E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	16
Program Memory Size	8KB (8K x 8)
Program Memory Type	OTP
EEPROM Size	- ·
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	· ·
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	<u>.</u>
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323hes2008g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Revision History

Each instance in Table 1 reflects a change to this document from its previous revision. To see more detail, click the appropriate link in the table.

Table 1.	Revision	History	of this	Document
----------	----------	---------	---------	----------

Date	Revision Level	Section	Description	Page #
December 2004	02	deleted mask option and 10. Added new	consumption, STOP and HALT mode current values, note, clarified temperature ranges in Tables 6 and 8 Tables 9 and 10. Also added Characterization data to ed Program/Erase Endurance value in Table 12.	11,12,
		Removed Preliminar	y designation	All
March 2005	03	Minor change to Tab pin CDIP parts in the	le 9 Electrical Characteristics. Added 20, 28 and 40- ordering Section.	11,90

Development Features

Table 2 lists the features of ZiLOG[®]'s ZGP323H members.

Table 2. Features

Device	OTP (KB)	RAM (Bytes)	I/O Lines	Voltage Range
ZGP323H OTP MCU Family	4, 8, 16, 32	237	32, 24 or 16	2.0V–5.5V

- Low power consumption–18mW (typical)
- T = Temperature
 - S = Standard 0° to +70°C
 - $E = Extended -40^{\circ} to +105^{\circ}C$
 - A = Automotive -40° to $+125^{\circ}$ C
- Three standby modes:
 - STOP— (typical 1.8µA)
 - HALT— (typical 0.8mA)
 - Low voltage reset
- Special architecture to automate both generation and reception of complex pulses or signals:
 - One programmable 8-bit counter/timer with two capture registers and two load registers
 - One programmable 16-bit counter/timer with one 16-bit capture register pair and one 16-bit load register pair
 - Programmable input glitch filter for pulse reception
- Six priority interrupts
 - Three external
 - Two assigned to counter/timers
 - One low-voltage detection interrupt
- Low voltage detection and high voltage detection flags
- Programmable Watch-Dog Timer/Power-On Reset (WDT/POR) circuits
- Two independent comparators with programmable interrupt polarity
- Programmable EPROM options
 - Port 0: 0–3 pull-up transistors
 - Port 0: 4–7 pull-up transistors

Capacitance

Table 8 lists the capacitances.

Table 8. Capacitance

Parameter	Maximum				
Input capacitance	12pF				
Output capacitance	12pF				
I/O capacitance	12pF				
Note: $T_A = 25^{\circ}$ C, $V_{CC} = GND = 0$ V, f = 1.0 MHz, unmeasured pins returned to GND					

DC Characteristics

Table 9. GP323HS DC Characteristics

			T _A =0°C to	o +70°C				
Symbol	Parameter	V _{CC}	Min	Typ(7)	Max	Units	Conditions N	lotes
V _{CC}	Supply Voltage		2.0		5.5	V	See Note 5 5	i
V _{CH}	Clock Input High Voltage	2.0-5.5	0.8 V _{CC}		V _{CC} +0.3	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	2.0-5.5	V _{SS} -0.3		0.4	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	2.0-5.5	0.7 V _{CC}		V _{CC} +0.3	V		
V _{IL}	Input Low Voltage	2.0-5.5	V _{SS} -0.3		0.2 V _{CC}	V		
V _{OH1}	Output High Voltage	2.0-5.5	V _{CC} -0.4			V	$I_{OH} = -0.5 \text{mA}$	
V _{OH2}	Output High Voltage (P36, P37, P00, P01)	2.0-5.5	V _{CC} -0.8			V	I _{OH} = -7mA	
V _{OL1}	Output Low Voltage	2.0-5.5			0.4	V	I _{OL} = 4.0mA	
V _{OL2}	Output Low Voltage (P00, P01, P36, P37)	2.0-5.5			0.8	V	I _{OL} = 10mA	
V _{OFFSET}	Comparator Input Offset Voltage	2.0-5.5			25	mV		
V _{REF}	Comparator Reference Voltage	2.0-5.5	0		V _{CC} 1.75	V		
Ι _{ΙL}	Input Leakage	2.0-5.5	-1		1	μA	V _{IN} = 0V, V _{CC} Pull-ups disabled	
R _{PU}	Pull-up Resistance	2.0V	225		675	KΩ	V _{IN} = 0V; Pullups selected by mask	
		3.6V	75		275	KΩ	option	
		5.0V	40		160	KΩ		

