	3
		5.5V		15	60	μA	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT is Running}$	3
I _{LV}	Standby Current (Low Voltage)			1.2	6	μА	Measured at 1.3V	4
V_{BO}	V _{CC} Low Voltage Protection			1.9	2.15	V	8MHz maximum Ext. CLK Freq.	
V_{LVD}	V _{CC} Low Voltage Detection			2.4		V		
V_{HVD}	Vcc High Voltage Detection			2.7		V		

Notes:

- 1. All outputs unloaded, inputs at rail.
- 2. CL1 = CL2 = 100 pF.
- 3. Oscillator stopped.
- 4. Oscillator stops when $\rm V_{CC}$ falls below $\rm V_{BO}$ limit.
- 5. It is strongly recommended to add a filter capacitor (minimum 0.1 μ F), physically close to VCC and V_{SS} pins if operating voltage fluctuations are anticipated, such as those resulting from driving an Infrared LED.
- 6. Comparator and Timers are on. Interrupt disabled.
- 7. Typical values shown are at 25 degrees C.

PS023803-0305 DC Characteristics

Pin Functions

XTAL1 Crystal 1 (Time-Based Input)

This pin connects a parallel-resonant crystal or ceramic resonator to the on-chip oscillator input. Additionally, an optional external single-phase clock can be coded to the on-chip oscillator input.

XTAL2 Crystal 2 (Time-Based Output)

This pin connects a parallel-resonant crystal or ceramic resonant to the on-chip oscillator output.

Port 0 (P07-P00)

Port 0 is an 8-bit, bidirectional, CMOS-compatible port. These eight I/O lines are configured under software control as a nibble I/O port. The output drivers are push-pull or open-drain controlled by bit D2 in the PCON register.

If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 mode register. After a hardware reset, Port 0 is configured as an input port.

An optional pull-up transistor is available as a mask option on all Port 0 bits with nibble select.

Notes: Internal pull-ups are disabled on any given pin or group of port pins when programmed into output mode.

The Port O direction is reset to its default state following an

The Port 0 direction is reset to its default state following an SMR.

PS023803-0305 Pin Functions

CTR1(0D)01H" on page 35). Other edge detect and IRQ modes are described in Table 14.

Note: Comparators are powered down by entering Stop Mode. For P31-P33 to be used in a Stop Mode Recovery (SMR) source, these inputs must be placed into digital mode.

Table 14. Port 3 Pin Function Summary

Pin	I/O	Counter/Timers	Comparator	Interrupt
Pref1/P30	IN		RF1	
P31	IN	IN	AN1	IRQ2
P32	IN		AN2	IRQ0
P33	IN		RF2	IRQ1
P34	OUT	Т8	AO1	
P35	OUT	T16		
P36	OUT	T8/16		
P37	OUT		AO2	
P20	I/O	IN		

Port 3 also provides output for each of the counter/timers and the AND/OR Logic (see Figure 13). Control is performed by programming bits D5-D4 of CTR1, bit 0 of CTR0, and bit 0 of CTR2.

PS023803-0305 Pin Functions

Capture_INT_Mask

Set this bit to allow an interrupt when data is captured into either LO8 or HI8 upon a positive or negative edge detection in demodulation mode.

Counter INT Mask

Set this bit to allow an interrupt when T8 has a timeout.

P34_Out

This bit defines whether P34 is used as a normal output pin or the T8 output.

T8 and T16 Common Functions—CTR1(0D)01H

This register controls the functions in common with the T8 and T16.

Table 16 lists and briefly describes the fields for this register.

Table 16. CTR1(0D)01H T8 and T16 Common Functions

Field	Bit Position		Value	Description
Mode	7	R/W	0*	Transmit Mode
				Demodulation Mode
P36_Out/	-6	R/W		Transmit Mode
Demodulator_Input			0*	Port Output
			1	T8/T16 Output
				Demodulation Mode
			0*	P31
			1	P20
T8/T16_Logic/	54	R/W		Transmit Mode
Edge _Detect			00**	AND
			01	OR
			10	NOR
			11	NAND
				Demodulation Mode
			00**	Falling Edge
			01	Rising Edge
			10	Both Edges
			11	Reserved

Do not load these registers at the time the values are to be loaded into the counter/timer to ensure known operation. An initial count of 1 is not allowed. An initial count of 0 causes T16 to count from 0 to FFFFH to FFFEH. Transition from 0 to FFFFH is not a timeout condition.



