E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

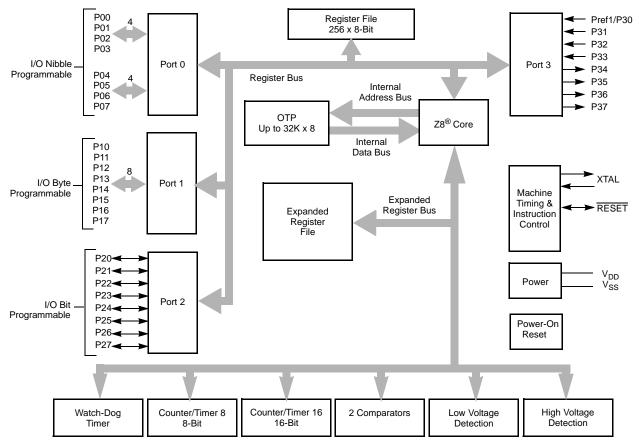
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	16
Program Memory Size	4KB (4K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323hes2004c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



- : 00		04	~
Figure 68.	48-Pin SSOP Package Design		J

Table 3. Power Connections

Connection	Circuit	Device	
Power	V _{CC}	V _{DD}	
Ground	GND	V _{SS}	

Note: Refer to the specific package for available pins.

Figure 1. Functional Block Diagram

P25 P26 P27 P04 P05 P07 V _{DD} XTAL2 XTAL1 P31 P32 P34	1 2 3 4 5 6 7 8 9 10 11 2 3 14	28-Pin PDIP SOIC SSOP CDIP*	28 27 26 25 24 23 22 21 20 19 18 17 16	 P24 P23 P22 P21 P20 P03 V_{SS} P02 P01 P00 Pref1/P30 P36 P35
P34 🗖	14		15	🖵 P35

Figure 4. 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration

Table 5. 28-Pin PDIP/SOIC/SSOP/CDIP* Pin Identification

Pin	Symbol	Direction	Description
1-3	P25-P27	Input/Output	Port 2, Bits 5,6,7
4-7	P04-P07	Input/Output	Port 0, Bits 4,5,6,7
8	V _{DD}		Power supply
9	XTAL2	Output	Crystal, oscillator clock
10	XTAL1	Input	Crystal, oscillator clock
11-13	P31-P33	Input	Port 3, Bits 1,2,3
14	P34	Output	Port 3, Bit 4
15	P35	Output	Port 3, Bit 5
16	P37	Output	Port 3, Bit 7
17	P36	Output	Port 3, Bit 6
18	Pref1/P30	Input	Analog ref input; connect to V _{CC} if not used
	Port 3 Bit 0		Input for Pref1/P30
19-21	P00-P02	Input/Output	Port 0, Bits 0,1,2
22	V _{SS}		Ground
23	P03	Input/Output	Port 0, Bit 3
24-28	P20-P24	Input/Output	Port 2, Bits 0-4

	-			
		\bigcirc		
NC			40	⊐ NC
P25	2		39	⊐ P24
P26	- 3		38	⊐ P23
P27	4		37	⊐ P22
P04	5		36	コ P21
P05	6		35	⊐ P20
P06	7		34	□ P03
P14	8	40-Pin	33	コ P13
P15	9	PDIP	32	⊐ P12
P07	10	CDIP*	31	⊐ VSS
VDD	11		30	⊐ P02
P16	12		39	⊐ P11
P17	13		28	コ P10
XTAL2	14		27	D P01
XTAL1	15		26	P 00
P31	16		25	□ Pref1/P30
P32	17		24	⊐ P36
P33	18		23	D P37
P34	19		22	⊐ P35
NC	20		21	RESET

Figure 5. 40-Pin PDIP/CDIP* Pin Configuration

Note: *Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use.