Table 11. GP323HA DC Characteristics

			T _A = -40°C	C to +12	5°C			
Symbol	Parameter	V _{CC}	Min	Typ(7)	Max	Units	Conditions	Notes
V _{CC}	Supply Voltage		2.0		5.5	V	See Note 5	5
V _{CH}	Clock Input High Voltage	2.0-5.5	0.8 V _{CC}		V _{CC} +0.3	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	2.0-5.5	V _{SS} -0.3		0.4	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	2.0-5.5	0.7 V _{CC}		V _{CC} +0.3	V		
V _{IL}	Input Low Voltage	2.0-5.5	V _{SS} 0.3		0.2 V _{CC}	V		
V _{OH1}	Output High Voltage	2.0-5.5	V _{CC} -0.4			V	I _{OH} = -0.5mA	
V _{OH2}	Output High Voltage (P36, P37, P00, P01)	2.0-5.5	V _{CC} -0.8			V	I _{OH} = -7mA	
V _{OL1}	Output Low Voltage	2.0-5.5			0.4	V	$I_{OL} = 4.0 \text{mA}$	
V _{OL2}	Output Low Voltage (P00, P01, P36, P37)	2.0-5.5			0.8	V	I _{OL} = 10mA	
V _{OFFSET}	Comparator Input Offset Voltage	2.0-5.5			25	mV		
V _{REF}	Comparator Reference Voltage	2.0-5.5	0		V _{DD} -1.75	V		
Ι _{ΙL}	Input Leakage	2.0-5.5	-1		1	μΑ	V _{IN} = 0V, V _{CC} Pull-ups disabled	
R _{PU}	Pull-up Resistance	2.0V	200		700	KΩ	V _{IN} = 0V; Pullups selected by mask	(
		3.6V	50		300	KΩ	option	
		5.0V	25		175	KΩ	_	
I _{OL}	Output Leakage	2.0-5.5	-1		1	μA	$V_{IN} = 0V, V_{CC}$	
I _{CC}	Supply Current	2.0V		1	3	mA	at 8.0 MHz	1, 2
		3.6V		5	10	mA	at 8.0 MHz	1,2
	0	5.5V		10	15	mA	at 8.0 MHz	1, 2
I _{CC1}	Standby Current	2.0V		0.5	1.6	mA m A	$V_{IN} = 0V$, Clock at 8.0MHz	1, 2, 6
	(HALT Mode)	3.6V 5.5V		0.8 1.3	2.0 3.2	mA mA	$V_{IN} = 0V$, Clock at 8.0MHz $V_{IN} = 0V$, Clock at 8.0MHz	1, 2, 6 1, 2, 6
1	Standby Current (Stop	2.0V		1.6	15	μΑ	$V_{IN} = 0 V$, V_{CC} WDT not Running	3
I _{CC2}	Mode)	2.6V 3.6V		1.8	20	μA μA	$V_{IN} = 0 V, V_{CC} WDT not Running$ $V_{IN} = 0 V, V_{CC} WDT not Running$	3
	wode)	5.5V		1.9	25	μA	$V_{IN} = 0 V$, V_{CC} WDT not Running	3
		2.0V		5	30	μA	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3
		3.6V		8	40	μA	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3
		5.5V		15	60	μA	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3
I _{LV}	Standby Current (Low Voltage)			1.2	6	μA	Measured at 1.3V	4
V _{BO}	V _{CC} Low Voltage Protection			1.9	2.15	V	8MHz maximum Ext. CLK Freq.	
V _{LVD}	V _{CC} Low Voltage Detection			2.4		V	•	

