

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	24
Program Memory Size	8KB (8K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323hes2808c00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

This publication is subject to replacement by a later edition. To determine whether a later edition exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters

532 Race Street San Jose, CA 95126-3432 Telephone: 408.558.8500

Fax: 408.558.8300 www.zilog.com

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other products and/or service names mentioned herein may be trademarks of the companies with which they are associated.

Document Disclaimer

©2005 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Devices sold by ZiLOG, Inc. are covered by warranty and limitation of liability provisions appearing in the ZiLOG, Inc. Terms and Conditions of Sale. ZiLOG, Inc. makes no warranty of merchantability or fitness for any purpose. Except with the express written approval of ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses are conveyed, implicitly or otherwise, by this document under any intellectual property rights.

Disclaimer PS023803-0305

ZGP323H Product Specification

	•
v	ı

Figure 34. SCLK Circuit	58
Figure 35. Stop Mode Recovery Source	59
Figure 36. Stop Mode Recovery Register 2 ((0F)DH:D2-D4, D6 Write Only) 6	31
Figure 37. Watch-Dog Timer Mode Register (Write Only)6	62
Figure 38. Resets and WDT	63
Figure 39. TC8 Control Register ((0D)O0H: Read/Write Except Where Noted) 6	36
Figure 40. T8 and T16 Common Control Functions ((0D)01H: Read/Write) 6	37
Figure 41. T16 Control Register ((0D) 2H: Read/Write Except Where Noted) . 6	39
Figure 42. T8/T16 Control Register (0D)03H: Read/Write (Except Where	
Noted)	
Figure 43. Voltage Detection Register	
Figure 44. Port Configuration Register (PCON)(0F)00H: Write Only) 7	72
Figure 45. Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only)	73
Figure 46. Stop Mode Recovery Register 2 ((0F)0DH:D2–D4, D6 Write Only)	74
Figure 47. Watch-Dog Timer Register ((0F) 0FH: Write Only)	75
Figure 48. Port 2 Mode Register (F6H: Write Only)	75
Figure 49. Port 3 Mode Register (F7H: Write Only)	76
Figure 50. Port 0 and 1 Mode Register (F8H: Write Only)	77
Figure 51. Interrupt Priority Register (F9H: Write Only)	78
Figure 52. Interrupt Request Register (FAH: Read/Write)	79
Figure 53. Interrupt Mask Register (FBH: Read/Write)	79
Figure 54. Flag Register (FCH: Read/Write)	30
Figure 55. Register Pointer (FDH: Read/Write) 8	30
Figure 56. Stack Pointer High (FEH: Read/Write) 8	81
Figure 57. Stack Pointer Low (FFH: Read/Write)	31
Figure 58. 20-Pin CDIP Package 8	82
Figure 59. 20-Pin PDIP Package Diagram 8	32
Figure 60. 20-Pin SOIC Package Diagram 8	33
Figure 61. 20-Pin SSOP Package Diagram 8	34
Figure 62. 28-Pin SOIC Package Diagram 8	35
Figure 63. 28-Pin CDIP Package Diagram 8	36
Figure 64. 28-Pin PDIP Package Diagram 8	36
Figure 65. 28-Pin SSOP Package Diagram	37
Figure 66. 40-Pin PDIP Package Diagram 8	37
Figure 67. 40-Pin CDIP Package Diagram	88

