

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	16
Program Memory Size	4KB (4K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323hsp2004c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

This publication is subject to replacement by a later edition. To determine whether a later edition exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters 532 Race Street

San Jose, CA 95126-3432 Telephone: 408.558.8500 Fax: 408.558.8300 www.zilog.com

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other products and/or service names mentioned herein may be trademarks of the companies with which they are associated.

Document Disclaimer

©2005 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Devices sold by ZiLOG, Inc. are covered by warranty and limitation of liability provisions appearing in the ZiLOG, Inc. Terms and Conditions of Sale. ZiLOG, Inc. makes no warranty of merchantability or fitness for any purpose. Except with the express written approval of ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses are conveyed, implicitly or otherwise, by this document under any intellectual property rights.

List of Figures

Figure 1.	Functional Block Diagram	. 3
Figure 2.	Counter/Timers Diagram	. 4
Figure 3.	20-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration	. 5
Figure 4.	28-Pin PDIP/SOIC/SSOP/CDIP* Pin Configuration	. 6
Figure 5.	40-Pin PDIP/CDIP* Pin Configuration	. 7
Figure 6.	48-Pin SSOP Pin Configuration	. 8
Figure 7.	Test Load Diagram	10
Figure 8.	AC Timing Diagram	16
Figure 9.	Port 0 Configuration	19
Figure 10.	Port 1 Configuration	20
Figure 11.	Port 2 Configuration	21
Figure 12.	Port 3 Configuration	22
Figure 13.	Port 3 Counter/Timer Output Configuration	24
Figure 14.	Program Memory Map (32K OTP)	26
Figure 15.	Expanded Register File Architecture	28
Figure 16.	Register Pointer	29
Figure 17.	Register Pointer—Detail	31
Figure 18.	Glitch Filter Circuitry	40
Figure 19.	Transmit Mode Flowchart	41
Figure 20.	8-Bit Counter/Timer Circuits	42
Figure 21.	T8_OUT in Single-Pass Mode	43
Figure 22.	T8_OUT in Modulo-N Mode	43
Figure 23.	Demodulation Mode Count Capture Flowchart	44
Figure 24.	Demodulation Mode Flowchart	45
Figure 25.	16-Bit Counter/Timer Circuits	46
Figure 26.	T16_OUT in Single-Pass Mode	47
Figure 27.	T16_OUT in Modulo-N Mode	47
Figure 28.	Ping-Pong Mode Diagram	49
Figure 29.	Output Circuit	49
Figure 30.	Interrupt Block Diagram	51
Figure 31.	Oscillator Configuration	53
Figure 32.	Port Configuration Register (PCON) (Write Only)	55
Figure 33.	STOP Mode Recovery Register	57

Pin Functions

XTAL1 Crystal 1 (Time-Based Input)

This pin connects a parallel-resonant crystal or ceramic resonator to the on-chip oscillator input. Additionally, an optional external single-phase clock can be coded to the on-chip oscillator input.

XTAL2 Crystal 2 (Time-Based Output)

This pin connects a parallel-resonant crystal or ceramic resonant to the on-chip oscillator output.

Port 0 (P07-P00)

Port 0 is an 8-bit, bidirectional, CMOS-compatible port. These eight I/O lines are configured under software control as a nibble I/O port. The output drivers are push-pull or open-drain controlled by bit D2 in the PCON register.

If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 mode register. After a hardware reset, Port 0 is configured as an input port.

An optional pull-up transistor is available as a mask option on all Port 0 bits with nibble select.

Notes: Internal pull-ups are disabled on any given pin or group of port pins when programmed into output mode.

The Port 0 direction is reset to its default state following an SMR.

Figure 9. Port 0 Configuration

Port 1 (P17–P10)

Port 1 (see Figure 10) Port 1 can be configured for standard port input or output mode. After POR, Port 1 is configured as an input port. The output drivers are either push-pull or open-drain and are controlled by bit D1 in the PCON register.