ZGP323H Product Specification

40-Pin PDIP #	48-Pin SSOP #	Symbol
33	40	P13
8	9	P14
9	10	P15
12	15	P16
13	16	P17
35	42	P20
36	43	P21
37	44	P22
38	45	P23
39	46	P24
2	2	P25
3	3	P26
4	4	P27
16	19	P31
17	20	P32
18	21	P33
19	22	P34
22	26	P35
24	28	P36
23	27	P37
20	23	NC
40	47	NC
1	1	NC
21	25	RESET
15	18	XTAL1
14	17	XTAL2
11	12, 13	V _{DD}
31	24, 37, 38	V _{SS}
25	29	Pref1/P30
	48	NC
	6	NC
	14	NC
	30	NC
	36	NC

Table 6. 40- and 48-Pin Configuration (Continued)

			T _A = -40°0	C to +105	°C			
Symbol	Parameter	V _{CC}	Min	Typ(7)	Max	Units	Conditions	Notes
V _{OH2}	Output High Voltage (P36, P37, P00, P01)	2.0-5.5	V _{CC} -0.8			V	I _{OH} = -7mA	
V _{OL1}	Output Low Voltage	2.0-5.5			0.4	V	$I_{OL} = 4.0 \text{mA}$	
V _{OL2}	Output Low Voltage (P00, P01, P36, P37)	2.0-5.5			0.8	V	I _{OL} = 10mA	
V _{OFFSET}	Comparator Input Offset Voltage	2.0-5.5			25	mV		
V _{REF}	Comparator Reference Voltage	2.0-5.5	0		V _{DD} -1.75	V		
IIL	Input Leakage	2.0-5.5	-1		1	μA	V _{IN} = 0V, V _{CC} Pull-ups disabled	
R _{PU}	Pull-up Resistance	2.0V	200.0		700.0	KΩ	V _{IN} = 0V; Pullups selected by mask	
		3.6V	50.0		300.0	KΩ	option	
		5.0V	25.0		175.0	KΩ	-	
I _{OL}	Output Leakage	2.0-5.5	-1		1	μA	$V_{IN} = 0V, V_{CC}$	
I _{CC}	Supply Current	2.0V		1	3	mA	at 8.0 MHz	1, 2
		3.6V		5	10	mA	at 8.0 MHz	1, 2
		5.5V		10	15	mA	at 8.0 MHz	1, 2
I _{CC1}	Standby Current	2.0V		0.5	1.6	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
	(HALT Mode)	3.6V		0.8	2.0	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
		5.5V		1.3	3.2	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
I _{CC2}	Standby Current (Stop	2.0V		1.6	12	μA	V _{IN} = 0 V, V _{CC} WDT not Running	3
	Mode)	3.6V		1.8	15	μA	V _{IN} = 0 V, V _{CC} WDT not Running	3
		5.5V		1.9	18	μA	$V_{IN} = 0 V, V_{CC} WDT not Running$	3
		2.0V		5	30	μA	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3
		3.6V		8	40	μA	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3
		5.5V		15	60	μA	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3
I _{LV}	Standby Current (Low Voltage)			1.2	6	μA	Measured at 1.3V	4
V _{BO}	V _{CC} Low Voltage Protection			1.9	2.15	V	8MHz maximum Ext. CLK Freq.	
V_{LVD}	V _{CC} Low Voltage Detection			2.4		V		
V _{HVD}	Vcc High Voltage Detection			2.7		V		
-								

Table 10. GP323HE DC Characteristics (Continued)

Notes:

