E·XFL

Zilog - ZGP323HSH2016C Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	16
Program Memory Size	16KB (16K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323hsh2016c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- : 00		04	~
Figure 68.	48-Pin SSOP Package Design		J

Absolute Maximum Ratings

Stresses greater than those listed in Table 8 might cause permanent damage to the device. This rating is a stress rating only. Functional operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period might affect device reliability.

Table 7. Absolute Maximum Ratings

Parameter	Minimum	Maximum	Units	Notes
Ambient temperature under bias	-40	125	° C	1
Storage temperature	-65	+150	° C	
Voltage on any pin with respect to V_{SS}	-0.3	7.0	V	2
Voltage on V_{DD} pin with respect to V_{SS}	-0.3	7.0	V	
Maximum current on input and/or inactive output pin	-5	+5	μA	
Maximum output current from active output pin	-25	+25	mA	
Maximum current into V_{DD} or out of V_{SS}		75	mA	
Notos:				

Notes:

1. See Ordering Information.

2. This voltage applies to all pins except the following: V_{DD}, P32, P33 and RESET.

Standard Test Conditions

The characteristics listed in this product specification apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (see Figure 7).

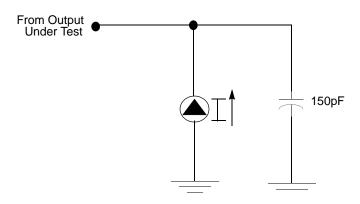


Figure 7. Test Load Diagram

			T _A =0°C t	o +70°C				
Symbol	Parameter	V _{CC}	Min	Typ(7)	Max	Units	Conditions	Notes
I _{OL}	Output Leakage	2.0-5.5	-1		1	μA	$V_{IN} = 0V, V_{CC}$	
I _{CC}	Supply Current	2.0V		1	3	mA	at 8.0 MHz	1, 2
		3.6V		5	10	mA	at 8.0 MHz	1, 2
		5.5V		10	15	mA	at 8.0 MHz	1, 2
I _{CC1}	Standby Current	2.0V		0.5	1.6	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
	(HALT Mode)	3.6V		0.8	2.0	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
		5.5V		1.3	3.2	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
I _{CC2}	Standby Current (Stop	2.0V		1.6	8	μΑ	V _{IN} = 0 V, V _{CC} WDT not Running	3
	Mode)	3.6V		1.8	10	μA	$V_{IN} = 0 V, V_{CC} WDT not Running$	3
		5.5V		1.9	12	μA	$V_{IN} = 0 V, V_{CC} WDT not Running$	3
		2.0V		5	20	μA	V _{IN} = 0 V, V _{CC} WDT is Running	3
		3.6V		8	30	μA	V _{IN} = 0 V, V _{CC} WDT is Running	3
		5.5V		15	45	μA	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3
I _{LV}	Standby Current (Low Voltage)			1.2	6	μA	Measured at 1.3V	4
V _{BO}	V _{CC} Low Voltage			1.9	2.0	V	8MHz maximum	
	Protection						Ext. CLK Freq.	
V _{LVD}	V _{CC} Low Voltage Detection			2.4		V		
V _{HVD}	Vcc High Voltage Detection			2.7		V		

Table 9. GP323HS DC Characteristics (Continued)

Notes:

1. All outputs unloaded, inputs at rail.

2. CL1 = CL2 = 100 pF.

3. Oscillator stopped.

4. Oscillator stops when V_{CC} falls below V_{BO} limit.

 It is strongly recommended to add a filter capacitor (minimum 0.1 μF), physically close to VCC and V_{SS} pins if operating voltage fluctuations are anticipated, such as those resulting from driving an Infrared LED.

- 6. Comparator and Timers are on. Interrupt disabled.
- 7. Typical values shown are at 25 degrees C.

