

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	24
Program Memory Size	16KB (16K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323hsh2816g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Absolute Maximum Ratings

Stresses greater than those listed in Table 8 might cause permanent damage to the device. This rating is a stress rating only. Functional operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period might affect device reliability.

Table 7. Absolute Maximum Ratings

Parameter	Minimum	Maximum	Units	Notes
Ambient temperature under bias	-40	125	° C	1
Storage temperature	- 65	+150	° C	
Voltage on any pin with respect to V _{SS}	-0.3	7.0	V	2
Voltage on V _{DD} pin with respect to V _{SS}	-0.3	7.0	V	
Maximum current on input and/or inactive output pin	- 5	+5	μΑ	
Maximum output current from active output pin	-25	+25	mA	
Maximum current into V _{DD} or out of V _{SS}		75	mA	

Notes:

- 1. See Ordering Information.
- 2. This voltage applies to all pins except the following: V_{DD}, P32, P33 and RESET.

Standard Test Conditions

The characteristics listed in this product specification apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin (see Figure 7).

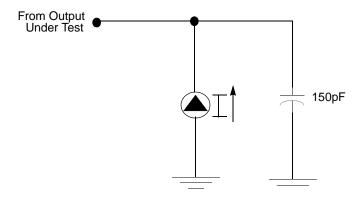


Figure 7. Test Load Diagram

Table 11. GP323HA DC Characteristics

			$T_A = -40^{\circ}C$	to +12	5°C			
Symbol	Parameter	V_{CC}	Min	Typ(7)	Max	Units	Conditions	Notes
V _{CC}	Supply Voltage		2.0		5.5	V	See Note 5	5
V _{CH}	Clock Input High Voltage	2.0-5.5	0.8 V _{CC}		V _{CC} +0.3	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	2.0-5.5	V _{SS} -0.3		0.4	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	2.0-5.5	0.7 V _{CC}		V _{CC} +0.3	V		
V _{IL}	Input Low Voltage	2.0-5.5	V _{SS} -0.3		0.2 V _{CC}	V		
V _{OH1}	Output High Voltage	2.0-5.5	V _{CC} -0.4			V	$I_{OH} = -0.5$ mA	
V _{OH2}	Output High Voltage (P36, P37, P00, P01)	2.0-5.5	V _{CC} -0.8			V	$I_{OH} = -7 \text{mA}$	
V _{OL1}	Output Low Voltage	2.0-5.5			0.4	V	I _{OL} = 4.0mA	
V _{OL2}	Output Low Voltage (P00, P01, P36, P37)	2.0-5.5			8.0	V	I _{OL} = 10mA	
V _{OFFSET}	Comparator Input Offset Voltage	2.0-5.5			25	mV		
V _{REF}	Comparator Reference Voltage	2.0-5.5	0		V _{DD} -1.75	V		
I _{IL}	Input Leakage	2.0-5.5	–1		1	μΑ	V _{IN} = 0V, V _{CC} Pull-ups disabled	
R _{PU}	Pull-up Resistance	2.0V	200		700	ΚΩ	V _{IN} = 0V; Pullups selected by mask	
		3.6V	50		300	ΚΩ	option	
		5.0V	25		175	ΚΩ	_	
I _{OL}	Output Leakage	2.0-5.5	-1		1	μΑ	$V_{IN} = 0V, V_{CC}$	
I _{CC}	Supply Current	2.0V		1	3	mΑ	at 8.0 MHz	1, 2
		3.6V		5	10	mΑ	at 8.0 MHz	1, 2
		5.5V		10	15	mA	at 8.0 MHz	1, 2
I _{CC1}	Standby Current	2.0V		0.5	1.6	mΑ	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
	(HALT Mode)	3.6V		8.0	2.0	mΑ	$V_{IN} = 0V$, Clock at 8.0MHz	1, 2, 6
		5.5V		1.3	3.2	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
I_{CC2}	Standby Current (Stop			1.6	15	μΑ	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT not Running}$	3
	Mode)	3.6V		1.8	20	μΑ	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT not Running}$	3
		5.5V		1.9	25	μA	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT not Running}$	3
		2.0V 3.6V		5	30	μ A	V _{IN} = 0 V, V _{CC} WDT is Running	3 3
		5.5V		8 15	40 60	μA μA	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT is Running}$ $V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT is Running}$	3
I _{LV}	Standby Current (Low Voltage)	J.J V		1.2	6	μА	Measured at 1.3V	4
V _{BO}	V _{CC} Low Voltage Protection			1.9	2.15	V	8MHz maximum Ext. CLK Freq.	
V _{LVD}	V _{CC} Low Voltage Detection			2.4		V		

PS023803-0305 DC Characteristics

AC Characteristics

Figure 8 and Table 13 describe the Alternating Current (AC) characteristics.