PS023803-0305 List of Figures

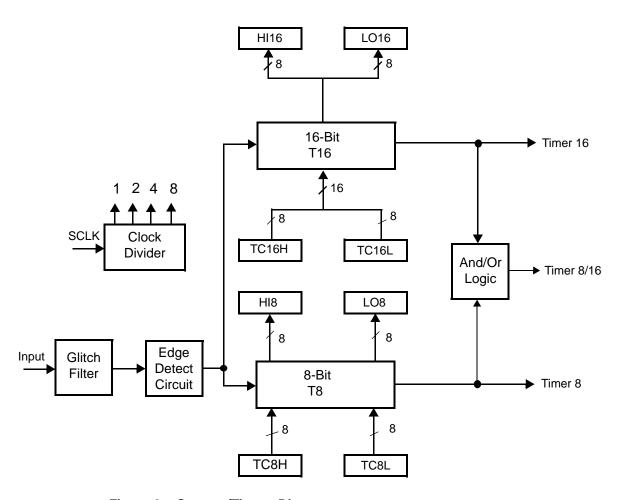


Figure 2. Counter/Timers Diagram

Pin Description

The pin configuration for the 20-pin PDIP/SOIC/SSOP is illustrated in Figure 3 and described in Table 4. The pin configuration for the 28-pin PDIP/SOIC/SSOP are depicted in Figure 4 and described in Table 5. The pin configurations for the 40-pin PDIP and 48-pin SSOP versions are illustrated in Figure 5, Figure 6, and described in Table 6.

For customer engineering code development, a UV eraseable windowed cerdip packaging is offered in 20-pin, 28-pin, and 40-pin configurations. ZiLOG does not recommend nor guarantee these packages for use in production.

PS023803-0305 Pin Description

Figure 5. 40-Pin PDIP/CDIP* Pin Configuration

Note: *Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use.

PS023803-0305 Pin Description

Table 6. 40- and 48-Pin Configuration (Continued)

Table of 40 all	a 40 i iii Ooiiiigai	ation (oontinaca
40-Pin PDIP #	48-Pin SSOP #	Symbol
33	40	P13
8	9	P14
9	10	P15
12	15	P16
13	16	P17
35	42	P20
36	43	P21
37	44	P22
38	45	P23
39	46	P24
2	2	P25
3	3	P26
4	4	P27
16	19	P31
17	20	P32
18	21	P33
19	22	P34
22	26	P35
24	28	P36
23	27	P37
20	23	NC
40	47	NC
1	1	NC
21	25	RESET
15	18	XTAL1
14	17	XTAL2
11	12, 13	V_{DD}
31	24, 37, 38	V _{SS}
25	29	Pref1/P30
	48	NC
	6	NC
	14	NC
	30	NC
	36	NC
•		

PS023803-0305 Pin Description

Capacitance

Table 8 lists the capacitances.

Table 8. Capacitance

Parameter	Maximum		
Input capacitance	12pF		
Output capacitance	12pF		
I/O capacitance	12pF		
Note: $T_A = 25^{\circ}$ C, $V_{CC} = GND = 0$ V, $f = 1.0$ MHz, unmeasured pins returned to GND			