Table 10. GP323HE DC Characteristics

T _A = -40°C to +105°C								
Symbol	Parameter	V _{CC}	Min	Typ(7)	Max	Units	Conditions	Notes
V _{CC}	Supply Voltage		2.0		5.5	V	See Note 5	5
V _{CH}	Clock Input High Voltage	2.0-5.5	0.8 V _{CC}		V _{CC} +0.3	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	2.0-5.5	V _{SS} –0.3		0.4	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	2.0-5.5	0.7 V _{CC}		V _{CC} +0.3	V		
V _{IL}	Input Low Voltage	2.0-5.5	V _{SS} -0.3		0.2 V _{CC}	V		
V _{OH1}	Output High Voltage	2.0-5.5	V _{CC} -0.4			V	$I_{OH} = -0.5 \text{mA}$	

				–40°C to –40°C to	o +70°C (S) +105°C (E) +125°C (A) MHz			Watch-Dog Timer Mode Register
No	Symbol	Parameter	V _{CC}	Minimum	Maximum	Units	Notes	(D1, D0)
1	ТрС	Input Clock Period	2.0–5.5	121	DC	ns	1	
2	TrC,TfC	Clock Input Rise and Fall Times	2.0–5.5		25	ns	1	
3	TwC	Input Clock Width	2.0–5.5	37		ns	1	
4	TwTinL	Timer Input Low Width	2.0 5.5	100 70		ns	1	
5	TwTinH	Timer Input High Width	2.0–5.5	3ТрС			1	
6	TpTin	Timer Input Period	2.0–5.5	8TpC			1	
7	TrTin,TfTin	Timer Input Rise and Fall Timers	2.0–5.5		100	ns	1	
8	TwIL	Interrupt Request Low Time	2.0 5.5	100 70		ns	1, 2	
9	TwlH	Interrupt Request Input High Time	2.0–5.5	5TpC			1, 2	
10	Twsm	Stop-Mode Recovery Width	2.0–5.5	12		ns	3	
		Spec		5TpC			4	
11	Tost	Oscillator Start-Up Time	2.0–5.5		5TpC		4	
12	Twdt	Watch-Dog Timer Delay Time	2.0–5.5 2.0–5.5 2.0–5.5 2.0–5.5	5 10 20 80		ms ms ms ms		0, 0 0, 1 1, 0 1, 1
13	T _{POR}	Power-On Reset	2.0–5.5	2.5	10	ms		

Table 13. AC Characteristics

Notes:

1. Timing Reference uses 0.9 V_{CC} for a logic 1 and 0.1 V_{CC} for a logic 0. 2. Interrupt request through Port 3 (P33–P31).

3. SMR – D5 = 1.

4. SMR - D5 = 0.

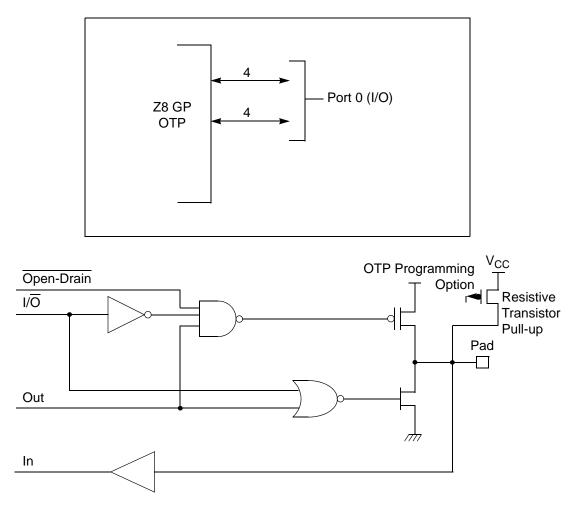
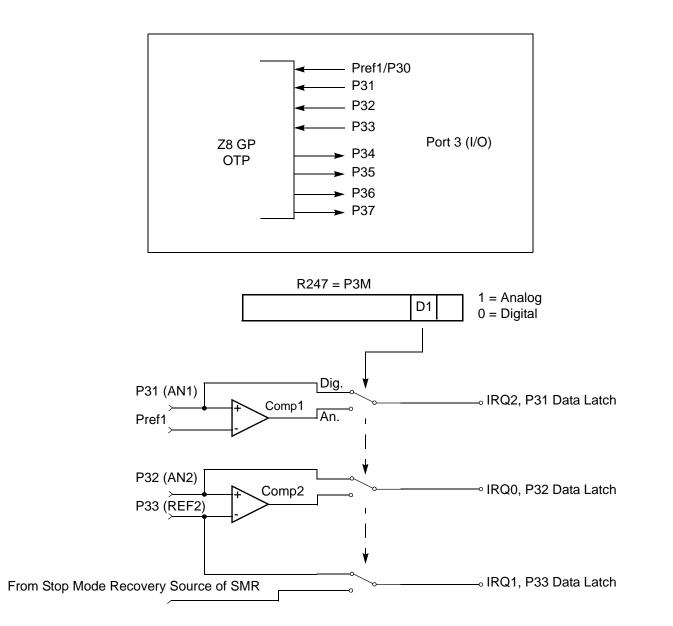


