E·XFL

Zilog - ZGP323HSH4816C00TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	32
Program Memory Size	16KB (16K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	48-BSSOP (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323hsh4816c00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Revision History

Each instance in Table 1 reflects a change to this document from its previous revision. To see more detail, click the appropriate link in the table.

Table 1. Revision History of this Docume	ent
--	-----

Date	Revision Level	Section	Description	Page #
December 2004	02	Changed low power of deleted mask option and 10. Added new T Table 11 and change	consumption, STOP and HALT mode current values, note, clarified temperature ranges in Tables 6 and 8 ables 9 and 10. Also added Characterization data to d Program/Erase Endurance value in Table 12.	1,2,10 11,12, 13,14, 15
		Removed Preliminar	/ designation	All
March 2005	03	Minor change to Tabl pin CDIP parts in the	e 9 Electrical Characteristics. Added 20, 28 and 40- Ordering Section.	11,90

- : 00		04	~
Figure 68.	48-Pin SSOP Package Design		J

Development Features

Table 2 lists the features of ZiLOG[®]'s ZGP323H members.

Table 2. Features

Device	OTP (KB)	RAM (Bytes)	I/O Lines	Voltage Range
ZGP323H OTP MCU Family	4, 8, 16, 32	237	32, 24 or 16	2.0V–5.5V

- Low power consumption–18mW (typical)
- T = Temperature
 - S = Standard 0° to +70°C
 - $E = Extended -40^{\circ} to +105^{\circ}C$
 - A = Automotive -40° to $+125^{\circ}$ C
- Three standby modes:
 - STOP— (typical 1.8µA)
 - HALT— (typical 0.8mA)
 - Low voltage reset
- Special architecture to automate both generation and reception of complex pulses or signals:
 - One programmable 8-bit counter/timer with two capture registers and two load registers
 - One programmable 16-bit counter/timer with one 16-bit capture register pair and one 16-bit load register pair
 - Programmable input glitch filter for pulse reception
- Six priority interrupts
 - Three external
 - Two assigned to counter/timers
 - One low-voltage detection interrupt
- Low voltage detection and high voltage detection flags
- Programmable Watch-Dog Timer/Power-On Reset (WDT/POR) circuits
- Two independent comparators with programmable interrupt polarity
- Programmable EPROM options
 - Port 0: 0–3 pull-up transistors
 - Port 0: 4–7 pull-up transistors

	ſ		$\overline{\mathbf{\nabla}}$				
NC		1	-		40	þ	NC
P25		2			39	Þ	P24
P26		3			38		P23
P27		4			37	Þ	P22
P04		5			36	Þ	P21
P05	q	6			35		P20
P06	Ц	7			34	Þ	P03
P14	С	8	40-Pir	۱	33	Þ	P13
P15		9			32		P12
P07	Ц	10	CDIP		31	Þ	VSS
VDD		11			30		P02
P16		12			39		P11
P17	С	13			28		P10
XTAL2		14			27		P01
XTAL1	С	15			26		P00
P31		16			25		Pref1/P30
P32	С	17			24		P36
P33	q	18			23		P37
P34	С	19			22	þ	P35
NC	Ц	20			21	Þ	RESET
	_						

Figure 5. 40-Pin PDIP/CDIP* Pin Configuration

Note: *Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use.