Figure 26. T16_OUT in Single-Pass Mode

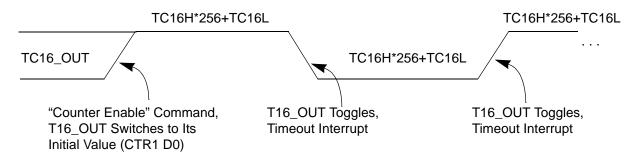


Figure 27. T16_OUT in Modulo-N Mode

T16 DEMODULATION Mode

The user must program TC16L and TC16H to FFH. After T16 is enabled, and the first edge (rising, falling, or both depending on CTR1 D5; D4) is detected, T16 captures H116 and LO16, reloads, and begins counting.

If D6 of CTR2 Is 0

When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current count in T16 is complemented and put into HI16 and LO16. When data is captured, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt is generated if enabled (CTR2, D2). T16 is loaded with FFFFH and starts again.

This T16 mode is generally used to measure space time, the length of time between bursts of carrier signal (marks).

If D6 of CTR2 Is 1

T16 ignores the subsequent edges in the input signal and continues counting down. A timeout of T8 causes T16 to capture its current value and generate an interrupt if enabled (CTR2, D2). In this case, T16 does not reload and continues counting. If the D6 bit of CTR2 is toggled (by writing a 0 then a 1 to it), T16 captures and reloads on the next edge (rising, falling, or both depending on CTR1, D5; D4), continuing to ignore subsequent edges.

This T16 mode generally measures mark time, the length of an active carrier signal burst.

If T16 reaches 0, T16 continues counting from FFFFh. Meanwhile, a status bit (CTR2 D5) is set, and an interrupt timeout can be generated if enabled (CTR2 D1).

Ping-Pong Mode

This operation mode is only valid in TRANSMIT Mode. T8 and T16 must be programmed in Single-Pass mode (CTR0, D6; CTR2, D6), and Ping-Pong mode must be programmed in CTR1, D3; D2. The user can begin the operation by enabling either T8 or T16 (CTR0, D7 or CTR2, D7). For example, if T8 is enabled, T8_OUT is set to this initial value (CTR1, D1). According to T8_OUT's level, TC8H or TC8L is loaded into T8. After the terminal count is reached, T8 is disabled, and T16 is enabled. T16_OUT then switches to its initial value (CTR1, D0), data from TC16H and TC16L is loaded, and T16 starts to count. After T16 reaches the terminal count, it stops, T8 is enabled again, repeating the entire cycle. Interrupts can be allowed when T8 or T16 reaches terminal control (CTR0, D1; CTR2, D1). To stop the ping-pong operation, write 00 to bits D3 and D2 of CTR1. See Figure 28.

Note: Enabling ping-pong operation while the counter/timers are running might cause intermittent counter/timer function. Disable the counter/timers and reset the status flags before instituting this operation.

Port 0 Output Mode (D2)

Bit 2 controls the output mode of port 0. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.

Stop-Mode Recovery Register (SMR)

This register selects the clock divide value and determines the mode of Stop Mode Recovery (Figure 33). All bits are write only except bit 7, which is read only. Bit 7 is a flag bit that is hardware set on the condition of Stop recovery and reset by a power-on cycle. Bit 6 controls whether a low level or a high level at the XOR-gate input (Figure 35 on page 59) is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits D2, D3, and D4 of the SMR register specify the source of the Stop Mode Recovery signal. Bits D0 determines if SCLK/TCLK are divided by 16 or not. The SMR is located in Bank F of the Expanded Register Group at address OBH.