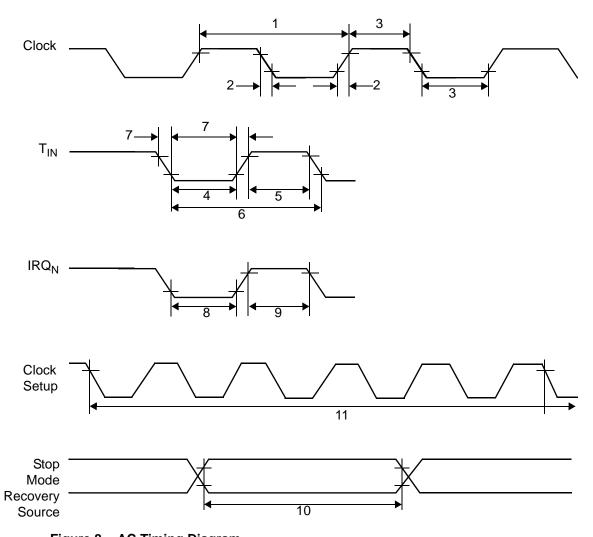
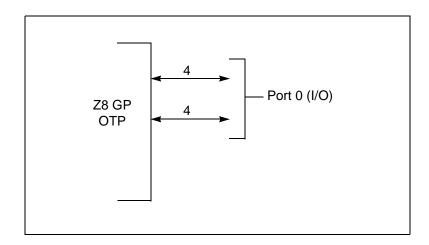



Figure 8. AC Timing Diagram

PS023803-0305 AC Characteristics

19

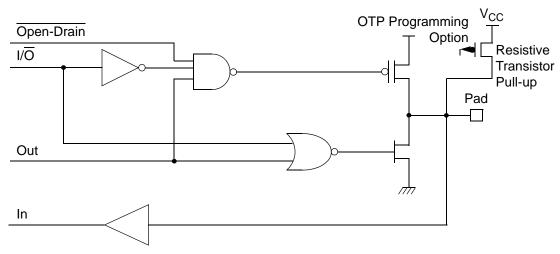


Figure 9. Port 0 Configuration

Port 1 (P17-P10)

Port 1 (see Figure 10) Port 1 can be configured for standard port input or output mode. After POR, Port 1 is configured as an input port. The output drivers are either push-pull or open-drain and are controlled by bit D1 in the PCON register.

Note: The Port 1 direction is reset to its default state following an SMR.

PS023803-0305 Pin Functions

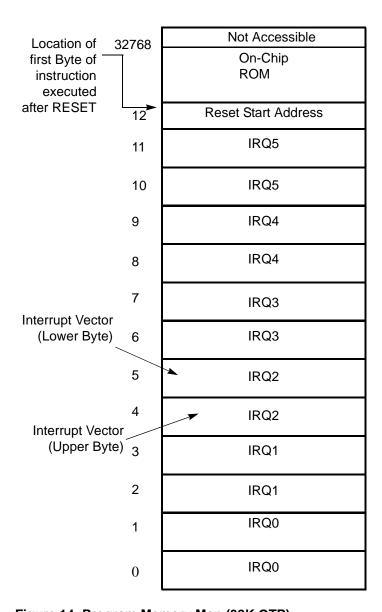


Figure 14. Program Memory Map (32K OTP)

Expanded Register File

The register file has been expanded to allow for additional system control registers and for mapping of additional peripheral devices into the register address area. The Z8[®] register address space (R0 through R15) has been implemented as 16 banks, with 16 registers per bank. These register groups are known as the