DC Characteristics

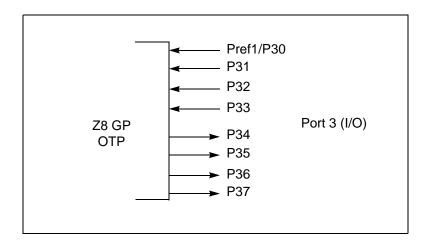
Table 9. GP323HS DC Characteristics

			T _A =0°C to	+70°C				
Symbol	Parameter	v_{cc}	Min	Typ(7)	Max	Units	Conditions	Notes
V _{CC}	Supply Voltage		2.0		5.5	V	See Note 5	5
V _{CH}	Clock Input High Voltage	2.0-5.5	0.8 V _{CC}		V _{CC} +0.3	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	2.0-5.5	V _{SS} -0.3		0.4	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	2.0-5.5	0.7 V _{CC}		V _{CC} +0.3	V		
V_{IL}	Input Low Voltage	2.0-5.5	V _{SS} -0.3		0.2 V _{CC}	V		
V _{OH1}	Output High Voltage	2.0-5.5	V _{CC} -0.4			V	$I_{OH} = -0.5$ mA	
V _{OH2}	Output High Voltage (P36, P37, P00, P01)	2.0-5.5	V _{CC} -0.8			V	$I_{OH} = -7 \text{mA}$	
V _{OL1}	Output Low Voltage	2.0-5.5			0.4	V	I _{OL} = 4.0mA	
V _{OL2}	Output Low Voltage (P00, P01, P36, P37)	2.0-5.5			0.8	V	I _{OL} = 10mA	
V _{OFFSET}	Comparator Input Offset Voltage	2.0-5.5			25	mV		
V _{REF}	Comparator Reference Voltage	2.0-5.5	0		V _{CC} 1.75	V		
I _{IL}	Input Leakage	2.0-5.5	-1		1	μΑ	V _{IN} = 0V, V _{CC} Pull-ups disabled	
R _{PU}	Pull-up Resistance	2.0V	225		675	ΚΩ	V _{IN} = 0V; Pullups selected by mask	
		3.6V	75		275	ΚΩ	option	
		5.0V	40		160	ΚΩ	-	

PS023803-0305 DC Characteristics

Table 9. GP323HS DC Characteristics (Continued)

T _A =0°C to +70°C								
Symbol	Parameter	v_{cc}	Min	Typ(7)	Max	Units	Conditions	Notes
I _{OL}	Output Leakage	2.0-5.5	-1		1	μΑ	$V_{IN} = 0V, V_{CC}$	
I _{CC}	Supply Current	2.0V		1	3	mA	at 8.0 MHz	1, 2
		3.6V		5	10	mΑ	at 8.0 MHz	1, 2
		5.5V		10	15	mΑ	at 8.0 MHz	1, 2
I _{CC1}	Standby Current	2.0V		0.5	1.6	mΑ	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
	(HALT Mode)	3.6V		8.0	2.0	mΑ	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
		5.5V		1.3	3.2	mΑ	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
I _{CC2}	Standby Current (Stop	2.0V		1.6	8	μΑ	V _{IN} = 0 V, V _{CC} WDT not Running	3
	Mode)	3.6V		1.8	10	μΑ	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT not Running}$	3
		5.5V		1.9	12	μA	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT not Running}$	3
		2.0V		5	20	μΑ	V _{IN} = 0 V, V _{CC} WDT is Running	3
		3.6V		8	30	μΑ	V _{IN} = 0 V, V _{CC} WDT is Running	3
		5.5V		15	45	μΑ	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT is Running}$	3
I _{LV}	Standby Current (Low Voltage)			1.2	6	μΑ	Measured at 1.3V	4
V _{BO}	V _{CC} Low Voltage			1.9	2.0	V	8MHz maximum	
ВО	Protection						Ext. CLK Freq.	
V _{LVD}	V _{CC} Low Voltage Detection			2.4		V		
V _{HVD}	Vcc High Voltage Detection			2.7		V		


Notes:

- 1. All outputs unloaded, inputs at rail.
- 2. CL1 = CL2 = 100 pF.
- 3. Oscillator stopped.
- 4. Oscillator stops when V_{CC} falls below V_{BO} limit.
- 5. It is strongly recommended to add a filter capacitor (minimum 0.1 μ F), physically close to VCC and V_{SS} pins if operating voltage fluctuations are anticipated, such as those resulting from driving an Infrared LED.
- 6. Comparator and Timers are on. Interrupt disabled.
- 7. Typical values shown are at 25 degrees C.