CTR2(0D)02H

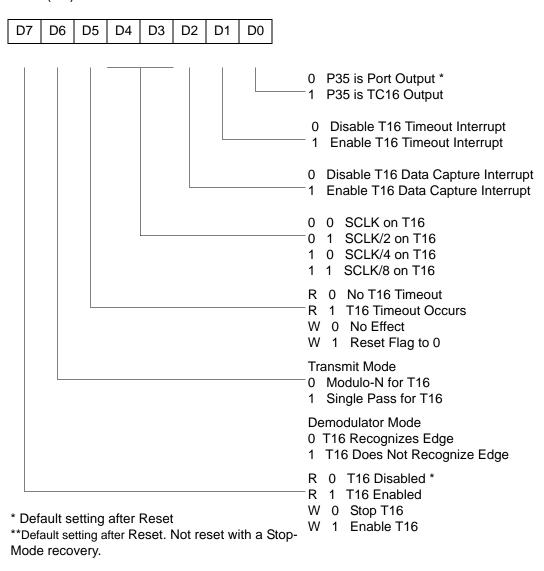
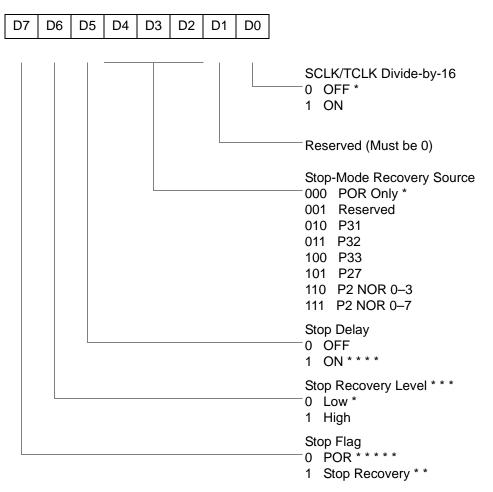
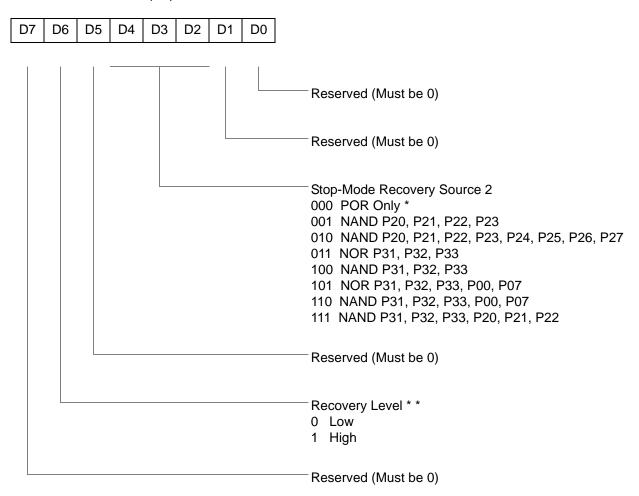



Figure 41. T16 Control Register ((0D) 2H: Read/Write Except Where Noted)


SMR(0F)0BH

- * Default setting after reset
- * * Set after Stop Mode Recovery
- * * * At the XOR gate input
- * * * * Default setting after reset. Must be 1 if using a crystal or resonator clock source.
- * * * * * Default setting after Power On Reset. Not reset with a Stop Mode recovery.

Figure 45. Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only)

SMR2(0F)0DH

Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery.

Figure 46. Stop Mode Recovery Register 2 ((0F)0DH:D2-D4, D6 Write Only)

^{*} Default setting after reset. Not reset with a Stop Mode recovery.

^{* *} At the XOR gate input

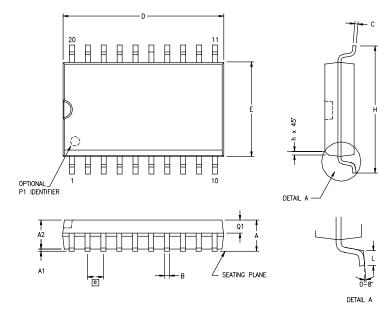


Figure 57. Stack Pointer Low (FFH: Read/Write)

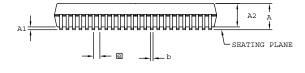
Package Information

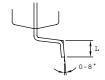
Package information for all versions of ZGP323H is depicted in Figures 59 through Figure 68.

PS023803-0305 Package Information

SYMBOL	MILLI	METER	IN	СН
SYMBOL	MIN	MAX	MIN	MAX
Α	2.40	2.65	.094	.104
A1	0.10	0.30	.004	.012
A2	2.24	2.44	.088	.096
В	0.36	0.46	.014	.018
С	0.23	0.30	.009	.012
D	12.60	12.95	.496	.510
E	7.40	7.60	.291	.299
е	1.27	BSC	.050	BSC
Н	10.00	10.65	.394	.419
h	0.30	0.40	.012	.016
L	0.60	1.00	.024	.039
Q1	0.97	1.07	.038	.042

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.


Figure 60. 20-Pin SOIC Package Diagram


PS023803-0305 Package Information

SYMBOL	MILLI	MILLIMETER		СН
STMBOL	MIN	MAX	MIN	MAX
A	2.41	2.79	0.095	0.110
A1	0.23	0.38	0.009	0.015
A2	2.18	2.39	0.086	0.094
Ь	0.20	0.34	0.008	0.0135
C	0.13	0.25	0.005	0.010
D	15.75	16.00	0.620	0.630
E	7.39	7.59	0.291	0.299
e	0.635 BSC		0.0	25 BSC
Н	10.16	10.41	0.400	0.410
L	0.51	1.016	0.020	0.040

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH

Figure 68. 48-Pin SSOP Package Design

Note: Check with ZiLOG on the actual bonding diagram and coordinate for chip-on-board assembly.