			T _A =0°C	to +70°C				
Symbol	Parameter	V _{CC}	Min	Typ(7)	Мах	Units	Conditions	Notes
I _{OL}	Output Leakage	2.0-5.5	-1		1	μA	$V_{IN} = 0V, V_{CC}$	
Icc	Supply Current	2.0V		1	3	mA	at 8.0 MHz	1, 2
00		3.6V		5	10	mA	at 8.0 MHz	1, 2
		5.5V		10	15	mA	at 8.0 MHz	1, 2
I _{CC1}	Standby Current	2.0V		0.5	1.6	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
	(HALT Mode)	3.6V		0.8	2.0	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
		5.5V		1.3	3.2	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
I _{CC2}	Standby Current (Stop	2.0V		1.6	8	μA	$V_{IN} = 0 V, V_{CC} WDT not Running$	3
	Mode)	3.6V		1.8	10	μA	$V_{IN} = 0 V, V_{CC} WDT not Running$	3
		5.5V		1.9	12	μΑ	$V_{IN} = 0 V, V_{CC} WDT not Running$	3
		2.0V		5	20	μΑ	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3
		3.6V		8	30	μA	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3
		5.5V		15	45	μΑ	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3
I _{LV}	Standby Current (Low Voltage)			1.2	6	μA	Measured at 1.3V	4
V _{BO}	V _{CC} Low Voltage			1.9	2.0	V	8MHz maximum	
20	Protection						Ext. CLK Freq.	
V _{LVD}	V _{CC} Low Voltage			2.4		V		
	Detection							
V _{HVD}	Vcc High Voltage			2.7		V		
	Detection							

Table 9. GP323HS DC Characteristics (Continued)

Notes:

1. All outputs unloaded, inputs at rail.

2. CL1 = CL2 = 100 pF.

3. Oscillator stopped.

4. Oscillator stops when V_{CC} falls below V_{BO} limit.

 It is strongly recommended to add a filter capacitor (minimum 0.1 μF), physically close to VCC and V_{SS} pins if operating voltage fluctuations are anticipated, such as those resulting from driving an Infrared LED.

- 6. Comparator and Timers are on. Interrupt disabled.
- 7. Typical values shown are at 25 degrees C.

Table 10. GP323HE DC Characteristics

T _A = -40°C to +105°C										
Symbol	Parameter	V _{CC}	Min	Typ(7)	Max	Units	Conditions	Notes		
V _{CC}	Supply Voltage		2.0		5.5	V	See Note 5	5		
V _{CH}	Clock Input High Voltage	2.0-5.5	0.8 V _{CC}		V _{CC} +0.3	V	Driven by External Clock Generator			
V _{CL}	Clock Input Low Voltage	2.0-5.5	V _{SS} -0.3		0.4	V	Driven by External Clock Generator			
V _{IH}	Input High Voltage	2.0-5.5	0.7 V _{CC}		V _{CC} +0.3	V				
V _{IL}	Input Low Voltage	2.0-5.5	V _{SS} 0.3		0.2 V _{CC}	V				
V _{OH1}	Output High Voltage	2.0-5.5	V _{CC} -0.4			V	I _{OH} = -0.5mA			