Table 11. GP323HA DC Characteristics (Continued)

			T _A = -40°	C to +125	°C			
Symbol	Parameter	V _{CC}	Min	Typ(7)	Max	Units	Conditions	Notes
V _{HVD}	Vcc High Voltage Detection			2.7		V		
Notes:								
1. All o	outputs unloaded, inpu	ıts at rail.						
2. CL1	1 = CL2 = 100 pF.							
3. Osc	cillator stopped.							
4. Osc	cillator stops when V _{CC}	falls below	V _{BO} limit.					
volt	age fluctuations are a	nticipated, su	ch as thos	e resulting			cally close to VCC and nfrared LED.	V_{SS} pins if operating
6. Cor	mparator and Timers a	re on. Interru	pt disabled	1.				

7. Typical values shown are at 25 degrees C.

Table 12. EPROM/OTP Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes
	Erase Time	15			Minutes	1,3
	Data Retention @ use years		10		Years	2
	Program/Erase Endurance	100			Cycles	1

Notes:

1. For windowed cerdip package only.

2. Standard: 0°C to 70°C; Extended: -40°C to +105°C; Automotive: -40°C to +125°C. Determined using the Arrhenius model, which is an industry standard for estimating data retention of floating gate technologies:

AF = exp[(Ea/k)*(1/Tuse - 1/TStress)] Where: Ea is the intrinsic activation energy (eV; typ. 0.8) k is Boltzman's constant (8.67 x 10-5 eV/°K) °K = -273.16°C Tuse = Use Temperature in °K TStress = Stress Temperature in °K 3. At a stable UV Lamp output of 20mW/CM²

17

				–40°C to –40°C to	o +70°C (S) +105°C (E) +125°C (A) MHz			Watch-Dog Timer Mode Register
No	Symbol	Parameter	V _{CC}	Minimum	Maximum	Units	Notes	(D1, D0)
1	ТрС	Input Clock Period	2.0–5.5	121	DC	ns	1	
2	TrC,TfC	Clock Input Rise and Fall Times	2.0–5.5		25	ns	1	
3	TwC	Input Clock Width	2.0–5.5	37		ns	1	
4	TwTinL	Timer Input Low Width	2.0 5.5	100 70		ns	1	
5	TwTinH	Timer Input High Width	2.0–5.5	3ТрС			1	
6	TpTin	Timer Input Period	2.0–5.5	8TpC			1	
7	TrTin,TfTin	Timer Input Rise and Fall Timers	2.0–5.5		100	ns	1	
8	TwIL	Interrupt Request Low Time	2.0 5.5	100 70		ns	1, 2	
9	TwlH	Interrupt Request Input High Time	2.0–5.5	5TpC			1, 2	
10	Twsm	Stop-Mode Recovery Width	2.0–5.5	12		ns	3	
		Spec		5TpC			4	
11	Tost	Oscillator Start-Up Time	2.0–5.5		5TpC		4	
12	Twdt	Watch-Dog Timer Delay Time	2.0–5.5 2.0–5.5 2.0–5.5 2.0–5.5	5 10 20 80		ms ms ms ms		0, 0 0, 1 1, 0 1, 1
13	T _{POR}	Power-On Reset	2.0–5.5	2.5	10	ms		

Table 13. AC Characteristics

Notes:

1. Timing Reference uses 0.9 V_{CC} for a logic 1 and 0.1 V_{CC} for a logic 0. 2. Interrupt request through Port 3 (P33–P31).