Table 10. GP323HE DC Characteristics

T _A = -40°C to +105°C								
Symbol	Parameter	V _{CC}	Min	Typ(7)	Max	Units	Conditions	Notes
V _{CC}	Supply Voltage		2.0		5.5	V	See Note 5	5
V _{CH}	Clock Input High Voltage	2.0-5.5	0.8 V _{CC}		V _{CC} +0.3	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	2.0-5.5	V _{SS} -0.3		0.4	V	Driven by External Clock Generator	
V_{IH}	Input High Voltage	2.0-5.5	0.7 V _{CC}		V _{CC} +0.3	V		
V _{IL}	Input Low Voltage	2.0-5.5	V _{SS} -0.3		0.2 V _{CC}	V		
V _{OH1}	Output High Voltage	2.0-5.5	V _{CC} -0.4			V	$I_{OH} = -0.5$ mA	

PS023803-0305 DC Characteristics

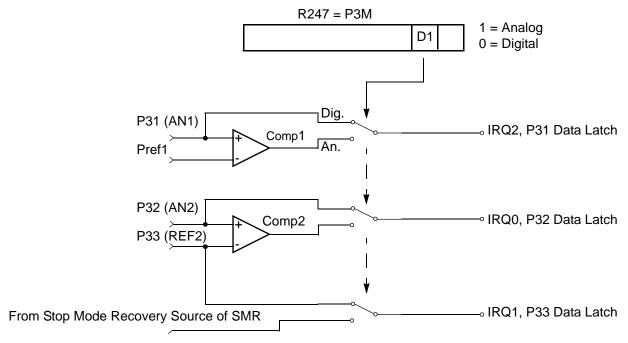


Figure 12. Port 3 Configuration

Two on-board comparators process analog signals on P31 and P32, with reference to the voltage on Pref1 and P33. The analog function is enabled by programming the Port 3 Mode Register (bit 1). P31 and P32 are programmable as rising, falling, or both edge triggered interrupts (IRQ register bits 6 and 7). Pref1 and P33 are the comparator reference voltage inputs. Access to the Counter Timer edge-detection circuit is through P31 or P20 (see "T8 and T16 Common Functions—

PS023803-0305 Pin Functions

29

The upper nibble of the register pointer (see Figure 16) selects which working register group, of 16 bytes in the register file, is accessed out of the possible 256. The lower nibble selects the expanded register file bank and, in the case of the Z8 GP family, banks 0, F, and D are implemented. A $_{\rm OH}$ in the lower nibble allows the normal register file (bank 0) to be addressed. Any other value from $_{\rm 1H}$ to $_{\rm FH}$ exchanges the lower 16 registers to an expanded register bank.

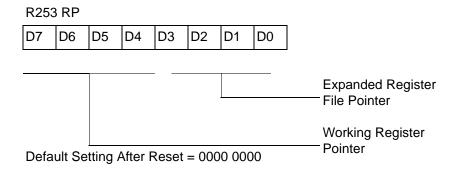


Figure 16. Register Pointer

Example: Z8 GP: (See Figure 15 on page 28)

R253 RP = 00h

R0 = Port 0

R1 = Port 1

R2 = Port 2

R3 = Port 3

But if:

R253 RP = 0Dh

R0 = CTR0

R1 = CTR1

R2 = CTR2

R3 = Reserved

Timers

T8_Capture_HI—HI8(D)0BH

This register holds the captured data from the output of the 8-bit Counter/Timer0. Typically, this register holds the number of counts when the input signal is 1.

Field	Bit Position		Description
T8_Capture_HI	[7:0]	R/W	Captured Data - No Effect

T8_Capture_LO—L08(D)0AH

This register holds the captured data from the output of the 8-bit Counter/Timer0. Typically, this register holds the number of counts when the input signal is 0.

Field	Bit Position		Description
T8_Capture_L0	[7:0]	R/W	Captured Data - No Effect

T16_Capture_HI—HI16(D)09H

This register holds the captured data from the output of the 16-bit Counter/ Timer16. This register holds the MS-Byte of the data.

Field	Bit Position		Description
T16_Capture_HI	[7:0]	R/W	Captured Data - No Effect

T16_Capture_LO—L016(D)08H

This register holds the captured data from the output of the 16-bit Counter/ Timer16. This register holds the LS-Byte of the data.