1. All outputs unloaded, inputs at rail.

2. CL1 = CL2 = 100 pF.

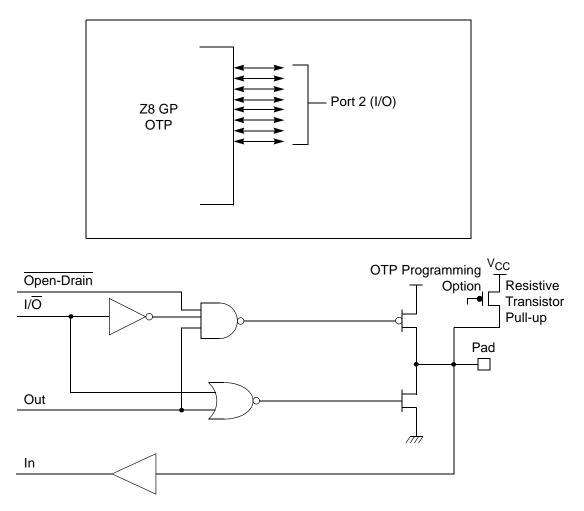
3. Oscillator stopped.

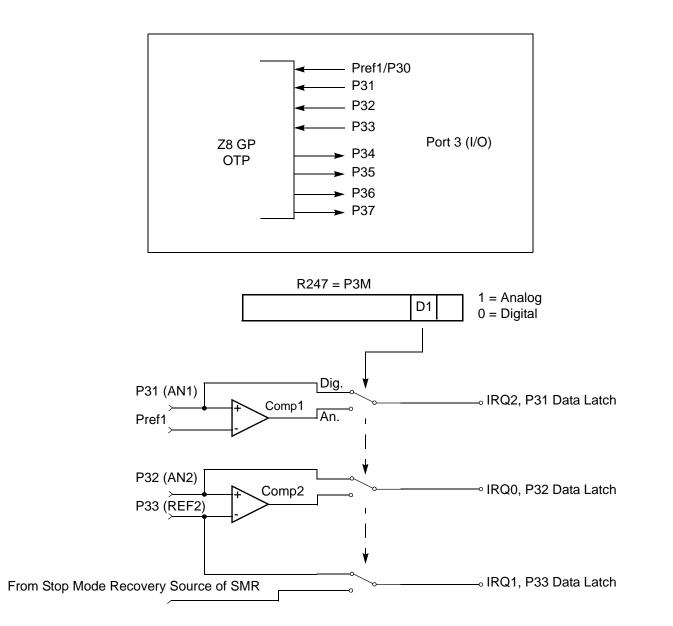
4. Oscillator stops when V_{CC} falls below V_{BO} limit.

 It is strongly recommended to add a filter capacitor (minimum 0.1 μF), physically close to VCC and V_{SS} pins if operating voltage fluctuations are anticipated, such as those resulting from driving an Infrared LED.

6. Comparator and Timers are on. Interrupt disabled.

7. Typical values shown are at 25 degrees C.




Figure 11. Port 2 Configuration

Port 3 (P37–P30)

Port 3 is a 8-bit, CMOS-compatible fixed I/O port (see Figure 12). Port 3 consists of four fixed input (P33–P30) and four fixed output (P37–P34), which can be configured under software control for interrupt and as output from the counter/timers. P30, P31, P32, and P33 are standard CMOS inputs; P34, P35, P36, and P37 are push-pull outputs.

Figure 12. Port 3 Configuration

Two on-board comparators process analog signals on P31 and P32, with reference to the voltage on Pref1 and P33. The analog function is enabled by programming the Port 3 Mode Register (bit 1). P31 and P32 are programmable as rising, falling, or both edge triggered interrupts (IRQ register bits 6 and 7). Pref1 and P33 are the comparator reference voltage inputs. Access to the Counter Timer edgedetection circuit is through P31 or P20 (see "T8 and T16 Common Functions—

CTR1(0D)01H" on page 35). Other edge detect and IRQ modes are described in Table 14.

Note: Comparators are powered down by entering Stop Mode. For P31–P33 to be used in a Stop Mode Recovery (SMR) source, these inputs must be placed into digital mode.