Table 11. GP323HA DC Characteristics

T _A = -40°C to +125°C										
Symbol	Parameter	V _{CC}	Min	Typ(7)	Max	Units	Conditions	Notes		
V _{CC}	Supply Voltage		2.0		5.5	V	See Note 5	5		
V _{CH}	Clock Input High Voltage	2.0-5.5	0.8 V _{CC}		V _{CC} +0.3	V	Driven by External Clock Generator			
V _{CL}	Clock Input Low Voltage	2.0-5.5	V _{SS} –0.3		0.4	V	Driven by External Clock Generator			
VIH	Input High Voltage	2.0-5.5	0.7 V _{CC}		V _{CC} +0.3	V				
V _{IL}	Input Low Voltage	2.0-5.5	V _{SS} -0.3		0.2 V _{CC}	V				
V _{OH1}	Output High Voltage	2.0-5.5	V _{CC} -0.4			V	I _{OH} = -0.5mA			
V _{OH2}	Output High Voltage (P36, P37, P00, P01)	2.0-5.5	V _{CC} -0.8			V	I _{OH} = -7mA			
V _{OL1}	Output Low Voltage	2.0-5.5			0.4	V	$I_{OL} = 4.0 \text{mA}$			
V _{OL2}	Output Low Voltage (P00, P01, P36, P37)	2.0-5.5			0.8	V	I _{OL} = 10mA			
V _{OFFSET}	Comparator Input Offset Voltage	2.0-5.5			25	mV				
V _{REF}	Comparator Reference Voltage	2.0-5.5	0		V _{DD} -1.75	V				
IIL	Input Leakage	2.0-5.5	-1		1	μA	V _{IN} = 0V, V _{CC} Pull-ups disabled			
R _{PU}	Pull-up Resistance	2.0V	200		700	KΩ	V _{IN} = 0V; Pullups selected by mask			
		3.6V	50		300	KΩ	option			
		5.0V	25		175	KΩ	_			
I _{OL}	Output Leakage	2.0-5.5	-1		1	μΑ	$V_{IN} = 0V, V_{CC}$			
I _{CC}	Supply Current	2.0V		1	3	mA	at 8.0 MHz	1, 2		
		3.6V		5	10	mA	at 8.0 MHz	1, 2		
		5.5V		10	15	mA	at 8.0 MHz	1, 2		
I _{CC1}	Standby Current	2.0V		0.5	1.6	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6		
	(HALI Mode)	3.6V		0.8	2.0	mA	$V_{IN} = 0V$, Clock at 8.0MHz	1, 2, 6		
<u> </u>		5.5V		1.3	3.2	mA	$V_{IN} = 0V$, Clock at 8.0MHz	1, 2, 6		
I _{CC2}	Standby Current (Stop	2.0V		1.6	15	μA	$V_{IN} = 0$ V, V_{CC} WDT not Running	3		
	Mode)	3.6V		1.8	20	μA	$V_{IN} = 0$ V, V_{CC} WDT not Running	3		
		5.5V		1.9	25	μΑ	$v_{IN} = 0$ V, v_{CC} WDT not Running	3		
		2.00		с С	30	μΑ	$v_{IN} = 0$ V, v_{CC} WDT is Running	ა ი		
		3.0V 5.5V		0 15	40 60	μΑ	$v_{IN} = 0.0$, v_{CC} wDT is Running	ა ვ		
	Chan allow Course at	0.00		10	00	μΑ	$V_{\rm IN} = 0.0$, $V_{\rm CC}$ with the Ruthing	3		
	(Low Voltage)			1.2	0	μΑ		4		
V _{BO}	V _{CC} Low Voltage Protection			1.9	2.15	V	8MHz maximum Ext. CLK Freq.			
V _{LVD}	V _{CC} Low Voltage Detection			2.4		V				

Pin Functions

XTAL1 Crystal 1 (Time-Based Input)

This pin connects a parallel-resonant crystal or ceramic resonator to the on-chip oscillator input. Additionally, an optional external single-phase clock can be coded to the on-chip oscillator input.

XTAL2 Crystal 2 (Time-Based Output)

This pin connects a parallel-resonant crystal or ceramic resonant to the on-chip oscillator output.

Port 0 (P07-P00)

Port 0 is an 8-bit, bidirectional, CMOS-compatible port. These eight I/O lines are configured under software control as a nibble I/O port. The output drivers are push-pull or open-drain controlled by bit D2 in the PCON register.

If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 mode register. After a hardware reset, Port 0 is configured as an input port.

An optional pull-up transistor is available as a mask option on all Port 0 bits with nibble select.

Notes: Internal pull-ups are disabled on any given pin or group of port pins when programmed into output mode.

The Port 0 direction is reset to its default state following an SMR.

Field	Bit Position		Value	Description
Transmit_Submode/	32	R/W		Transmit Mode
Glitch_Filter			00*	Normal Operation
			01	Ping-Pong Mode
			10	T16_Out = 0
			11	T16_Out = 1
				Demodulation Mode
			00*	No Filter
			01	4 SCLK Cycle
			10	8 SCLK Cycle
			11	Reserved
Initial_T8_Out/	1-			Transmit Mode
Rising Edge		R/W	0*	T8_OUT is 0 Initially
			1	T8_OUT is 1 Initially
				Demodulation Mode
		R	0*	No Rising Edge
			1	Rising Edge Detected
		W	0	No Effect
			1	Reset Flag to 0
Initial_T16_Out/	0			Transmit Mode
Falling_Edge		R/W	0*	T16_OUT is 0 Initially
			1	T16_OUT is 1 Initially
				Demodulation Mode
		R	0*	No Falling Edge
			1	Falling Edge Detected
		W	0	No Effect
			1	Reset Flag to 0

Table 16.CTR1(0D)01H T8 and T16 Common Functions (Continued)

Note:

*Default at Power-On Reset

*Default at Power-On Reset. Not reset with Stop Mode recovery.