Figure 9. Port 0 Configuration

Port 1 (P17–P10)


Port 1 (see Figure 10) Port 1 can be configured for standard port input or output mode. After POR, Port 1 is configured as an input port. The output drivers are either push-pull or open-drain and are controlled by bit D1 in the PCON register.

Note: The Port 1 direction is reset to its default state following an SMR.

Figure 12. Port 3 Configuration

Two on-board comparators process analog signals on P31 and P32, with reference to the voltage on Pref1 and P33. The analog function is enabled by programming the Port 3 Mode Register (bit 1). P31 and P32 are programmable as rising, falling, or both edge triggered interrupts (IRQ register bits 6 and 7). Pref1 and P33 are the comparator reference voltage inputs. Access to the Counter Timer edgedetection circuit is through P31 or P20 (see "T8 and T16 Common Functions—

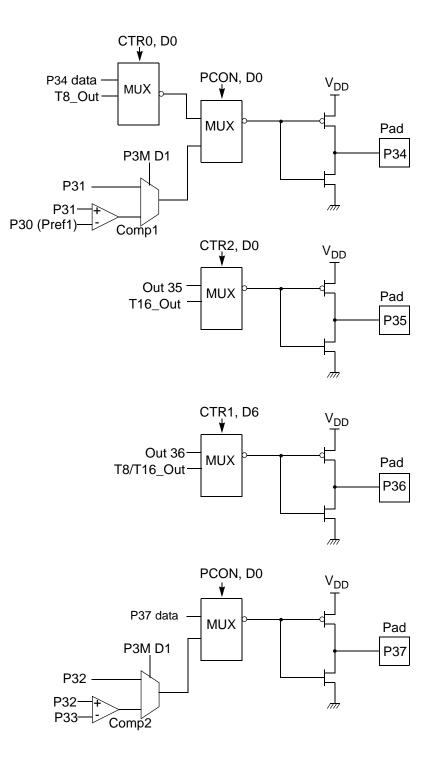


Figure 13. Port 3 Counter/Timer Output Configuration

ZGP323H Product Specification

Leastion of C	0700	Not Accessible
Location of 3	2768 1	On-Chip
instruction		ROM
executed after RESET		
	12	Reset Start Address
	11	IRQ5
	10	IRQ5
	9	IRQ4
	8	IRQ4
	7	IRQ3
Interrupt Vector (Lower Byte)	6	IRQ3
	5	IRQ2
Interrupt Vector	4 r	✓ IRQ2
(Upper Byte		IRQ1
	2	IRQ1
	1	IRQ0
	0	IRQ0

Expanded Register File

The register file has been expanded to allow for additional system control registers and for mapping of additional peripheral devices into the register address area. The Z8[®] register address space (R0 through R15) has been implemented as 16 banks, with 16 registers per bank. These register groups are known as the


ERF (Expanded Register File). Bits 7–4 of register RP select the working register group. Bits 3–0 of register RP select the expanded register file bank.

Note: An expanded register bank is also referred to as an expanded register group (see Figure 15).