3. SMR – D5 = 1.

4. SMR - D5 = 0.

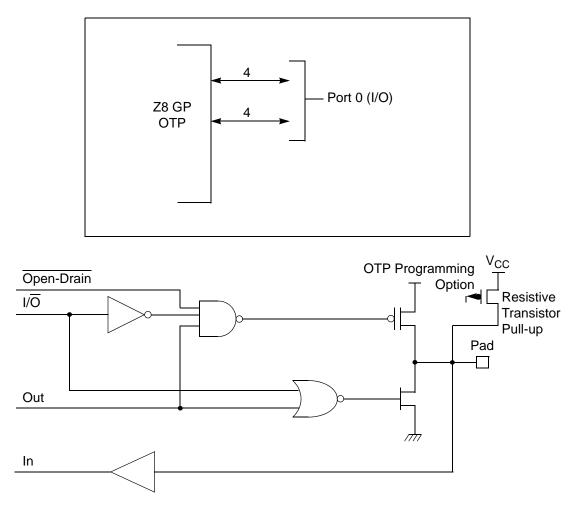


Figure 9. Port 0 Configuration

Port 1 (P17–P10)

Port 1 (see Figure 10) Port 1 can be configured for standard port input or output mode. After POR, Port 1 is configured as an input port. The output drivers are either push-pull or open-drain and are controlled by bit D1 in the PCON register.

Note: The Port 1 direction is reset to its default state following an SMR.

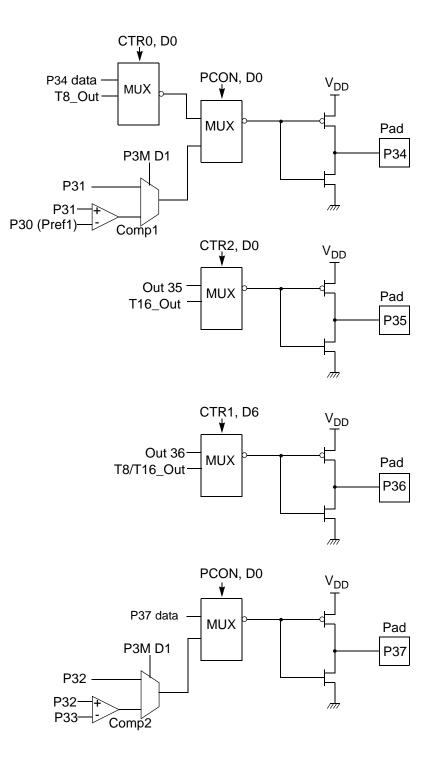


Figure 13. Port 3 Counter/Timer Output Configuration

33

Counter/Timer2 LS-Byte Hold Register—TC16L(D)06H

Field	Bit Position		Description
T16_Data_LO	[7:0]	R/W	Data

Counter/Timer8 High Hold Register—TC8H(D)05H

Field	Bit Position		Description
T8_Level_HI	[7:0]	R/W	Data

Counter/Timer8 Low Hold Register—TC8L(D)04H

Field Bit Position		Description	
T8_Level_LO	[7:0]	R/W	Data

CTR0 Counter/Timer8 Control Register—CTR0(D)00H

Table 15 lists and briefly describes the fields for this register.

Field	Bit Position		Value	Description
T8_Enable	7	R/W	0*	Counter Disabled
			1	Counter Enabled
			0	Stop Counter
			1	Enable Counter
Single/Modulo-N	-6	R/W	0*	Modulo-N
			1	Single Pass
Time_Out	5	R/W	0**	No Counter Time-Out
			1	Counter Time-Out Occurred
			0	No Effect
			1	Reset Flag to 0
T8 _Clock	43	R/W	0 0**	SCLK
			0 1	SCLK/2
			10	SCLK/4
			11	SCLK/8
Capture_INT_Mask	2	R/W	0**	Disable Data Capture Interrupt
-			1	Enable Data Capture Interrupt

34

Table 15.CTR0(D)00H Counter/Timer8 Control Register (Continued)

Field	Bit Position		Value	Description
Counter_INT_Mask	1-	R/W	0** 1	Disable Time-Out Interrupt Enable Time-Out Interrupt
P34_Out	0	R/W	0* 1	P34 as Port Output T8 Output on P34

Note:

*Indicates the value upon Power-On Reset.