31

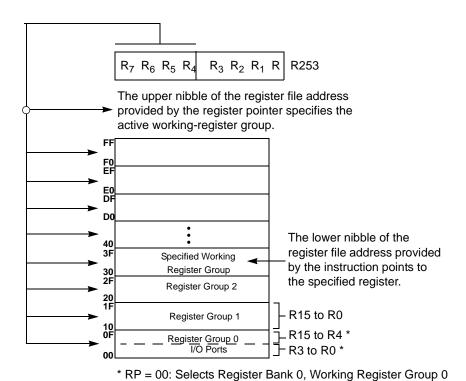


Figure 17. Register Pointer—Detail

Stack

The internal register file is used for the stack. An 8-bit Stack Pointer SPL (R255) is used for the internal stack that resides in the general-purpose registers (R4–R239). SPH (R254) can be used as a general-purpose register.

Timers

T8_Capture_HI—HI8(D)0BH

This register holds the captured data from the output of the 8-bit Counter/Timer0. Typically, this register holds the number of counts when the input signal is 1.

Field	Bit Position		Description
T8_Capture_HI	[7:0]	R/W	Captured Data - No Effect

T8_Capture_LO—L08(D)0AH

This register holds the captured data from the output of the 8-bit Counter/Timer0. Typically, this register holds the number of counts when the input signal is 0.

Field	Bit Position		Description
T8_Capture_L0	[7:0]	R/W	Captured Data - No Effect

T16_Capture_HI—HI16(D)09H

This register holds the captured data from the output of the 16-bit Counter/ Timer16. This register holds the MS-Byte of the data.

Field	Bit Position		Description
T16_Capture_HI	[7:0]	R/W	Captured Data - No Effect

T16_Capture_LO—L016(D)08H

This register holds the captured data from the output of the 16-bit Counter/ Timer16. This register holds the LS-Byte of the data.

Field	Bit Position	Description
T16_Capture_LO	[7:0]	R/W Captured Data - No Effect

Counter/Timer2 MS-Byte Hold Register—TC16H(D)07H

Field	Bit Position		Description
T16_Data_HI	[7:0]	R/W	Data

Table 17. CTR2(D)02H: Counter/Timer16 Control Register

Field	Bit Position		Value	Description
T16_Enable	7	R	0*	Counter Disabled
			1	Counter Enabled
		W	0	Stop Counter
			1	Enable Counter
Single/Modulo-N	-6	R/W		Transmit Mode
			0*	Modulo-N
			1	Single Pass
				Demodulation Mode
			0	T16 Recognizes Edge
			1	T16 Does Not Recognize Edge
Time_Out	5	R	0*	No Counter Timeout
_			1	Counter Timeout
				Occurred
		W	0	No Effect
			1	Reset Flag to 0
T16 _Clock	43	R/W	00**	SCLK
			01	SCLK/2
			10	SCLK/4
			11	SCLK/8
Capture_INT_Mask	2	R/W	0**	Disable Data Capture Int.
			1	Enable Data Capture Int.
Counter_INT_Mask	1-	R/W	0*	Disable Timeout Int.
				Enable Timeout Int.
P35_Out	0	R/W	0*	P35 as Port Output
			1	T16 Output on P35

Note:

T16_Enable

This field enables T16 when set to 1.

Single/Modulo-N

In TRANSMIT Mode, when set to 0, the counter reloads the initial value when it reaches the terminal count. When set to 1, the counter stops when the terminal count is reached.

^{*}Indicates the value upon Power-On Reset.

^{**}Indicates the value upon Power-On Reset. Not reset with a Stop Mode recovery.