The upper nibble of the register pointer (see Figure 16) selects which working register group, of 16 bytes in the register file, is accessed out of the possible 256. The lower nibble selects the expanded register file bank and, in the case of the Z8 GP family, banks 0, F, and D are implemented. A OH in the lower nibble allows the normal register file (bank 0) to be addressed. Any other value from 1H to FH exchanges the lower 16 registers to an expanded register bank.

Figure 16. Register Pointer

Example: Z8 GP: (See Figure 15 on page 28)

R253 RP = 00h R0 = Port 0 R1 = Port 1 R2 = Port 2 R3 = Port 3

But if:

R253 RP = 0Dh R0 = CTR0 R1 = CTR1 R2 = CTR2R3 = Reserved


The counter/timers are mapped into ERF group D. Access is easily performed using the following:

LD	RP, #0Dh	;	Select ERF D
for access to bank D			
		;	(working
register group 0)			
LD	R0,#xx	;	load CTR0
LD	1, #xx	;	load CTR1
LD	R1, 2	;	CTR2→CTR1
LD	RP, #0Dh	;	Select ERF D
for access to bank D			
		;	(working
register group 0)			
LD	RP, #7Dh	;	Select
expanded register bank	D and working	;	register
group 7 of bank 0 for a	ccess.		
LD	71h, 2		
; CTRL2 \rightarrow register 71h			
LD	R1, 2		
; CTRL2 \rightarrow register 71h			

Register File

>

The register file (bank 0) consists of 4 I/O port registers, 237 general-purpose registers, 16 control and status registers (R0–R3, R4–R239, and R240–R255, respectively), and two expanded registers groups in Banks D (see Table 15) and F. Instructions can access registers directly or indirectly through an 8-bit address field, thereby allowing a short, 4-bit register address to use the Register Pointer (Figure 17). In the 4-bit mode, the register file is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working register group.

Timers

T8_Capture_HI—HI8(D)0BH

This register holds the captured data from the output of the 8-bit Counter/Timer0. Typically, this register holds the number of counts when the input signal is 1.

Field	Bit Position		Description
T8_Capture_HI	[7:0]	R/W	Captured Data - No Effect

T8_Capture_LO—L08(D)0AH

This register holds the captured data from the output of the 8-bit Counter/Timer0. Typically, this register holds the number of counts when the input signal is 0.

Field	Bit Position		Description	
T8_Capture_L0	[7:0]	R/W	Captured Data - No Effect	

T16_Capture_HI—HI16(D)09H

This register holds the captured data from the output of the 16-bit Counter/ Timer16. This register holds the MS-Byte of the data.

Field	Bit Position		Description	
T16_Capture_HI	[7:0]	R/W	Captured Data - No Effect	

T16_Capture_LO—L016(D)08H

This register holds the captured data from the output of the 16-bit Counter/ Timer16. This register holds the LS-Byte of the data.

Field	Bit Position	Description
T16_Capture_LO	[7:0]	R/W Captured Data - No Effect

Counter/Timer2 MS-Byte Hold Register—TC16H(D)07H

Field	Bit Position		Description
T16_Data_HI	[7:0]	R/W	Data

T8/T16_Logic/Edge _Detect

In TRANSMIT Mode, this field defines how the outputs of T8 and T16 are combined (AND, OR, NOR, NAND).

In DEMODULATION Mode, this field defines which edge should be detected by the edge detector.

Transmit_Submode/Glitch Filter

In Transmit Mode, this field defines whether T8 and T16 are in the PING-PONG mode or in independent normal operation mode. Setting this field to "NORMAL OPERATION Mode" terminates the "PING-PONG Mode" operation. When set to 10, T16 is immediately forced to a 0; a setting of 11 forces T16 to output a 1.

In DEMODULATION Mode, this field defines the width of the glitch that must be filtered out.

Initial_T8_Out/Rising_Edge

In TRANSMIT Mode, if 0, the output of T8 is set to 0 when it starts to count. If 1, the output of T8 is set to 1 when it starts to count. When the counter is not enabled and this bit is set to 1 or 0, T8_OUT is set to the opposite state of this bit. This ensures that when the clock is enabled, a transition occurs to the initial state set by CTR1, D1.