**Indicates the value upon Power-On Reset. Not reset with a Stop Mode recovery.

T8 Enable

This field enables T8 when set (written) to 1.

Single/Modulo-N

When set to 0 (Modulo-N), the counter reloads the initial value when the terminal count is reached. When set to 1 (single-pass), the counter stops when the terminal count is reached.

Timeout

This bit is set when T8 times out (terminal count reached). To reset this bit, write a 1 to its location.

Caution: Writing a 1 is the only way to reset the Terminal Count status condition. Reset this bit before using/enabling the counter/timers.

The first clock of T8 might not have complete clock width and can occur any time when enabled.

Note: Take care when using the OR or AND commands to manipulate CTR0, bit 5 and CTR1, bits 0 and 1 (Demodulation Mode). These instructions use a Read-Modify-Write sequence in which the current status from the CTR0 and CTR1 registers is ORed or ANDed with the designated value and then written back into the registers.

T8 Clock

This bit defines the frequency of the input signal to T8.

Field	Bit Position		Value	Description
Transmit_Submode/	32	R/W		Transmit Mode
Glitch_Filter			00*	Normal Operation
			01	Ping-Pong Mode
			10	T16_Out = 0
			11	T16_Out = 1
				Demodulation Mode
			00*	No Filter
			01	4 SCLK Cycle
			10	8 SCLK Cycle
			11	Reserved
Initial_T8_Out/	1-			Transmit Mode
Rising Edge		R/W	0*	T8_OUT is 0 Initially
			1	T8_OUT is 1 Initially
				Demodulation Mode
		R	0*	No Rising Edge
			1	Rising Edge Detected
		W	0	No Effect
			1	Reset Flag to 0
Initial_T16_Out/	0			Transmit Mode
Falling_Edge		R/W	0*	T16_OUT is 0 Initially
			1	T16_OUT is 1 Initially
				Demodulation Mode
		R	0*	No Falling Edge
			1	Falling Edge Detected
		W	0	No Effect
			1	Reset Flag to 0

Table 16.CTR1(0D)01H T8 and T16 Common Functions (Continued)

Note:

*Default at Power-On Reset

*Default at Power-On Reset. Not reset with Stop Mode recovery.

Mode

If the result is 0, the counter/timers are in TRANSMIT mode; otherwise, they are in DEMODULATION mode.

P36_Out/Demodulator_Input

In TRANSMIT Mode, this bit defines whether P36 is used as a normal output pin or the combined output of T8 and T16.

In DEMODULATION Mode, this bit defines whether the input signal to the Counter/Timers is from P20 or P31.

If the input signal is from Port 31, a capture event may also generate an IRQ2 interrupt. To prevent generating an IRQ2, either disable the IRQ2 interrupt by clearing its IMR bit D2 or use P20 as the input.

Field	Bit Position		Value	Description
T16_Enable	7	R	0*	Counter Disabled
			1	Counter Enabled
		W	0	Stop Counter
			1	Enable Counter
Single/Modulo-N	-6	R/W		Transmit Mode
			0*	Modulo-N
			1	Single Pass
				Demodulation Mode
			0	T16 Recognizes Edge
			1	T16 Does Not Recognize
				Edge
Time_Out	5	R	0*	No Counter Timeout
			1	Counter Timeout
				Occurred
		W	0	No Effect
			1	Reset Flag to 0
T16 _Clock	43	R/W	00**	SCLK
			01	SCLK/2
			10	SCLK/4
			11	SCLK/8
Capture_INT_Mask	2	R/W	0**	Disable Data Capture Int.
			1	Enable Data Capture Int.
Counter_INT_Mask	1-	R/W	0*	Disable Timeout Int.
				Enable Timeout Int.
P35_Out	0	R/W	0*	P35 as Port Output
			1	T16 Output on P35

Table 17. CTR2(D)02H: Counter/Timer16 Control Register

Note:

*Indicates the value upon Power-On Reset.

