Zilog - ZGP323HSH4804C Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	32
Program Memory Size	4KB (4K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	48-BSSOP (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323hsh4804c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 34.	SCLK Circuit	58
Figure 35.	Stop Mode Recovery Source	59
Figure 36.	Stop Mode Recovery Register 2 ((0F)DH:D2–D4, D6 Write Only)	61
Figure 37.	Watch-Dog Timer Mode Register (Write Only)	62
Figure 38.	Resets and WDT	63
Figure 39.	TC8 Control Register ((0D)O0H: Read/Write Except Where Noted)	66
Figure 40.	T8 and T16 Common Control Functions ((0D)01H: Read/Write)	67
Figure 41.	T16 Control Register ((0D) 2H: Read/Write Except Where Noted) .	69
Figure 42.	T8/T16 Control Register (0D)03H: Read/Write (Except Where	
	Noted)	
	Voltage Detection Register	
-	Port Configuration Register (PCON)(0F)00H: Write Only)	72
Figure 45.	Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only)	73
Figure 46.	Stop Mode Recovery Register 2 ((0F)0DH:D2–D4, D6 Write Only)	74
Figure 47.	Watch-Dog Timer Register ((0F) 0FH: Write Only)	75
Figure 48.	Port 2 Mode Register (F6H: Write Only)	75
Figure 49.	Port 3 Mode Register (F7H: Write Only)	76
Figure 50.	Port 0 and 1 Mode Register (F8H: Write Only)	77
Figure 51.	Interrupt Priority Register (F9H: Write Only)	78
Figure 52.	Interrupt Request Register (FAH: Read/Write)	79
Figure 53.	Interrupt Mask Register (FBH: Read/Write)	79
Figure 54.	Flag Register (FCH: Read/Write)	80
Figure 55.	Register Pointer (FDH: Read/Write)	80
Figure 56.	Stack Pointer High (FEH: Read/Write)	81
Figure 57.	Stack Pointer Low (FFH: Read/Write)	81
Figure 58.	20-Pin CDIP Package	82
Figure 59.	20-Pin PDIP Package Diagram	82
Figure 60.	20-Pin SOIC Package Diagram	83
Figure 61.	20-Pin SSOP Package Diagram	84
Figure 62.	28-Pin SOIC Package Diagram	85
Figure 63.	28-Pin CDIP Package Diagram	86
Figure 64.	28-Pin PDIP Package Diagram	86
Figure 65.	28-Pin SSOP Package Diagram	87
Figure 66.	40-Pin PDIP Package Diagram	87
Figure 67.	40-Pin CDIP Package Diagram	88

- Port 1: 0–3 pull-up transistors
- Port 1: 4–7 pull-up transistors
- Port 2: 0-7 pull-up transistors
- EPROM Protection
- WDT enabled at POR

General Description

The ZGP323H is an OTP-based member of the MCU family of infrared microcontrollers. With 237B of general-purpose RAM and up to 32KB of OTP, ZiLOG[®]'s CMOS microcontrollers offer fast-executing, efficient use of memory, sophisticated interrupts, input/output bit manipulation capabilities, automated pulse generation/reception, and internal key-scan pull-up transistors.

The ZGP323H architecture (Figure 1) is based on ZiLOG's 8-bit microcontroller core with an Expanded Register File allowing access to register-mapped peripherals, input/output (I/O) circuits, and powerful counter/timer circuitry. The Z8[®] offers a flexible I/O scheme, an efficient register and address space structure, and a number of ancillary features that are useful in many consumer, automotive, computer peripheral, and battery-operated hand-held applications.

There are three basic address spaces available to support a wide range of configurations: Program Memory, Register File and Expanded Register File. The register file is composed of 256 Bytes (B) of RAM. It includes 4 I/O port registers, 16 control and status registers, and 236 general-purpose registers. The Expanded Register File consists of two additional register groups (F and D).