Pin	I/O	Counter/Timers	Comparator	Interrupt
Pref1/P30	IN		RF1	
P31	IN	IN	AN1	IRQ2
P32	IN		AN2	IRQ0
P33	IN		RF2	IRQ1
P34	OUT	Т8	AO1	
P35	OUT	T16		
P36	OUT	T8/16		
P37	OUT		AO2	
P20	I/O	IN		

Table 14. Port 3 Pin Function Summary

>

Port 3 also provides output for each of the counter/timers and the AND/OR Logic (see Figure 13). Control is performed by programming bits D5–D4 of CTR1, bit 0 of CTR0, and bit 0 of CTR2.

25

Comparator Inputs

In analog mode, P31 and P32 have a comparator front end. The comparator reference is supplied to P33 and Pref1. In this mode, the P33 internal data latch and its corresponding IRQ1 are diverted to the SMR sources (excluding P31, P32, and P33) as indicated in Figure 12 on page 22. In digital mode, P33 is used as D3 of the Port 3 input register, which then generates IRQ1.

Note: Comparators are powered down by entering Stop Mode. For P31–P33 to be used in a Stop Mode Recovery source, these inputs must be placed into digital mode.

Comparator Outputs

These channels can be programmed to be output on P34 and P37 through the PCON register.

RESET (Input, Active Low)

Reset initializes the MCU and is accomplished either through Power-On, Watch-Dog Timer, Stop Mode Recovery, Low-Voltage detection, or external reset. During Power-On Reset and Watch-Dog Timer Reset, the internally generated reset drives the reset pin Low for the POR time. Any devices driving the external reset line must be open-drain to avoid damage from a possible conflict during reset conditions. Pull-up is provided internally.

When the Z8 GP asserts (Low) the $\overline{\text{RESET}}$ pin, the internal pull-up is disabled. The Z8 GP does not assert the $\overline{\text{RESET}}$ pin when under VBO.

Note: The external Reset does not initiate an exit from STOP mode.

Functional Description

This device incorporates special functions to enhance the Z8[®], functionality in consumer and battery-operated applications.

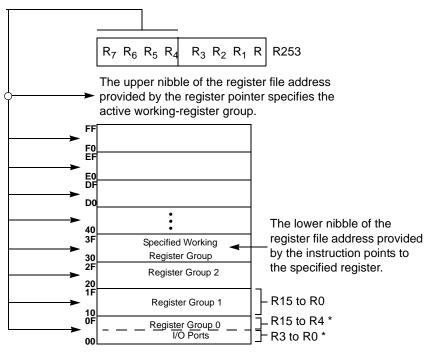
Program Memory

This device addresses up to 32KB of OTP memory. The first 12 Bytes are reserved for interrupt vectors. These locations contain the six 16-bit vectors that correspond to the six available interrupts.

RAM

This device features 256B of RAM. See Figure 14.

ZGP323H Product Specification


Leastion of C	0700	Not Accessible
Location of 3	2768 1	On-Chip
instruction		ROM
executed after RESET		
	12	Reset Start Address
	11	IRQ5
	10	IRQ5
	9	IRQ4
	8	IRQ4
	7	IRQ3
Interrupt Vector (Lower Byte)	6	IRQ3
	5	IRQ2
Interrupt Vecto	4 r	✓ IRQ2
(Upper Byte		IRQ1
	2	IRQ1
	1	IRQ0
	0	IRQ0

Expanded Register File

The register file has been expanded to allow for additional system control registers and for mapping of additional peripheral devices into the register address area. The Z8[®] register address space (R0 through R15) has been implemented as 16 banks, with 16 registers per bank. These register groups are known as the

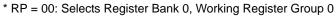


Figure 17. Register Pointer—Detail

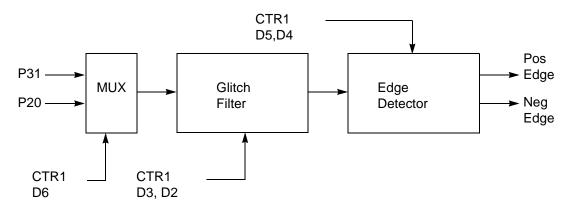
Stack

The internal register file is used for the stack. An 8-bit Stack Pointer SPL (R255) is used for the internal stack that resides in the general-purpose registers (R4–R239). SPH (R254) can be used as a general-purpose register.