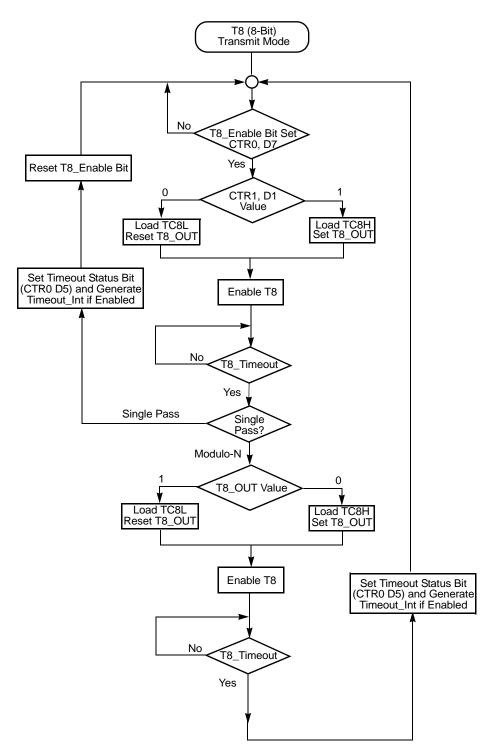
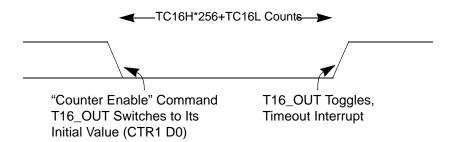
**Indicates the value upon Power-On Reset. Not reset with a Stop Mode recovery.

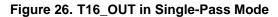
T16_Enable

This field enables T16 when set to 1.

Single/Modulo-N

In TRANSMIT Mode, when set to 0, the counter reloads the initial value when it reaches the terminal count. When set to 1, the counter stops when the terminal count is reached.


Figure 19. Transmit Mode Flowchart

ZGP323H Product Specification

Caution: Do not load these registers at the time the values are to be loaded into the counter/timer to ensure known operation. An initial count of 1 is not allowed. An initial count of 0 causes T16 to count from 0 to FFFFH to FFFFH. Transition from 0 to FFFFH is not a timeout condition.

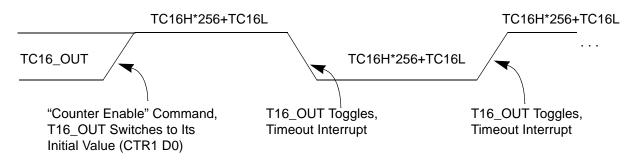


Figure 27. T16_OUT in Modulo-N Mode

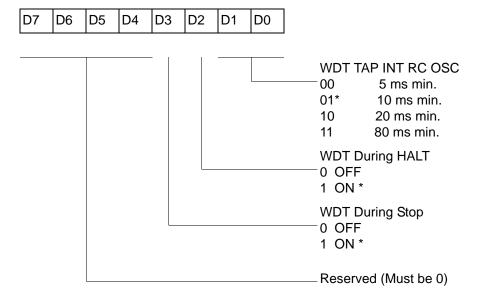
T16 DEMODULATION Mode

The user must program TC16L and TC16H to FFH. After T16 is enabled, and the first edge (rising, falling, or both depending on CTR1 D5; D4) is detected, T16 captures HI16 and LO16, reloads, and begins counting.

If D6 of CTR2 Is 0

When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current count in T16 is complemented and put into HI16 and LO16. When data is captured, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt is generated if enabled (CTR2, D2). T16 is loaded with FFFFH and starts again.

This T16 mode is generally used to measure space time, the length of time between bursts of carrier signal (marks).


<mark>____</mark> 62

Watch-Dog Timer Mode Register (WDTMR)

The Watch-Dog Timer (WDT) is a retriggerable one-shot timer that resets the Z8[®] CPU if it reaches its terminal count. The WDT must initially be enabled by executing the WDT instruction. On subsequent executions of the WDT instruction, the WDT is refreshed. The WDT circuit is driven by an on-board RC-oscillator. The WDT instruction affects the Zero (Z), Sign (S), and Overflow (V) flags.