To unburden the program from coping with such real-time problems as generating complex waveforms or receiving and demodulating complex waveform/pulses, the Z8 GP OTP offers a new intelligent counter/timer architecture with 8-bit and 16-bit counter/timers (see Figure 2). Also included are a large number of user-selectable modes and two on-board comparators to process analog signals with separate reference voltages.

Note: All signals with an overline, "", are active Low. For example, B/W, in which WORD is active Low, and B/W, in which BYTE is active Low.

Power connections use the conventional descriptions listed in Table 3.

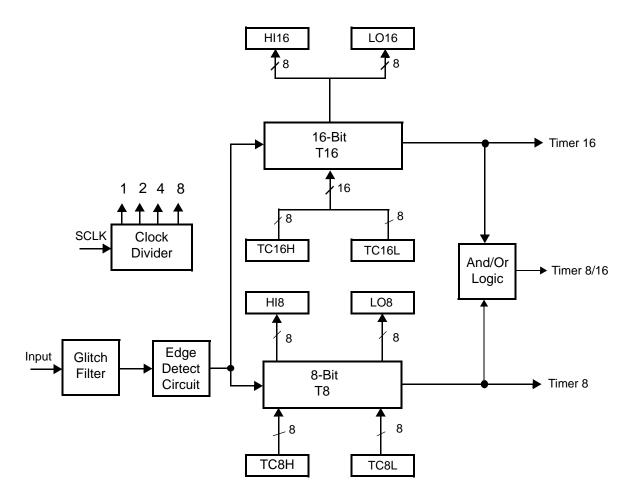


Figure 2. Counter/Timers Diagram

Pin Description

The pin configuration for the 20-pin PDIP/SOIC/SSOP is illustrated in Figure 3 and described in Table 4. The pin configuration for the 28-pin PDIP/SOIC/SSOP are depicted in Figure 4 and described in Table 5. The pin configurations for the 40-pin PDIP and 48-pin SSOP versions are illustrated in Figure 5, Figure 6, and described in Table 6.

For customer engineering code development, a UV eraseable windowed cerdip packaging is offered in 20-pin, 28-pin, and 40-pin configurations. ZiLOG does not recommend nor guarantee these packages for use in production.

	I					
NC		1	\bigcirc	48	_	NC
P25		2		47	-	NC
P26		3		46	_	P24
P27		4		45		P23
P04		5			_	P22
N/C		6			-	P21
P05		7			_	P20
P06		8		42		P03
P14		9		40		P13
P15		10		39	-	P12
P07		11		38		VSS
VDD		12	48-Pin	37		VSS
VDD		13	SSOP		_	N/C
N/C		14		35	-	P02
P16		15		34		P11
P17		16				P10
XTAL2		17		32	-	P01
XTAL1	Π	18		31		P00
P31		19		30		N/C
P32		20		29	-	PREF1/P30
P33		21		28		P36
		22		27		P37
		22		26	_	P35
VSS		23		25	_	RESET
		27		25		

Figure 6. 48-Pin SSOP Pin Configuration

Table 6. 40- and 48-Pin Configuration

40-Pin PDIP #	48-Pin SSOP #	Symbol
26	31	P00
27	32	P01
30	35	P02
34	41	P03
5	5	P04
6	7	P05
7	8	P06
10	11	P07
28	33	P10
29	34	P11
32	39	P12

Capacitance

Table 8 lists the capacitances.