PS023803-0305 Package Information

4ND Standard Tellip	perature: 0° to +70°C	T	
Part Number	Description	Part Number	Description
ZGP323HSH4804C	48-pin SSOP 4K OTP	ZGP323HSS2804C	28-pin SOIC 4K OTP
ZGP323HSP4004C	40-pin PDIP 4K OTP	ZGP323HSH2004C	20-pin SSOP 4K OTP
ZGP323HSH2804C	28-pin SSOP 4K OTP	ZGP323HSP2004C	20-pin PDIP 4K OTP
ZGP323HSP2804C	28-pin PDIP 4K OTP	ZGP323HSS2004C	20-pin SOIC 4K OTP
4KB Extended Tem	perature: -40° to +105°0		
Part Number	Description	Dort Number	
i ait ituilibei	Description	Part Number	Description
ZGP323HEH4804C			Description 28-pin SOIC 4K OTP
ZGP323HEH4804C		ZGP323HES2804C	<u> </u>
ZGP323HEH4804C ZGP323HEP4004C	48-pin SSOP 4K OTP	ZGP323HES2804C ZGP323HEH2004C	28-pin SOIC 4K OTP
ZGP323HEH4804C ZGP323HEP4004C ZGP323HEH2804C	48-pin SSOP 4K OTP 40-pin PDIP 4K OTP	ZGP323HES2804C ZGP323HEH2004C ZGP323HEP2004C	28-pin SOIC 4K OTP 20-pin SSOP 4K OTP

4KB Automotive Temperature: -40° to +125°C				
Part Number	Description	Part Number	Description	
ZGP323HAH4804C	48-pin SSOP 4K OTP	ZGP323HAS2804C	28-pin SOIC 4K OTP	
ZGP323HAP4004C	40-pin PDIP 4K OTP	ZGP323HAH2004C	20-pin SSOP 4K OTP	
ZGP323HAH2804C	28-pin SSOP 4K OTP	ZGP323HAP2004C	20-pin PDIP 4K OTP	
ZGP323HAP2804C	28-pin PDIP 4K OTP	ZGP323HAS2004C	20-pin SOIC 4K OTP	
Replace C with G for	r Lead-Free Packaging			

Additional Components					
Part Number	Description	Part Number	Description		
ZGP323ICE01ZEM (For 3.6V Emulation only)	Emulator/programmer	ZGP32300100ZPR (Ethernet)	Programming system		
		ZGP32300200ZPR (USB)	Programming system		

PS023803-0305 Ordering Information

pin 4	program memory map 26
E	RAM 25
EPROM	register description 65
selectable options 64	register file 30
expanded register file 26	register pointer 29
expanded register file architecture 28	register pointer detail 31
expanded register file control registers 71	SMR2(F)0D1h register 40
flag 80	stack 31
interrupt mask register 79	TC16H(D)07h register 32
interrupt priority register 78	TC16L(D)06h register 33
interrupt request register 79	TC8H(D)05h register 33
port 0 and 1 mode register 77	TC8L(D)04h register 33
port 2 configuration register 75	G
port 3 mode register 76	glitch filter circuitry 40
port configuration register 75	H
register pointer 80	halt instruction, counter/timer 54
stack pointer high register 81	I
stack pointer low register 81	input circuit 40
stop-mode recovery register 73	interrupt block diagram, counter/timer 51
stop-mode recovery register 2 74	interrupt types, sources and vectors 52
T16 control register 69	L
T8 and T16 common control functions reg-	low-voltage detection register 65
ister 67	M
T8/T16 control register 70	memory, program 25
TC8 control register 66	modulo-N mode
watch-dog timer register 75	T16_OUT 47
F	T8_OUT 43
features	O
standby modes 1	oscillator configuration 53
functional description	output circuit, counter/timer 49
counter/timer functional blocks 40	P
CTR(D)01h register 35	package information
CTR0(D)00h register 33	20-pin DIP package diagram 82
CTR2(D)02h register 37	20-pin SSOP package diagram 84
CTR3(D)03h register 39	28-pin DIP package diagram 86
expanded register file 26	28-pin SOIC package diagram 85
expanded register file architecture 28	28-pin SSOP package diagram 87
HI16(D)09h register 32	40-pin DIP package diagram 87
HI8(D)0Bh register 32	48-pin SSOP package diagram 89
L08(D)0Ah register 32	pin configuration
L0I6(D)08h register 32	20-pin DIP/SOIC/SSOP 5
· / -	1