Field	Bit Position	Description
T16_Capture_LO	[7:0]	R/W Captured Data - No Effect

Counter/Timer2 MS-Byte Hold Register—TC16H(D)07H

Field	Bit Position		Description	
T16_Data_HI	[7:0]	R/W	Data	

Table 16. CTR1(0D)01H T8 and T16 Common Functions (Continued)

Field	Bit Position		Value	Description
Transmit_Submode/	32	R/W		Transmit Mode
Glitch_Filter			00*	Normal Operation
			01	Ping-Pong Mode
			10	T16_Out = 0
			11	T16_Out = 1
				Demodulation Mode
			00*	No Filter
			01	4 SCLK Cycle
			10	8 SCLK Cycle
			11	Reserved
Initial_T8_Out/	1-			Transmit Mode
Rising Edge		R/W	0*	T8_OUT is 0 Initially
			1	T8_OUT is 1 Initially
				Demodulation Mode
		R	0*	No Rising Edge
			1	Rising Edge Detected
		W	0	No Effect
			1	Reset Flag to 0
Initial_T16_Out/	0			Transmit Mode
Falling_Edge		R/W	0*	T16_OUT is 0 Initially
			1	T16_OUT is 1 Initially
				Demodulation Mode
		R	0*	No Falling Edge
			1	Falling Edge Detected
		W	0	No Effect
			1	Reset Flag to 0

Note:

Mode

If the result is 0, the counter/timers are in TRANSMIT mode; otherwise, they are in DEMODULATION mode.

P36_Out/Demodulator_Input

In TRANSMIT Mode, this bit defines whether P36 is used as a normal output pin or the combined output of T8 and T16.

In DEMODULATION Mode, this bit defines whether the input signal to the Counter/Timers is from P20 or P31.

If the input signal is from Port 31, a capture event may also generate an IRQ2 interrupt. To prevent generating an IRQ2, either disable the IRQ2 interrupt by clearing its IMR bit D2 or use P20 as the input.

^{*}Default at Power-On Reset

^{*}Default at Power-On Reset. Not reset with Stop Mode recovery.

Table 17. CTR2(D)02H: Counter/Timer16 Control Register

Field	Bit Position		Value	Description
T16_Enable	7	R	0*	Counter Disabled
			1	Counter Enabled
		W	0	Stop Counter
			1	Enable Counter
Single/Modulo-N	-6	R/W		Transmit Mode
			0*	Modulo-N
			1	Single Pass
				Demodulation Mode
			0	T16 Recognizes Edge
			1	T16 Does Not Recognize
				Edge
Time_Out	5	R	0*	No Counter Timeout
			1	Counter Timeout
				Occurred
		W	0	No Effect
			1	Reset Flag to 0
T16 _Clock	43	R/W	00**	SCLK
			01	SCLK/2
			10	SCLK/4
			11	SCLK/8
Capture_INT_Mask	2	R/W	0**	Disable Data Capture Int.
			1	Enable Data Capture Int.
Counter_INT_Mask	1-	R/W	0*	Disable Timeout Int.
				Enable Timeout Int.
P35_Out	0	R/W	0*	P35 as Port Output
			1	T16 Output on P35

Note:

T16_Enable

This field enables T16 when set to 1.

Single/Modulo-N

In TRANSMIT Mode, when set to 0, the counter reloads the initial value when it reaches the terminal count. When set to 1, the counter stops when the terminal count is reached.

^{*}Indicates the value upon Power-On Reset.

^{**}Indicates the value upon Power-On Reset. Not reset with a Stop Mode recovery.

In Demodulation Mode, when set to 0, T16 captures and reloads on detection of all the edges. When set to 1, T16 captures and detects on the first edge but ignores the subsequent edges. For details, see the description of T16 Demodulation Mode on page 47.

Time_Out

This bit is set when T16 times out (terminal count reached). To reset the bit, write a 1 to this location.