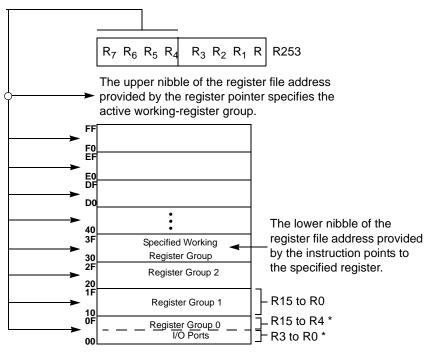
Table 8. Capacitance

Parameter	Maximum			
Input capacitance	12pF			
Output capacitance	12pF			
I/O capacitance	12pF			
Note: $T_A = 25^{\circ}$ C, $V_{CC} = GND = 0$ V, f = 1.0 MHz, unmeasured pins returned to GND				

DC Characteristics

Table 9. GP323HS DC Characteristics

			T _A =0°C to	o +70°C				
Symbol	Parameter	V _{CC}	Min	Typ(7)	Max	Units	Conditions N	lotes
V _{CC}	Supply Voltage		2.0		5.5	V	See Note 5 5	i
V _{CH}	Clock Input High Voltage	2.0-5.5	0.8 V _{CC}		V _{CC} +0.3	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	2.0-5.5	V _{SS} -0.3		0.4	V	Driven by External Clock Generator	
V _{IH}	Input High Voltage	2.0-5.5	0.7 V _{CC}		V _{CC} +0.3	V		
V _{IL}	Input Low Voltage	2.0-5.5	V _{SS} -0.3		0.2 V _{CC}	V		
V _{OH1}	Output High Voltage	2.0-5.5	V _{CC} -0.4			V	I _{OH} = -0.5mA	
V _{OH2}	Output High Voltage (P36, P37, P00, P01)	2.0-5.5	V _{CC} -0.8			V	I _{OH} = -7mA	
V _{OL1}	Output Low Voltage	2.0-5.5			0.4	V	I _{OL} = 4.0mA	
V _{OL2}	Output Low Voltage (P00, P01, P36, P37)	2.0-5.5			0.8	V	I _{OL} = 10mA	
V _{OFFSET}	Comparator Input Offset Voltage	2.0-5.5			25	mV		
V _{REF}	Comparator Reference Voltage	2.0-5.5	0		V _{CC} 1.75	V		
Ι _{ΙL}	Input Leakage	2.0-5.5	-1		1	μA	V _{IN} = 0V, V _{CC} Pull-ups disabled	
R _{PU}	Pull-up Resistance	2.0V	225		675	KΩ	V _{IN} = 0V; Pullups selected by mask	
		3.6V	75		275	KΩ	option	
		5.0V	40		160	KΩ		


Leastion of C	0700	Not Accessible
Location of 3	2768 1	On-Chip
instruction		ROM
executed after RESET		
	12	Reset Start Address
	11	IRQ5
	10	IRQ5
	9	IRQ4
	8	IRQ4
	7	IRQ3
Interrupt Vector (Lower Byte)	6	IRQ3
	5	IRQ2
Interrupt Vecto	4 r	✓ IRQ2
(Upper Byte		IRQ1
	2	IRQ1
	1	IRQ0
	0	IRQ0

Expanded Register File

The register file has been expanded to allow for additional system control registers and for mapping of additional peripheral devices into the register address area. The Z8[®] register address space (R0 through R15) has been implemented as 16 banks, with 16 registers per bank. These register groups are known as the

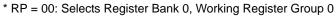


Figure 17. Register Pointer—Detail

Stack

The internal register file is used for the stack. An 8-bit Stack Pointer SPL (R255) is used for the internal stack that resides in the general-purpose registers (R4–R239). SPH (R254) can be used as a general-purpose register.

Timers

T8_Capture_HI—HI8(D)0BH

This register holds the captured data from the output of the 8-bit Counter/Timer0. Typically, this register holds the number of counts when the input signal is 1.

Field	Bit Position		Description
T8_Capture_HI	[7:0]	R/W	Captured Data - No Effect

T8_Capture_LO—L08(D)0AH

This register holds the captured data from the output of the 8-bit Counter/Timer0. Typically, this register holds the number of counts when the input signal is 0.

Field	Bit Position		Description	
T8_Capture_L0	[7:0]	R/W	Captured Data - No Effect	

T16_Capture_HI—HI16(D)09H

This register holds the captured data from the output of the 16-bit Counter/ Timer16. This register holds the MS-Byte of the data.