40

Table 18. CTR3 (D)03H: T8/T16 Control Register (Continued)

Field	Bit Position		Value	Description
Reserved	43210	R	1	Always reads 11111
		W	х	No Effect


*Indicates the value upon Power-On Reset.

**Indicates the value upon Power-On Reset. Not reset with a Stop Mode recovery.

Counter/Timer Functional Blocks

Input Circuit

The edge detector monitors the input signal on P31 or P20. Based on CTR1 D5– D4, a pulse is generated at the Pos Edge or Neg Edge line when an edge is detected. Glitches in the input signal that have a width less than specified (CTR1 D3, D2) are filtered out (see Figure 18).

Figure 18. Glitch Filter Circuitry

T8 Transmit Mode

Before T8 is enabled, the output of T8 depends on CTR1, D1. If it is 0, T8_OUT is 1; if it is 1, T8_OUT is 0. See Figure 19.

46

T16 Transmit Mode

In NORMAL or PING-PONG mode, the output of T16 when not enabled, is dependent on CTR1, D0. If it is a 0, T16_OUT is a 1; if it is a 1, T16_OUT is 0. You can force the output of T16 to either a 0 or 1 whether it is enabled or not by programming CTR1 D3; D2 to a 10 or 11.

When T16 is enabled, TC16H * 256 + TC16L is loaded, and T16_OUT is switched to its initial value (CTR1, D0). When T16 counts down to 0, T16_OUT is toggled (in NORMAL or PING-PONG mode), an interrupt (CTR2, D1) is generated (if enabled), and a status bit (CTR2, D5) is set. See Figure 25.

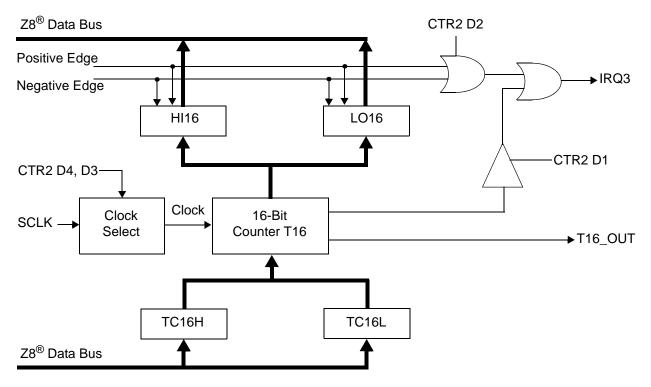
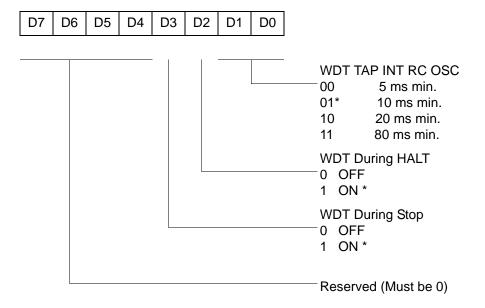


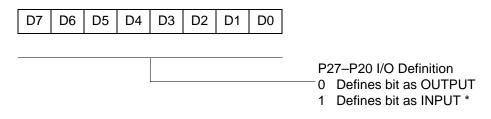
Figure 25. 16-Bit Counter/Timer Circuits


Note: Global interrupts override this function as described in "Interrupts" on page 50.

If T16 is in SINGLE-PASS mode, it is stopped at this point (see Figure 26). If it is in Modulo-N Mode, it is loaded with TC16H * 256 + TC16L, and the counting continues (see Figure 27).