T16 Clock

This bit defines the frequency of the input signal to Counter/Timer16.

Capture_INT_Mask

This bit is set to allow an interrupt when data is captured into LO16 and HI16.

Counter_INT_Mask

Set this bit to allow an interrupt when T16 times out.

P35_Out

This bit defines whether P35 is used as a normal output pin or T16 output.

CTR3 T8/T16 Control Register—CTR3(D)03H

Table 18 lists and briefly describes the fields for this register. This register allows the T_8 and T_{16} counters to be synchronized.

Table 18. CTR3 (D)03H: T8/T16 Control Register

Field	Bit Position		Value	Description
T ₁₆ Enable	7	R	0*	Counter Disabled
		R	1	Counter Enabled
		W	0	Stop Counter
		W	1	Enable Counter
T ₈ Enable	-6	R	0*	Counter Disabled
-		R	1	Counter Enabled
		W	0	Stop Counter
		W	1	Enable Counter
Sync Mode	5	R/W	0**	Disable Sync Mode
•			1	Enable Sync Mode

Note: The letter h denotes hexadecimal values.

Transition from 0 to FFh is not a timeout condition.

 \bigwedge

Caution: Using the same instructions for stopping the counter/timers and setting the status bits is not recommended.

Two successive commands are necessary. First, the counter/timers must be stopped. Second, the status bits must be reset. These commands are required because it takes one counter/timer clock interval for the initiated event to actually occur. See Figure 21 and Figure 22.

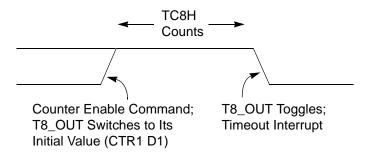


Figure 21. T8_OUT in Single-Pass Mode

Figure 22. T8_OUT in Modulo-N Mode

T8 Demodulation Mode

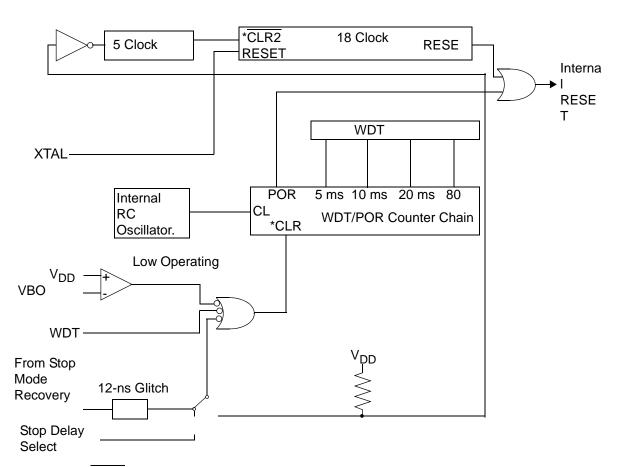
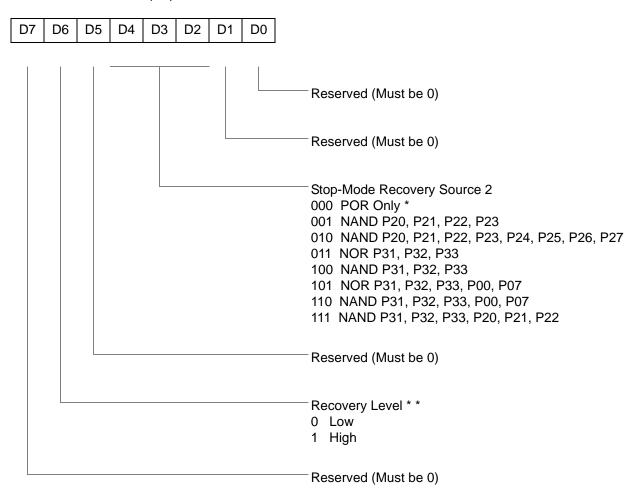

The user must program TC8L and TC8H to FFH. After T8 is enabled, when the first edge (rising, falling, or both depending on CTR1, D5; D4) is detected, it starts to count down. When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current value of T8 is complemented and put into one of the capture registers. If it is a positive edge, data is put

Table 23. Watch-Dog Timer Time Select

D1	D0	Timeout of Internal RC-Oscillator
0	0	5ms min.
0	1	10ms min.
1	0	20ms min.
1	1	80ms min.