The POR clock source the internal RC-oscillator. Bits 0 and 1 of the WDT register control a tap circuit that determines the minimum timeout period. Bit 2 determines whether the WDT is active during HALT, and Bit 3 determines WDT activity during Stop. Bits 4 through 7 are reserved (Figure 37). This register is accessible only during the first 60 processor cycles (120 XTAL clocks) from the execution of the first instruction after Power-On-Reset, Watch-Dog Reset, or a Stop-Mode Recovery (Figure 36). After this point, the register cannot be modified by any means (intentional or otherwise). The WDTMR cannot be read. The register is located in Bank F of the Expanded Register Group at address location 0Fh. It is organized as shown in Figure 37.

WDTMR(0F)0Fh

* Default setting after reset

Figure 37. Watch-Dog Timer Mode Register (Write Only)

WDT Time Select (D0, D1)

This bit selects the WDT time period. It is configured as indicated in Table 23.

Low-Voltage Detection Register—LVD(D)0Ch

Note: Voltage detection does not work at Stop mode. It must be disabled during Stop mode in order to reduce current.

Field	Bit Position			Description
LVD	76543			Reserved No Effect
	2	R	1 0*	HVD flag set HVD flag reset
	1-	R	1 0*	LVD flag set LVD flag reset
	0	R/W	1 0*	Enable VD Disable VD
*Default	after POR			

Note: Do not modify register P01M while checking a low-voltage condition. Switching noise of both ports 0 and 1 together might trigger the LVD flag.

Voltage Detection and Flags

The Voltage Detection register (LVD, register 0CH at the expanded register bank 0Dh) offers an option of monitoring the V_{CC} voltage. The Voltage Detection is enabled when bit 0 of LVD register is set. Once Voltage Detection is enabled, the the V_{CC} level is monitored in real time. The flags in the LVD register valid 20uS after Voltage Detection is enabled. The HVD flag (bit 2 of the LVD register) is set only if V_{CC} is higher than V_{HVD}. The LVD flag (bit 1 of the LVD register) is set only if V_{CC} is lower than the V_{LVD}. When Voltage Detection is enabled, the LVD flag also triggers IRQ5. The IRQ bit 5 latches the low voltage condition until it is cleared by instructions or reset. The IRQ5 interrupt is served if it is enabled in the IMR register. Otherwise, bit 5 of IRQ register is latched as a flag only.

Notes: If it is necessary to receive an LVD interrupt upon power-up at an operating voltage lower than the low battery detect threshold, enable interrupts using the Enable Interrupt instruction (EI) prior to enabling the voltage detection.

R249 IPR(F9H)

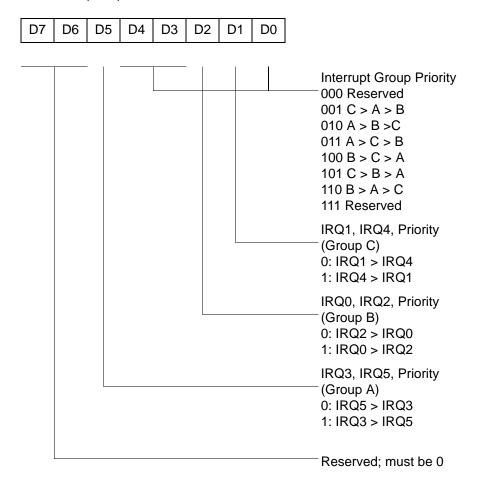


Figure 51. Interrupt Priority Register (F9H: Write Only)