Mode

If the result is 0, the counter/timers are in TRANSMIT mode; otherwise, they are in DEMODULATION mode.

P36_Out/Demodulator_Input

In TRANSMIT Mode, this bit defines whether P36 is used as a normal output pin or the combined output of T8 and T16.

In DEMODULATION Mode, this bit defines whether the input signal to the Counter/Timers is from P20 or P31.

If the input signal is from Port 31, a capture event may also generate an IRQ2 interrupt. To prevent generating an IRQ2, either disable the IRQ2 interrupt by clearing its IMR bit D2 or use P20 as the input.

into LO8; if it is a negative edge, data is put into HI8. From that point, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt can be generated if enabled (CTR0, D2). Meanwhile, T8 is loaded with FFh and starts counting again. If T8 reaches 0, the timeout status bit (CTR0, D5) is set, and an interrupt can be generated if enabled (CTR0, D1). T8 then continues counting from FFH (see Figure 23 and Figure 24).

Figure 23. Demodulation Mode Count Capture Flowchart

Figure 30. Interrupt Block Diagram

53

Clock

The device's on-chip oscillator has a high-gain, parallel-resonant amplifier, for connection to a crystal or ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal must be AT cut, 1 MHz to 8 MHz maximum, with a series resistance (RS) less than or equal to 100 Ω . The on-chip oscillator can be driven with a suitable external clock source.

The crystal must be connected across XTAL1 and XTAL2 using the recommended capacitors (capacitance greater than or equal to 22 pF) from each pin to ground.

f = 8mHz

Figure 31. Oscillator Configuration

Port 0 Output Mode (D2)

Bit 2 controls the output mode of port 0. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.

Stop-Mode Recovery Register (SMR)

This register selects the clock divide value and determines the mode of Stop Mode Recovery (Figure 33). All bits are write only except bit 7, which is read only. Bit 7 is a flag bit that is hardware set on the condition of Stop recovery and reset by a power-on cycle. Bit 6 controls whether a low level or a high level at the XORgate input (Figure 35 on page 59) is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits D2, D3, and D4 of the SMR register specify the source of the Stop Mode Recovery signal. Bits D0 determines if SCLK/ TCLK are divided by 16 or not. The SMR is located in Bank F of the Expanded Register Group at address OBH.

Figure 35. Stop Mode Recovery Source

СП	R1(0L))01H							
D7	D6	D5	D4	D3	D2	D1	D0		
									Transmit Mode* R/W 0 T16_OUT is 0 initially 1 T16_OUT is 1 initially Demodulation Mode R 0 No Falling Edge Detection R 1 Falling Edge Detection W 0 No Effect W 1 Reset Flag to 0 Transmit Mode* R/W 0 T8_OUT is 0 initially* 1 T8_OUT is 1 initially Demodulation Mode R 0 No Rising Edge Detection R 1 Rising Edge Detection W 0 No Effect W 1 Reset Flag to 0 Transmit Mode* 0 0 Normal Operation* 0 1 Ping-Pong Mode 1 0 T16_OUT = 0 1 1 T16_OUT = 1 Demodulation Mode 0 0 No Filter 0 1 4 SCLK Cycle Filter 1 0 8 SCLK Cycle Filter 1 0 R SCLK Cycle Filter 1 0 NOR 1 0 NOR 1 1 NAND Demodulation Mode 0 0 0 Falling Edge Detection
									 0 0 Falling Edge Detection 0 1 Rising Edge Detection 1 0 Both Edge Detection 1 1 Reserved Transmit Mode*
	L								0 P36 as Port Output * 1 P36 as T8/T16_OUT Demodulation Mode 0 P31 as Demodulator Input 1 P20 as Demodulator Input
* De **De recc	efault se efault se overy.	etting after etting aft	er Res er Res	et et Not	reset v	with a S	Stop-N	lode	Transmit/Demodulation Mode 0 Transmit Mode * 1 Demodulation Mode