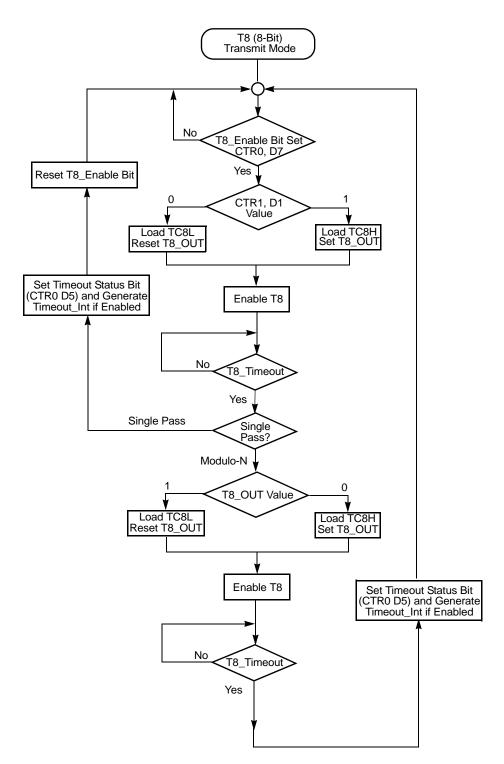


Figure 19. Transmit Mode Flowchart

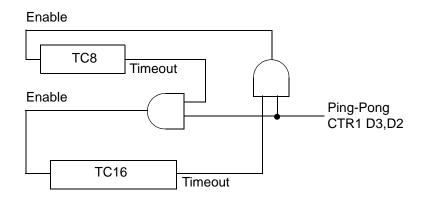


Figure 28. Ping-Pong Mode Diagram

Initiating PING-PONG Mode

First, make sure both counter/timers are not running. Set T8 into Single-Pass mode (CTR0, D6), set T16 into SINGLE-PASS mode (CTR2, D6), and set the Ping-Pong mode (CTR1, D2; D3). These instructions can be in random order. Finally, start PING-PONG mode by enabling either T8 (CTR0, D7) or T16 (CTR2, D7). See Figure 29.

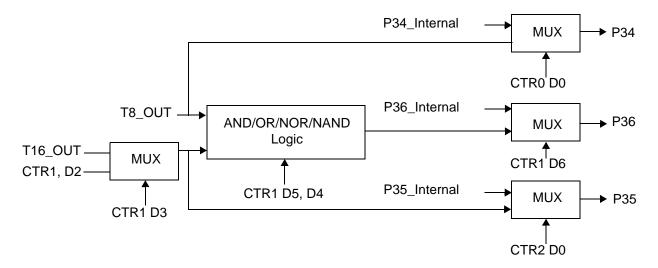


Figure 29. Output Circuit

The initial value of T8 or T16 must not be 1. Stopping the timer and restarting the timer reloads the initial value to avoid an unknown previous value.

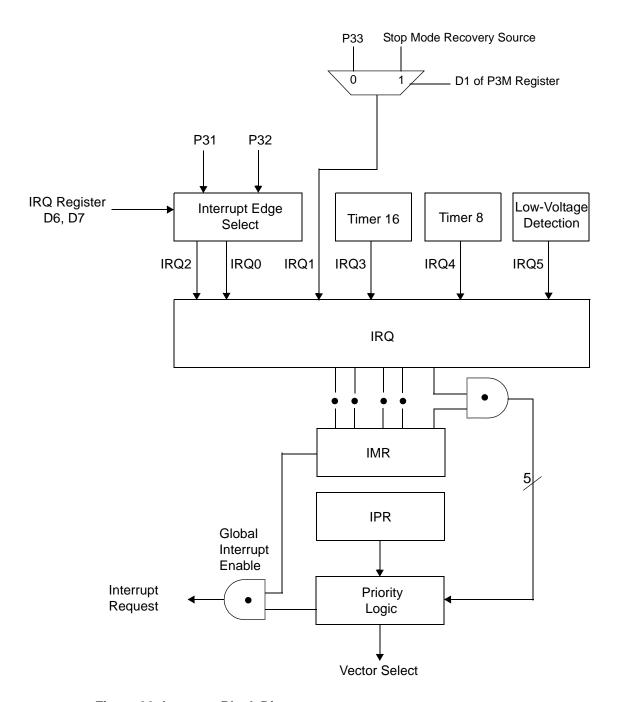
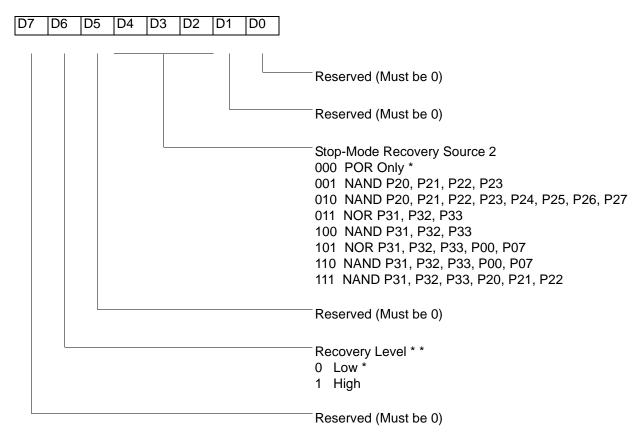



Figure 30. Interrupt Block Diagram

Stop Mode Recovery Register 2 (SMR2)

This register determines the mode of Stop Mode Recovery for SMR2 (Figure 36). SMR2(0F)DH

Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery.