Field	Bit Position		Description	
T16_Capture_HI	[7:0]	R/W	Captured Data - No Effect	

T16_Capture_LO—L016(D)08H

This register holds the captured data from the output of the 16-bit Counter/ Timer16. This register holds the LS-Byte of the data.

Field	Bit Position	Description
T16_Capture_LO	[7:0]	R/W Captured Data - No Effect

Counter/Timer2 MS-Byte Hold Register—TC16H(D)07H

Field	Bit Position		Description
T16_Data_HI	[7:0]	R/W	Data

In Demodulation Mode, when set to 0, T16 captures and reloads on detection of all the edges. When set to 1, T16 captures and detects on the first edge but ignores the subsequent edges. For details, see the description of T16 Demodulation Mode on page 47.

Time_Out

This bit is set when T16 times out (terminal count reached). To reset the bit, write a 1 to this location.

T16_Clock

This bit defines the frequency of the input signal to Counter/Timer16.

Capture_INT_Mask

This bit is set to allow an interrupt when data is captured into LO16 and HI16.

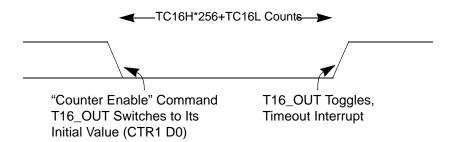
Counter_INT_Mask

Set this bit to allow an interrupt when T16 times out.

P35_Out

This bit defines whether P35 is used as a normal output pin or T16 output.

CTR3 T8/T16 Control Register—CTR3(D)03H


Table 18 lists and briefly describes the fields for this register. This register allows the T_8 and T_{16} counters to be synchronized.

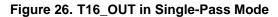

Field	Bit Position		Value	Description
T ₁₆ Enable	7	R	0*	Counter Disabled
		R	1	Counter Enabled
		W	0	Stop Counter
		W	1	Enable Counter
T ₈ Enable	-6	R	0*	Counter Disabled
		R	1	Counter Enabled
		W	0	Stop Counter
		W	1	Enable Counter
Sync Mode	5	R/W	0**	Disable Sync Mode
			1	Enable Sync Mode

Table 18. CTR3 (D)03H: T8/T16 Control Register

Caution: Do not load these registers at the time the values are to be loaded into the counter/timer to ensure known operation. An initial count of 1 is not allowed. An initial count of 0 causes T16 to count from 0 to FFFFH to FFFFH. Transition from 0 to FFFFH is not a timeout condition.

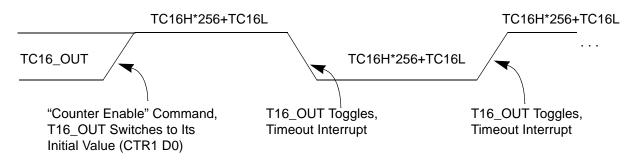


Figure 27. T16_OUT in Modulo-N Mode

T16 DEMODULATION Mode

The user must program TC16L and TC16H to FFH. After T16 is enabled, and the first edge (rising, falling, or both depending on CTR1 D5; D4) is detected, T16 captures HI16 and LO16, reloads, and begins counting.

If D6 of CTR2 Is 0

When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current count in T16 is complemented and put into HI16 and LO16. When data is captured, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt is generated if enabled (CTR2, D2). T16 is loaded with FFFFH and starts again.

This T16 mode is generally used to measure space time, the length of time between bursts of carrier signal (marks).

50

During PING-PONG Mode

The enable bits of T8 and T16 (CTR0, D7; CTR2, D7) are set and cleared alternately by hardware. The timeout bits (CTR0, D5; CTR2, D5) are set every time the counter/timers reach the terminal count.