Figure 40. T8 and T16 Common Control Functions ((0D)01H: Read/Write)

CTR3(0D)03H

D7	D6	D5	D4	D3	D2	D1	D0	
							DU	Reserved No effect when written Always reads 11111 Sync Mode 0* Disable Sync Mode** 1 Enable Sync Mode T ₈ Enable R 0* T ₈ Disabled R 1 T ₈ Enabled
								W0 Stop T ₈ W1 Enable T ₈
								T ₁₆ Enable R 0* T ₁₆ Disabled R 1 T ₁₆ Enabled W 0 Stop T ₁₆ W 1 Enable T ₁₆

* Default setting after reset. ** Default setting after reset. Not reset with a Stop Mode recovery.

Figure 42. T8/T16 Control Register (0D)03H: Read/Write (Except Where Noted)

WDTMR(0F)0FH

* Default setting after reset. Not reset with a Stop Mode recovery.

Figure 47. Watch-Dog Timer Register ((0F) 0FH: Write Only)

Standard Control Registers

R246 P2M(F6H)

* Default setting after reset. Not reset with a Stop Mode recovery.

Figure 48. Port 2 Mode Register (F6H: Write Only)

Figure 58. 20-Pin CDIP Package

Figure 59. 20-Pin PDIP Package Diagram

CONTROLLING DIMENSIONS : INCH

MILLIMETER			INCH		
MIN	NOM	MAX	MIN	NOM	MAX
1.73	1.85	1.98	0.068	0.073	0.078
0.05	0.13	0.21	0.002	0.005	0.008
1.68	1.73	1.83	0.066	0.068	0.072
0.25	0.30	0.38	0.010	0.012	0.015
0.13	0.15	0.22	0.005	0.006	0.009
7.07	7.20	7.33	0.278	0.283	0.289
5.20	5.30	5.38	0.205	0.209	0.212
0.65 BSC		0.0256 BSC			
7.65	7.80	7.90	0.301	0.307	0.311
0.56	0.75	0.94	0.022	0.030	0.037
0.74	0.78	0.82	0.029	0.031	0.032
	MIN 1.73 0.05 1.68 0.25 0.13 7.07 5.20 7.65 0.56 0.74	MILLIMETER MIN NOM 1.73 1.85 0.05 0.13 1.68 1.73 0.25 0.30 0.13 0.15 7.07 7.20 5.20 5.30 0.65 BSC 7.65 7.80 0.56 0.75 0.74 0.78	MILLIMETER MIN NOM MAX 1.73 1.85 1.98 0.05 0.13 0.21 1.68 1.73 1.83 0.25 0.30 0.38 0.13 0.15 0.22 7.07 7.20 7.33 5.20 5.30 5.38 0.65 BSC 7.65 7.80 7.90 0.56 0.75 0.94 0.74 0.78 0.82	MILLIMETER MIN NOM MAX MIN 1.73 1.85 1.98 0.068 0.05 0.13 0.21 0.002 1.68 1.73 1.83 0.066 0.25 0.30 0.38 0.010 0.13 0.15 0.22 0.005 7.07 7.20 7.33 0.278 5.20 5.30 5.38 0.205 0.65 BSC - - 7.65 7.80 7.90 0.301 0.56 0.75 0.94 0.022 0.74 0.78 0.82 0.029	MILLIMETER INCH MIN NOM MAX MIN NOM 1.73 1.85 1.98 0.068 0.073 0.05 0.13 0.21 0.002 0.005 1.68 1.73 1.83 0.066 0.068 0.25 0.30 0.38 0.010 0.012 0.13 0.15 0.22 0.005 0.006 7.07 7.20 7.33 0.278 0.283 5.20 5.30 5.38 0.205 0.209 O.055 BSC 7.65 7.80 7.90 0.301 0.307 0.56 0.75 0.94 0.022 0.030 0.74 0.78 0.82 0.029 0.31