- * Default setting after reset
- * * At the XOR gate input

Figure 36. Stop Mode Recovery Register 2 ((0F)DH:D2-D4, D6 Write Only)

If SMR2 is used in conjunction with SMR, either of the specified events causes a Stop Mode Recovery.

Note: Port pins configured as outputs are ignored as an SMR or SMR2 recovery source. For example, if the NAND or P23–P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23–P21) form the NAND equation.

WDTMR During STOP (D3)

This bit determines whether or not the WDT is active during STOP Mode. Because the XTAL clock is stopped during STOP Mode, the on-board RC has to be selected as the clock source to the WDT/POR counter. A 1 indicates active during Stop. The default is 1.

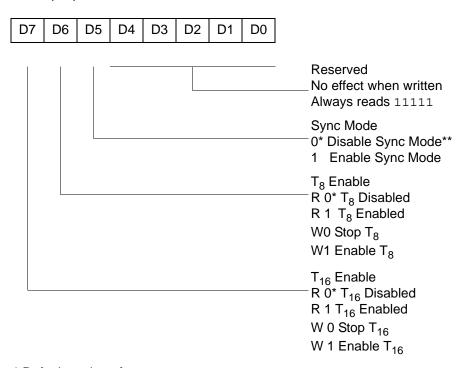
EPROM Selectable Options

There are seven EPROM Selectable Options to choose from based on ROM code requirements. These options are listed in Table 24.

Table 24. EPROM Selectable Options

Port 00-03 Pull-Ups	On/Off
Port 04–07 Pull-Ups	On/Off
Port 10–13 Pull-Ups	On/Off
Port 14–17 Pull-Ups	On/Off
Port 20–27 Pull-Ups	On/Off
EPROM Protection	On/Off
Watch-Dog Timer at Power-On Reset	On/Off

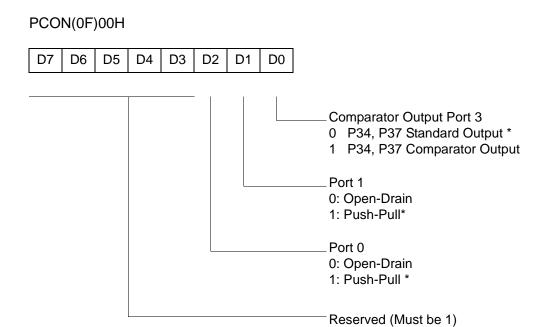
Voltage Brown-Out/Standby


An on-chip Voltage Comparator checks that the V_{DD} is at the required level for correct operation of the device. Reset is globally driven when V_{DD} falls below V_{BO} . A small drop in V_{DD} causes the XTAL1 and XTAL2 circuitry to stop the crystal or resonator clock. If the V_{DD} is allowed to stay above V_{RAM} , the RAM content is preserved. When the power level is returned to above V_{BO} , the device performs a POR and functions normally.

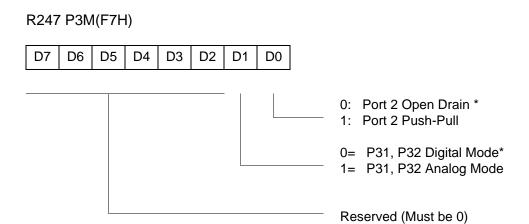
68

Notes: Take care in differentiating the Transmit Mode from Demodulation Mode. Depending on which of these two modes is operating, the CTR1 bit has different functions.

> Changing from one mode to another cannot be performed without disabling the counter/timers.


CTR3(0D)03H

^{*} Default setting after reset.


Figure 42. T8/T16 Control Register (0D)03H: Read/Write (Except Where Noted)

^{**} Default setting after reset. Not reset with a Stop Mode recovery.