Interrupts

The ZGP323H features six different interrupts (Table 19). The interrupts are maskable and prioritized (Figure 30). The six sources are divided as follows: three sources are claimed by Port 3 lines P33–P31, two by the counter/timers (Table 19) and one for low voltage detection. The Interrupt Mask Register (globally or individually) enables or disables the six interrupt requests.

The source for IRQ is determined by bit 1 of the Port 3 mode register (P3M). When in digital mode, Pin P33 is the source. When in analog mode the output of the Stop mode recovery source logic is used as the source for the interrupt. See Figure 35, Stop Mode Recovery Source, on page 59.

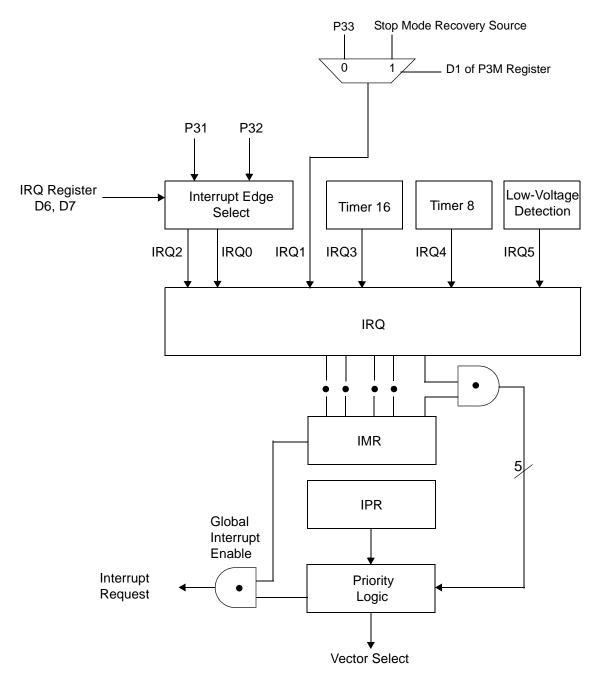
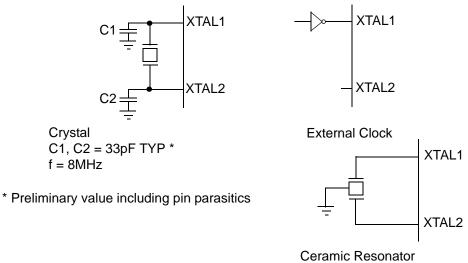


Figure 30. Interrupt Block Diagram



53

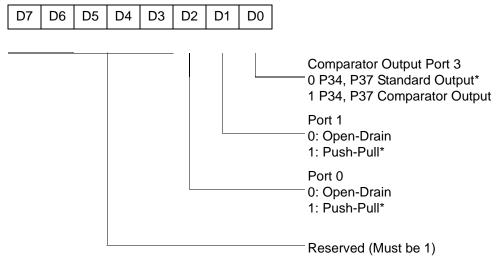
Clock

The device's on-chip oscillator has a high-gain, parallel-resonant amplifier, for connection to a crystal or ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal must be AT cut, 1 MHz to 8 MHz maximum, with a series resistance (RS) less than or equal to 100 Ω . The on-chip oscillator can be driven with a suitable external clock source.

The crystal must be connected across XTAL1 and XTAL2 using the recommended capacitors (capacitance greater than or equal to 22 pF) from each pin to ground.

f = 8mHz

Figure 31. Oscillator Configuration



FF	NOP	; clear the pipeline
6F	Stop	; enter Stop Mode
or		
FF	NOP	; clear the pipeline
7F	HALT	; enter HALT Mode

Port Configuration Register

The Port Configuration (PCON) register (Figure 32) configures the comparator output on Port 3. It is located in the expanded register 2 at Bank F, location 00.

PCON(FH)00H

* Default setting after reset

Figure 32. Port Configuration Register (PCON) (Write Only)

Comparator Output Port 3 (D0)

Bit 0 controls the comparator used in Port 3. A 1 in this location brings the comparator outputs to P34 and P37, and a 0 releases the Port to its standard I/O configuration.