WDTMR During Halt (D2)


This bit determines whether or not the WDT is active during HALT Mode. A 1 indicates active during HALT. The default is 1. See Figure 38.

^{*} CLR1 and CLR2 enable the WDT/POR and 18 Clock Reset timers respectively upon a Low-to-

Figure 38. Resets and WDT

SMR2(0F)0DH

Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery.

Figure 46. Stop Mode Recovery Register 2 ((0F)0DH:D2-D4, D6 Write Only)

^{*} Default setting after reset. Not reset with a Stop Mode recovery.

^{* *} At the XOR gate input

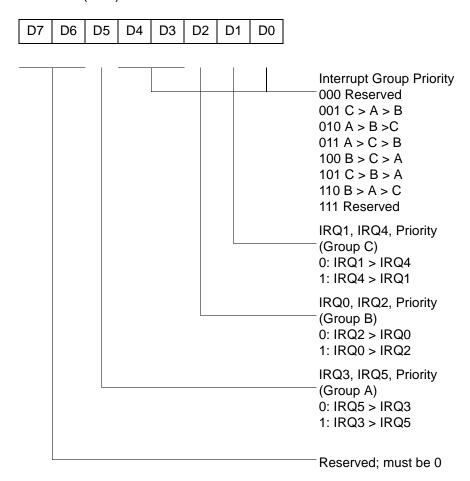
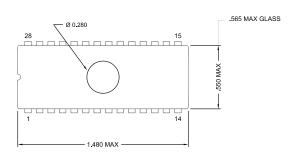
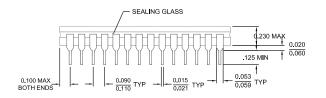




Figure 51. Interrupt Priority Register (F9H: Write Only)

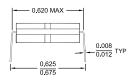
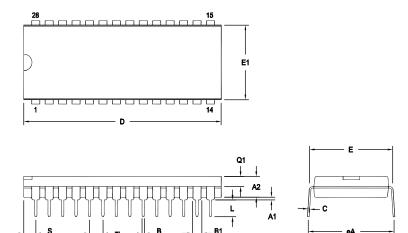



Figure 63. 28-Pin CDIP Package Diagram

SYMBOL OPT#		MILLIN	IETER	INCH		
GIMBOL	011#	MIN	MAX	MIN	MAX	
A1		0.38	1.02	.015	.040	
A2		3.18	4.19	.125	.165	
В		0.38	0.53	.015	.021	
B1	01	1.40	1.65	.055	.065	
В	02	1.14	1.40	.045	.055	
С		0.23	0.38	.009	.015	
D	01	36.58	37.34	1.440	1.470	
	02	35.31	35.94	1.390	1.415	
E		15.24	15.75	.600	.620	
E1	01	13.59	14.10	.535	.555	
	02	12.83	13.08	.505	.515	
е		2.54 TYP		.100 BSC		
eA		15.49	16.76	.610	.660	
L		3.05	3.81	.120	.150	
Q1	01	1.40	1.91	.055	.075	
_ .	02	1.40	1.78	.055	.070	
	01	1.52	2.29	.060	.090	
S	02	1.02	1.52	.040	.060	

CONTROLLING DIMENSIONS: INCH

OPTION TABLE		
OPTION#	PACKAGE	
01	STANDARD	
02	IDF	

Note: ZiLOG supplies both options for production. Component layout PCB design should cover bigger option 01.