You can modify the values in TC16H and TC16L at any time. The new values take effect when they are loaded.

WDTMR(0F)0FH

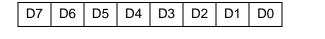


* Default setting after reset. Not reset with a Stop Mode recovery.

Figure 47. Watch-Dog Timer Register ((0F) 0FH: Write Only)

Standard Control Registers

R246 P2M(F6H)



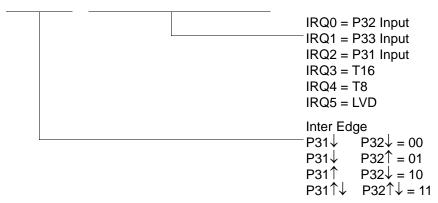

* Default setting after reset. Not reset with a Stop Mode recovery.

Figure 48. Port 2 Mode Register (F6H: Write Only)

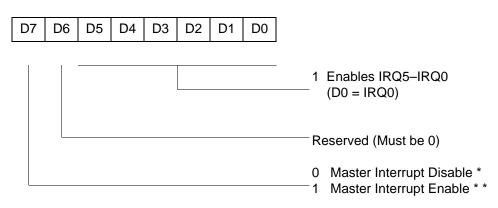
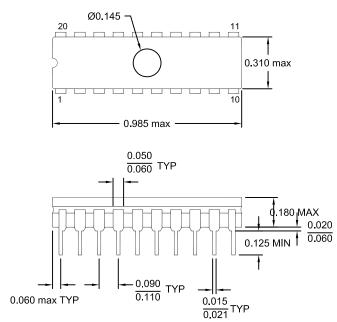

R250 IRQ(FAH)

Figure 52. Interrupt Request Register (FAH: Read/Write)

R251 IMR(FBH)


* Default setting after reset

* * Only by using EI, DI instruction; DI is required before changing the IMR register

Figure 53. Interrupt Mask Register (FBH: Read/Write)

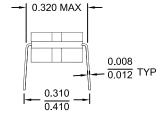
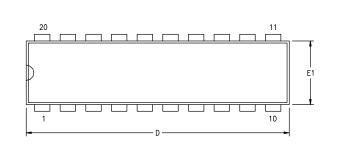



Figure 58. 20-Pin CDIP Package

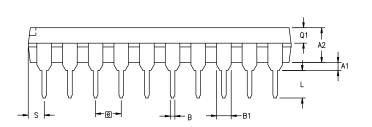
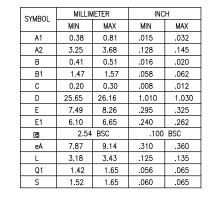
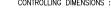
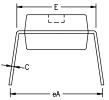





Figure 59. 20-Pin PDIP Package Diagram

CONTROLLING DIMENSIONS : INCH

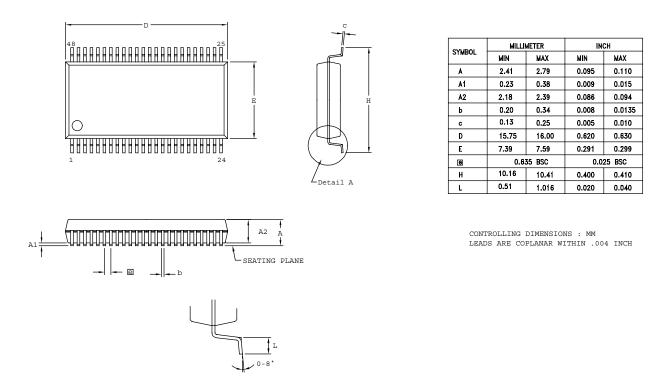


Figure 68. 48-Pin SSOP Package Design

Note: Check with ZiLOG on the actual bonding diagram and coordinate for chip-on-board assembly.