Port 1 Output Mode (D1)

Bit 1 controls the output mode of port 1. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.

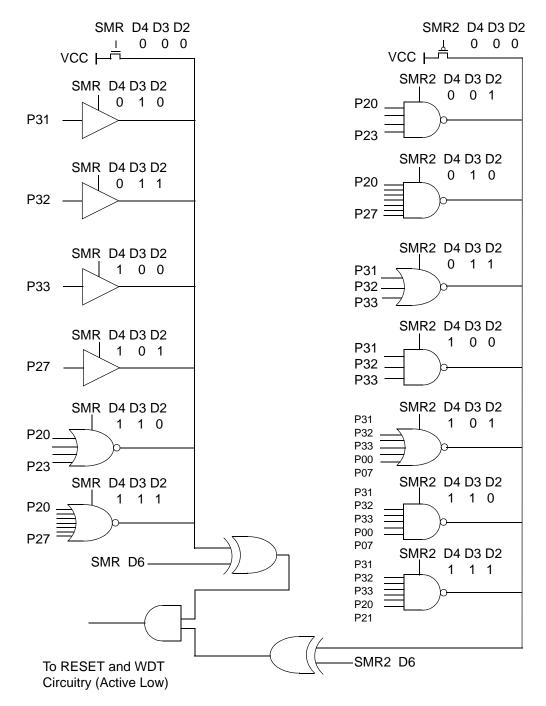


Figure 35. Stop Mode Recovery Source

69

CTR2(0D)02H

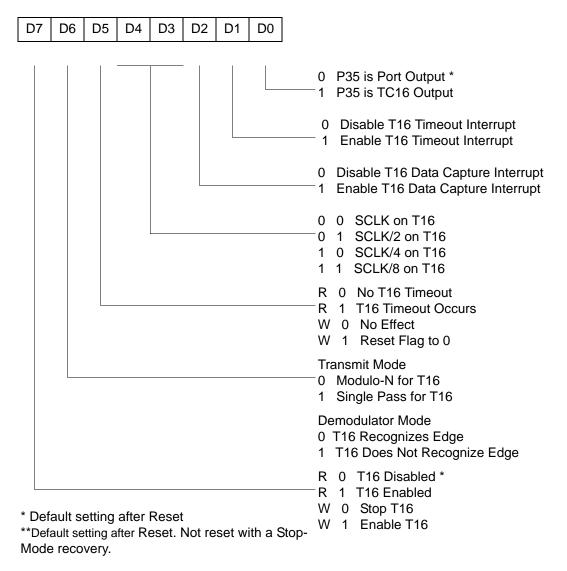


Figure 41. T16 Control Register ((0D) 2H: Read/Write Except Where Noted)