DETAIL A

Н

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

Figure 61. 20-Pin SSOP Package Diagram

8KB Standard Temperature: 0° to +70°C

Part Number	Description	Part Number	Description
ZGP323HSH4808C	48-pin SSOP 8K OTP	ZGP323HSS2808C	28-pin SOIC 8K OTP
ZGP323HSP4008C	40-pin PDIP 8K OTP	ZGP323HSH2008C	20-pin SSOP 8K OTP
ZGP323HSH2808C	28-pin SSOP 8K OTP	ZGP323HSP2008C	20-pin PDIP 8K OTP
ZGP323HSP2808C	28-pin PDIP 8K OTP	ZGP323HSS2008C	20-pin SOIC 8K OTP

8KB Extended Temperature: -40° to +105°C

Part Number	Description	Part Number	Description
ZGP323HEH4808C	48-pin SSOP 8K OTP	ZGP323HES2808C	28-pin SOIC 8K OTP
ZGP323HEP4008C	40-pin PDIP 8K OTP	ZGP323HEH2008C	20-pin SSOP 8K OTP
ZGP323HEH2808C	28-pin SSOP 8K OTP	ZGP323HEP2008C	20-pin PDIP 8K OTP
ZGP323HEP2808C	28-pin PDIP 8K OTP	ZGP323HES2008C	20-pin SOIC 8K OTP

8KB Automotive Temperature: -40° to +125°C

Part Number	Description	Part Number	Description	
	Becchption	i altitulioo	Beeenpaien	
ZGP323HAH4808C	48-pin SSOP 8K OTP	ZGP323HAS2808C	28-pin SOIC 8K OTP	
ZGP323HAP4008C	40-pin PDIP 8K OTP	ZGP323HAH2008C	20-pin SSOP 8K OTP	
ZGP323HAH2808C	28-pin SSOP 8K OTP	ZGP323HAP2008C	20-pin PDIP 8K OTP	
ZGP323HAP2808C	28-pin PDIP 8K OTP	ZGP323HAS2008C	20-pin SOIC 8K OTP	
Replace C with G for Lead-Free Packaging				

ZGP323H Z8[®] OTP Microcontroller with IR Timers

Numerics 16-bit counter/timer circuits 46 20-pin DIP package diagram 82 20-pin SSOP package diagram 84 28-pin DIP package diagram 86 28-pin SOICpackage diagram 85 28-pin SSOP package diagram 87 40-pin DIP package diagram 87 48-pin SSOP package diagram 89 8-bit counter/timer circuits 42 А absolute maximum ratings 10 AC characteristics 16 timing diagram 16 address spaces, basic 2 architecture 2 expanded register file 28 В basic address spaces 2 block diagram, ZLP32300 functional 3 С capacitance 11 characteristics AC 16 DC 11 clock 53 comparator inputs/outputs 25 configuration port 0 19 port 1 20 port 2 21 port 3 22 port 3 counter/timer 24 counter/timer 16-bit circuits 46 8-bit circuits 42 brown-out voltage/standby 64 clock 53 demodulation mode count capture flowchart 44

demodulation mode flowchart 45 EPROM selectable options 64 glitch filter circuitry 40 halt instruction 54 input circuit 40 interrupt block diagram 51 interrupt types, sources and vectors 52 oscillator configuration 53 output circuit 49 ping-pong mode 48 port configuration register 55 resets and WDT 63 SCLK circuit 58 stop instruction 54 stop mode recovery register 57 stop mode recovery register 2 61 stop mode recovery source 59 T16 demodulation mode 47 T16 transmit mode 46 T16 OUT in modulo-N mode 47 T16_OUT in single-pass mode 47 T8 demodulation mode 43 T8 transmit mode 40 T8 OUT in modulo-N mode 43 T8_OUT in single-pass mode 43 transmit mode flowchart 41 voltage detection and flags 65 watch-dog timer mode register 62 watch-dog timer time select 63 CTR(D)01h T8 and T16 Common Functions 35 D DC characteristics 11 demodulation mode count capture flowchart 44 flowchart 45 T1647 T8 43 description functional 25 general 2