16KB Standard Temperature: 0° to +70°C

Part Number	Description	Part Number	Description
ZGP323HSH4816C	48-pin SSOP 16K OTP	ZGP323HSS2816C	28-pin SOIC 16K OTP
ZGP323HSP4016C	40-pin PDIP 16K OTP	ZGP323HSH2016C	20-pin SSOP 16K OTP
ZGP323HSH2816C	28-pin SSOP 16K OTP	ZGP323HSP2016C	20-pin PDIP 16K OTP
ZGP323HSP2816C	28-pin PDIP 16K OTP	ZGP323HSS2016C	20-pin SOIC 16K OTP

16KB Extended Temperature: -40° to +105°C			
Part Number	Description	Part Number	Description
ZGP323HEH4816C	48-pin SSOP 16K OTP	ZGP323HES2816C	28-pin SOIC 16K OTP
ZGP323HEP4016C	40-pin PDIP 16K OTP	ZGP323HEH2016C	20-pin SSOP 16K OTP
ZGP323HEH2816C	28-pin SSOP 16K OTP	ZGP323HEP2016C	20-pin PDIP 16K OTP
ZGP323HEP2816C	28-pin PDIP 16K OTP	ZGP323HES2016C	20-pin SOIC 16K OTP

16KB Automotive Temperature: -40° to +125°CPart NumberDescriptionPart NumberDescriptionZGP323HAH4816C48-pin SSOP 16K OTPZGP323HAS2816C28-pin SOIC 16K OTPZGP323HAP4016C40-pin PDIP 16K OTPZGP323HAH2016C20-pin SSOP 16K OTPZGP323HAH2816C28-pin SSOP 16K OTPZGP323HAP2016C20-pin PDIP 16K OTPZGP323HAP2816C28-pin PDIP 16K OTPZGP323HAS2016C20-pin SOIC 16K OTPZGP323HAP2816C28-pin PDIP 16K OTPZGP323HAS2016C20-pin SOIC 16K OTPReplace C with G for Lead-Free Packaging

ZGP323H Z8[®] OTP Microcontroller with IR Timers

Numerics 16-bit counter/timer circuits 46 20-pin DIP package diagram 82 20-pin SSOP package diagram 84 28-pin DIP package diagram 86 28-pin SOICpackage diagram 85 28-pin SSOP package diagram 87 40-pin DIP package diagram 87 48-pin SSOP package diagram 89 8-bit counter/timer circuits 42 А absolute maximum ratings 10 AC characteristics 16 timing diagram 16 address spaces, basic 2 architecture 2 expanded register file 28 В basic address spaces 2 block diagram, ZLP32300 functional 3 С capacitance 11 characteristics AC 16 DC 11 clock 53 comparator inputs/outputs 25 configuration port 0 19 port 1 20 port 2 21 port 3 22 port 3 counter/timer 24 counter/timer 16-bit circuits 46 8-bit circuits 42 brown-out voltage/standby 64 clock 53 demodulation mode count capture flowchart 44

demodulation mode flowchart 45 EPROM selectable options 64 glitch filter circuitry 40 halt instruction 54 input circuit 40 interrupt block diagram 51 interrupt types, sources and vectors 52 oscillator configuration 53 output circuit 49 ping-pong mode 48 port configuration register 55 resets and WDT 63 SCLK circuit 58 stop instruction 54 stop mode recovery register 57 stop mode recovery register 2 61 stop mode recovery source 59 T16 demodulation mode 47 T16 transmit mode 46 T16 OUT in modulo-N mode 47 T16_OUT in single-pass mode 47 T8 demodulation mode 43 T8 transmit mode 40 T8 OUT in modulo-N mode 43 T8_OUT in single-pass mode 43 transmit mode flowchart 41 voltage detection and flags 65 watch-dog timer mode register 62 watch-dog timer time select 63 CTR(D)01h T8 and T16 Common Functions 35 D DC characteristics 11 demodulation mode count capture flowchart 44 flowchart 45 T1647 T8 43 description functional 25 general 2