In DEMODULATION Mode, this bit is set to 1 when a rising edge is detected in the input signal. In order to reset the mode, a 1 should be written to this location.

Initial_T16 Out/Falling _Edge

In TRANSMIT Mode, if it is 0, the output of T16 is set to 0 when it starts to count. If it is 1, the output of T16 is set to 1 when it starts to count. This bit is effective only in Normal or PING-PONG Mode (CTR1, D3; D2). When the counter is not enabled and this bit is set, T16_OUT is set to the opposite state of this bit. This ensures that when the clock is enabled, a transition occurs to the initial state set by CTR1, D0.

In DEMODULATION Mode, this bit is set to 1 when a falling edge is detected in the input signal. In order to reset it, a 1 should be written to this location.

Note: Modifying CTR1 (D1 or D0) while the counters are enabled causes unpredictable output from T8/16_OUT.

CTR2 Counter/Timer 16 Control Register—CTR2(D)02H

Table 17 lists and briefly describes the fields for this register.

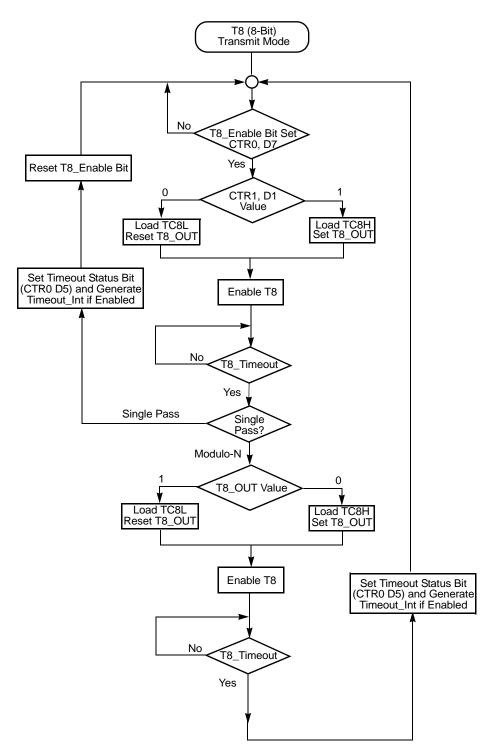
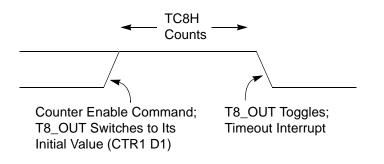
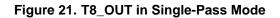


Figure 19. Transmit Mode Flowchart


Note: The letter h denotes hexadecimal values.


Transition from 0 to FFh is not a timeout condition.

Caution: Using the same instructions for stopping the counter/timers and setting the status bits is not recommended.

Two successive commands are necessary. First, the counter/timers must be stopped. Second, the status bits must be reset. These commands are required because it takes one counter/timer clock interval for the initiated event to actually occur. See Figure 21 and Figure 22.

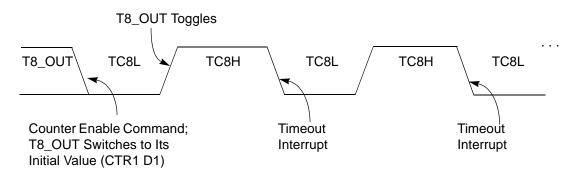


Figure 22. T8_OUT in Modulo-N Mode

T8 Demodulation Mode

The user must program TC8L and TC8H to FFH. After T8 is enabled, when the first edge (rising, falling, or both depending on CTR1, D5; D4) is detected, it starts to count down. When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current value of T8 is complemented and put into one of the capture registers. If it is a positive edge, data is put

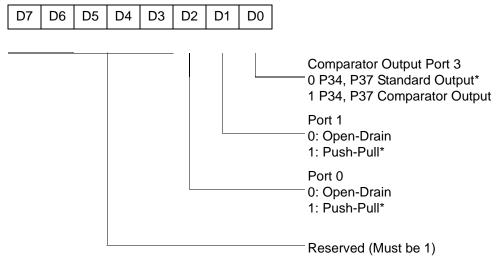
During PING-PONG Mode

The enable bits of T8 and T16 (CTR0, D7; CTR2, D7) are set and cleared alternately by hardware. The timeout bits (CTR0, D5; CTR2, D5) are set every time the counter/timers reach the terminal count.