^{*} Default setting after reset

Figure 44. Port Configuration Register (PCON)(0F)00H: Write Only)

^{*} Default setting after reset. Not reset with a Stop Mode recovery.

Figure 49. Port 3 Mode Register (F7H: Write Only)

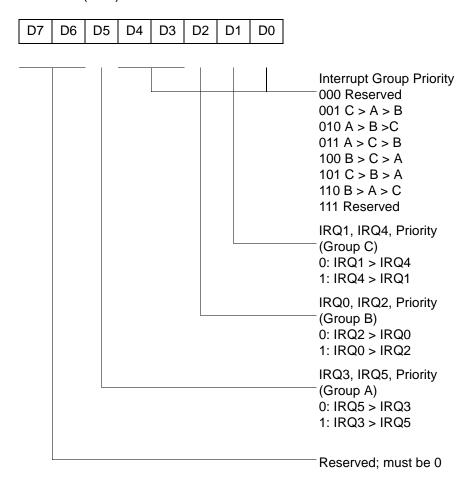


Figure 51. Interrupt Priority Register (F9H: Write Only)

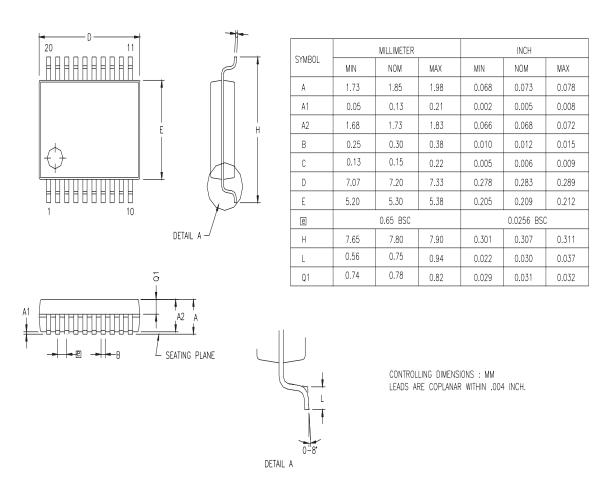


Figure 61. 20-Pin SSOP Package Diagram

PS023803-0305 Package Information

pin 4	program memory map 26
E	RAM 25
EPROM	register description 65
selectable options 64	register file 30
expanded register file 26	register pointer 29
expanded register file architecture 28	register pointer detail 31
expanded register file control registers 71	SMR2(F)0D1h register 40
flag 80	stack 31
interrupt mask register 79	TC16H(D)07h register 32
interrupt priority register 78	TC16L(D)06h register 33
interrupt request register 79	TC8H(D)05h register 33
port 0 and 1 mode register 77	TC8L(D)04h register 33
port 2 configuration register 75	G
port 3 mode register 76	glitch filter circuitry 40
port configuration register 75	H
register pointer 80	halt instruction, counter/timer 54
stack pointer high register 81	I
stack pointer low register 81	input circuit 40
stop-mode recovery register 73	interrupt block diagram, counter/timer 51
stop-mode recovery register 2 74	interrupt types, sources and vectors 52
T16 control register 69	L
T8 and T16 common control functions reg-	low-voltage detection register 65
ister 67	M
T8/T16 control register 70	memory, program 25
TC8 control register 66	modulo-N mode
watch-dog timer register 75	T16_OUT 47
F	T8_OUT 43
features	0
standby modes 1	oscillator configuration 53
functional description	output circuit, counter/timer 49
counter/timer functional blocks 40	P
CTR(D)01h register 35	package information
CTR(D)01h register 33	20-pin DIP package diagram 82
CTR0(D)00h register 33 CTR2(D)02h register 37	20-pin SSOP package diagram 84
CTR2(D)02h register 37 CTR3(D)03h register 39	28-pin DIP package diagram 86
, ,	
expanded register file architecture 28	28-pin SOIC package diagram 85
expanded register file architecture 28	28-pin SSOP package diagram 87
HI16(D)09h register 32	40-pin DIP package diagram 87
HI8(D)0Bh register 32	48-pin SSOP package diagram 89
L08(D)0Ah register 32	pin configuration
L0I6(D)08h register 32	20-pin DIP/SOIC/SSOP 5