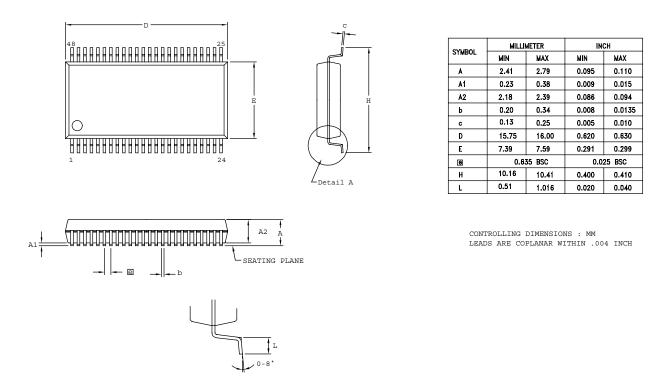
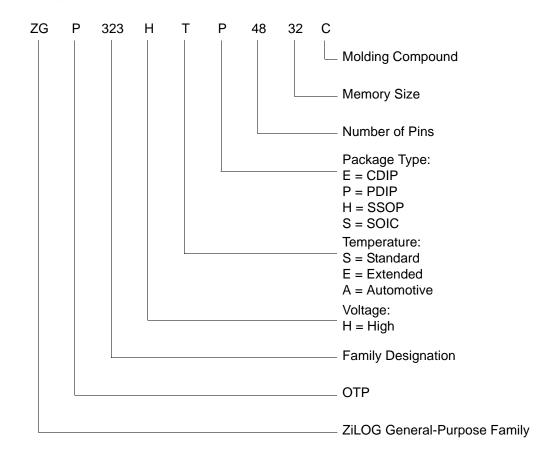



Figure 68. 48-Pin SSOP Package Design

Note: Check with ZiLOG on the actual bonding diagram and coordinate for chip-on-board assembly.

Example

ZGP323H Z8[®] OTP Microcontroller with IR Timers

28-pin DIP/SOIC/SSOP 6 40- and 48-pin 8 40-pin DIP 7 48-pin SSOP 8 pin functions port 0 (P07 - P00) 18 port 0 (P17 - P10) 19 port 0 configuration 19 port 1 configuration 20 port 2 (P27 - P20) 20 port 2 (P37 - P30) 21 port 2 configuration 21 port 3 configuration 22 port 3 counter/timer configuration 24 reset) 25 XTAL1 (time-based input 18 XTAL2 (time-based output) 18 ping-pong mode 48 port 0 configuration 19 port 0 pin function 18 port 1 configuration 20 port 1 pin function 19 port 2 configuration 21 port 2 pin function 20 port 3 configuration 22 port 3 pin function 21 port 3counter/timer configuration 24 port configuration register 55 power connections 3 power supply 5 program memory 25 map 26 R ratings, absolute maximum 10 register 61 CTR(D)01h 35 CTR0(D)00h 33 CTR2(D)02h 37 CTR3(D)03h 39 flag 80 HI16(D)09h 32

HI8(D)0Bh 32 interrupt priority 78 interrupt request 79 interruptmask 79 L016(D)08h 32 L08(D)0Ah 32 LVD(D)0Ch 65 pointer 80 port 0 and 1 77 port 2 configuration 75 port 3 mode 76 port configuration 55, 75 SMR2(F)0Dh 40 stack pointer high 81 stack pointer low 81 stop mode recovery 57 stop mode recovery 2 61 stop-mode recovery 73 stop-mode recovery 274 T16 control 69 T8 and T16 common control functions 67 T8/T16 control 70 TC16H(D)07h 32 TC16L(D)06h 33 TC8 control 66 TC8H(D)05h 33 TC8L(D)04h 33 voltage detection 71 watch-dog timer 75 register description Counter/Timer2 LS-Byte Hold 33 Counter/Timer2 MS-Byte Hold 32 Counter/Timer8 Control 33 Counter/Timer8 High Hold 33 Counter/Timer8 Low Hold 33 CTR2 Counter/Timer 16 Control 37 CTR3 T8/T16 Control 39 Stop Mode Recovery2 40 T16 Capture LO 32 T8 and T16 Common functions 35 T8_Capture_HI 32