Interrupts

The ZGP323H features six different interrupts (Table 19). The interrupts are maskable and prioritized (Figure 30). The six sources are divided as follows: three sources are claimed by Port 3 lines P33–P31, two by the counter/timers (Table 19) and one for low voltage detection. The Interrupt Mask Register (globally or individually) enables or disables the six interrupt requests.

The source for IRQ is determined by bit 1 of the Port 3 mode register (P3M). When in digital mode, Pin P33 is the source. When in analog mode the output of the Stop mode recovery source logic is used as the source for the interrupt. See Figure 35, Stop Mode Recovery Source, on page 59.



FF	NOP	; clear the pipeline
6F	Stop	; enter Stop Mode
or		
FF	NOP	; clear the pipeline
7F	HALT	; enter HALT Mode

Port Configuration Register

The Port Configuration (PCON) register (Figure 32) configures the comparator output on Port 3. It is located in the expanded register 2 at Bank F, location 00.

PCON(FH)00H

* Default setting after reset

Figure 32. Port Configuration Register (PCON) (Write Only)

Comparator Output Port 3 (D0)

Bit 0 controls the comparator used in Port 3. A 1 in this location brings the comparator outputs to P34 and P37, and a 0 releases the Port to its standard I/O configuration.

Port 1 Output Mode (D1)

Bit 1 controls the output mode of port 1. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.

ZGP323H Product Specification

Table 22. Stop Mode Recovery Source

SMR:432			Operation	
D4	D3	D2	Description of Action	
0	0	0	POR and/or external reset recovery	
0	0	1	Reserved	
0	1	0	P31 transition	
0	1	1	P32 transition	
1	0	0	P33 transition	
1	0	1	P27 transition	
1	1	0	Logical NOR of P20 through P23	
1	1	1	Logical NOR of P20 through P27	

Note: Any Port 2 bit defined as an output drives the corresponding input to the default state. This condition allows the remaining inputs to control the AND/OR function. Refer to SMR2 register on page 61 for other recover sources.

Stop Mode Recovery Delay Select (D5)

This bit, if Low, disables the T_{POR} delay after Stop Mode Recovery. The default configuration of this bit is 1. If the "fast" wake up is selected, the Stop Mode Recovery source must be kept active for at least 5 TpC.

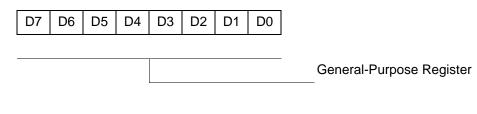
Note: This bit must be set to 1 if using a crystal or resonator clock source. The T_{POR} delay allows the clock source to stabilize before executing instructions.

Stop Mode Recovery Edge Select (D6)

A 1 in this bit position indicates that a High level on any one of the recovery sources wakes the device from Stop Mode. A 0 indicates Low level recovery. The default is 0 on POR.

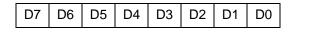
Cold or Warm Start (D7)

This bit is read only. It is set to 1 when the device is recovered from Stop Mode. The bit is set to 0 when the device reset is other than Stop Mode Recovery (SMR).



Notes: Take care in differentiating the Transmit Mode from Demodulation Mode. Depending on which of these two modes is operating, the CTR1 bit has different functions.

Changing from one mode to another cannot be performed without disabling the counter/timers.



R254 SPH(FEH)

Figure 56. Stack Pointer High (FEH: Read/Write)

R255 SPL(FFH)

Stack Pointer Low Byte (SP7–SP0)

Figure 57. Stack Pointer Low (FFH: Read/Write)

Package Information

Package information for all versions of ZGP323H is depicted in Figures 59 through Figure 68.