Figure 64. 28-Pin PDIP Package Diagram

PS023803-0305 Package Information

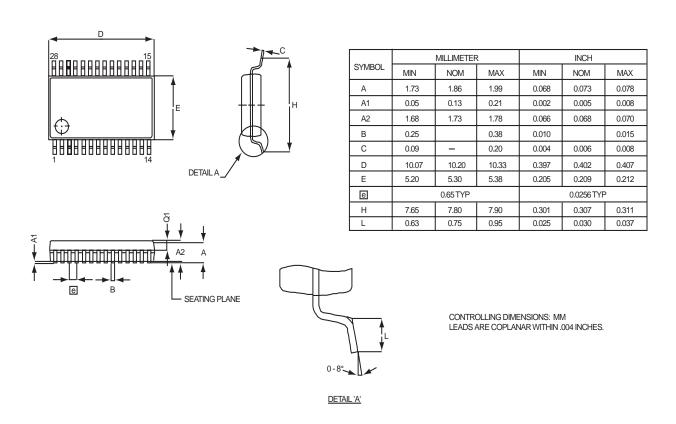


Figure 65. 28-Pin SSOP Package Diagram

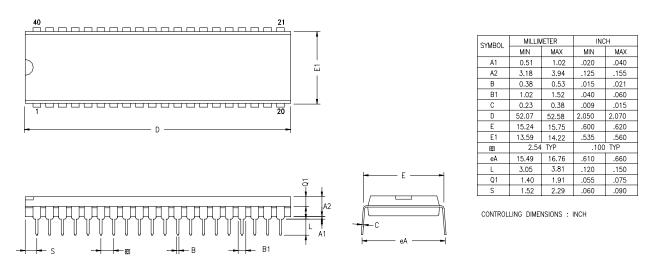


Figure 66. 40-Pin PDIP Package Diagram

PS023803-0305 Package Information

pin 4	program memory map 26
E	RAM 25
EPROM	register description 65
selectable options 64	register file 30
expanded register file 26	register pointer 29
expanded register file architecture 28	register pointer detail 31
expanded register file control registers 71	SMR2(F)0D1h register 40
flag 80	stack 31
interrupt mask register 79	TC16H(D)07h register 32
interrupt priority register 78	TC16L(D)06h register 33
interrupt request register 79	TC8H(D)05h register 33
port 0 and 1 mode register 77	TC8L(D)04h register 33
port 2 configuration register 75	G
port 3 mode register 76	glitch filter circuitry 40
port configuration register 75	H
register pointer 80	halt instruction, counter/timer 54
stack pointer high register 81	I
stack pointer low register 81	input circuit 40
stop-mode recovery register 73	interrupt block diagram, counter/timer 51
stop-mode recovery register 2 74	interrupt types, sources and vectors 52
T16 control register 69	L
T8 and T16 common control functions reg-	low-voltage detection register 65
ister 67	M
T8/T16 control register 70	memory, program 25
TC8 control register 66	modulo-N mode
watch-dog timer register 75	T16_OUT 47
F	T8_OUT 43
features	0
standby modes 1	oscillator configuration 53
functional description	output circuit, counter/timer 49
counter/timer functional blocks 40	P
CTR(D)01h register 35	package information
CTR0(D)00h register 33	20-pin DIP package diagram 82
CTR0(D)00h register 33 CTR2(D)02h register 37	20-pin SSOP package diagram 84
CTR2(D)02h register 37 CTR3(D)03h register 39	28-pin DIP package diagram 86
, ,	
expanded register file architecture 28	28-pin SOIC package diagram 85
expanded register file architecture 28	28-pin SSOP package diagram 87
HI16(D)09h register 32	40-pin DIP package diagram 87
HI8(D)0Bh register 32	48-pin SSOP package diagram 89
L08(D)0Ah register 32	pin configuration
L0I6(D)08h register 32	20-pin DIP/SOIC/SSOP 5