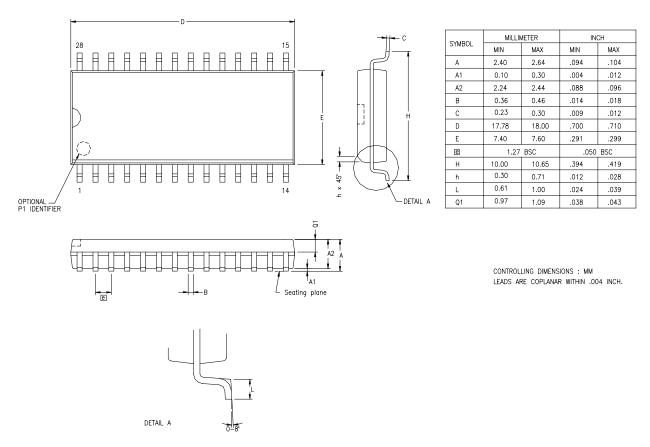


Figure 62. 28-Pin SOIC Package Diagram

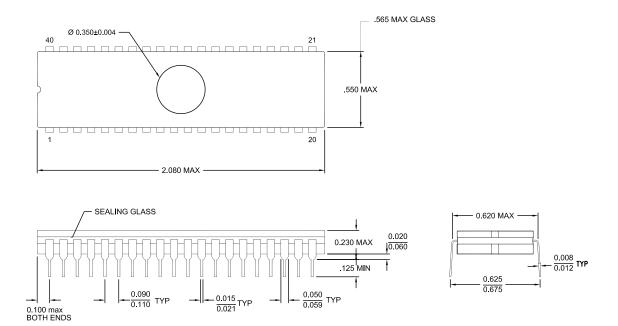


Figure 67. 40-Pin CDIP Package Diagram

4KB Standard Temperature: 0° to +70°C

Part Number	Description	Part Number	Description
ZGP323HSH4804C	48-pin SSOP 4K OTP	ZGP323HSS2804C	28-pin SOIC 4K OTP
ZGP323HSP4004C	40-pin PDIP 4K OTP	ZGP323HSH2004C	20-pin SSOP 4K OTP
ZGP323HSH2804C	28-pin SSOP 4K OTP	ZGP323HSP2004C	20-pin PDIP 4K OTP
ZGP323HSP2804C	28-pin PDIP 4K OTP	ZGP323HSS2004C	20-pin SOIC 4K OTP

4KB Extended Temperature: -40° to +105°C

		ń	
Part Number	Description	Part Number	Description
ZGP323HEH4804C	48-pin SSOP 4K OTP	ZGP323HES2804C	28-pin SOIC 4K OTP
ZGP323HEP4004C	40-pin PDIP 4K OTP	ZGP323HEH2004C	20-pin SSOP 4K OTP
ZGP323HEH2804C	28-pin SSOP 4K OTP	ZGP323HEP2004C	20-pin PDIP 4K OTP
ZGP323HEP2804C	28-pin PDIP 4K OTP	ZGP323HES2004C	20-pin SOIC 4K OTP

4KB Automotive Temperature: -40° to +125°C

	•		
Part Number	Description	Part Number	Description
ZGP323HAH4804C	48-pin SSOP 4K OTP	ZGP323HAS2804C	28-pin SOIC 4K OTP
ZGP323HAP4004C	40-pin PDIP 4K OTP	ZGP323HAH2004C	20-pin SSOP 4K OTP
ZGP323HAH2804C	28-pin SSOP 4K OTP	ZGP323HAP2004C	20-pin PDIP 4K OTP
ZGP323HAP2804C	28-pin PDIP 4K OTP	ZGP323HAS2004C	20-pin SOIC 4K OTP
Replace C with G for	Lead-Free Packaging		

Additional Components			
Part Number	Description	Part Number	Description
ZGP323ICE01ZEM (For 3.6V Emulation only)	Emulator/programmer	ZGP32300100ZPR (Ethernet)	Programming system
		ZGP32300200ZPR (USB)	Programming system

ZGP323H Z8[®] OTP Microcontroller with IR Timers

T8_Capture_LO 32 register file 30 expanded 26 register pointer 29 detail 31 reset pin function 25 resets and WDT 63 S SCLK circuit 58 single-pass mode T16_OUT 47 T8_OUT 43 stack 31 standard test conditions 10 standby modes 1 stop instruction, counter/timer 54 stop mode recovery 2 register 61 source 59 stop mode recovery 2 61 stop mode recovery register 57 Т T16 transmit mode 46 T16_Capture_HI 32 T8 transmit mode 40 T8_Capture_HI 32 test conditions, standard 10 test load diagram 10 timing diagram, AC 16 transmit mode flowchart 41 V VCC 5 voltage brown-out/standby 64 detection and flags 65 voltage detection register 71 W watch-dog timer mode registerwatch-dog timer mode register 62 time select 63

X XTAL1 5 XTAL1 pin function 18 XTAL2 5 XTAL2 pin function 18