Note: The Port 1 direction is reset to its default state following an SMR.

Figure 12. Port 3 Configuration

Two on-board comparators process analog signals on P31 and P32, with reference to the voltage on Pref1 and P33. The analog function is enabled by programming the Port 3 Mode Register (bit 1). P31 and P32 are programmable as rising, falling, or both edge triggered interrupts (IRQ register bits 6 and 7). Pref1 and P33 are the comparator reference voltage inputs. Access to the Counter Timer edgedetection circuit is through P31 or P20 (see "T8 and T16 Common Functions—

	Z8 [®] Standard Control Registers		
		Expanded Reg. Bank 0/Group 15	** D7 D6 D5 D4 D3 D2 D1 D
			1
		FE SPH	
		FD BP	
	Register Pointer	FC FLAGS	
7	6 5 4 3 2 1 0	FB IMR	
<u> </u>		FA IBO	
Working Register	er Expanded Registr	er F9 IPR	
Group Fointer	Bank Folitier	F8 P01M	
		F7 P3M	
		F6 P2M	
		F5 Reserved	
		F4 Reserved	
		F3 Reserved	
		F2 Reserved	
	Register File (Bank 0)**	F1 Reserved	
FF F0		F0 Reserved	
		Expanded Reg. Bank F/Group 0*	¢
		(F) OF WDTMR	
		(F) 0E Reserved	
		* (F) 0D SMR2	
		(F) 0C Reserved	╢╴┽┼┼┼┼┼┼┼
		↑ (F) 0B SMR	
7F		(F) 0A Reserved	
		(F) 09 Reserved	╢ ╵┥┥┥┥┥┥
		(F) 08 Reserved	╢ ╵┥┥┥┥┥┥
		(F) 07 Reserved	╢╴┼┼┼┼┼┼┼┼
		(F) 06 Reserved	╢ ╵┥┥┥┥┥┥
		(F) 05 Reserved	╢ ╵┥┥┥┥┥┥
OF	L	(F) 04 Reserved	╢╴┼┼┼┼┼┼┼┼
00	۲ <u>ـ </u>	(F) 03 Reserved	╢╴┼┼┼┼┼┼┼┼
		(F) 02 Reserved	╢ ╵┥┥┥┥┥┥
	$\langle \rangle$	(F) 01 Reserved	╢╴┼┼┼┼┼┼┼┼
Export	nded Reg. Bank 0/Group (0)	(F) 00 PCON	
Lapai	nded Reg. Bank 0/Gloup (0)		1
(0) 03 P3	0 U	Expanded Reg. Bank D/Group 0	1
(0) 02 P2		(D) 0C LVD	
	5	* (D) 0B HI8	
* (0) 01 P1	U	* (D) 0A LO8	
(0) 00 P0	U	* (D) 09 HI16	
		* (D) 08 LO16	
U = Unknown		* (D) 07 TC16H	
* Is not reset with a Stop-Mod	le Recovery	* (D) 06 TC16L	
** All addresses are in hexade	cimal	(D) 05 TC8H	
↑ Is not reset with a Stop-Moc	de Recovery, except Bit 0		
↑↑ Bit 5 Is not reset with a Stop	o-Mode Recovery	↑↑↑ (D) 03 CTR3	
TTT Bits 5,4,3,2 not reset with a	a Stop-Mode Recovery		
TITT Bits 5 and 4 not reset with	a Stop-Mode Recovery	(D) 01 CTR1	
IIIII Bits 5,4,3,2,1 not reset with	a stop-Mode Recovery	(D) 00 CTR0	

Figure 15. Expanded Register File Architecture

Figure 17. Register Pointer—Detail

Stack

The internal register file is used for the stack. An 8-bit Stack Pointer SPL (R255) is used for the internal stack that resides in the general-purpose registers (R4–R239). SPH (R254) can be used as a general-purpose register.

Timers

T8_Capture_HI—HI8(D)0BH

This register holds the captured data from the output of the 8-bit Counter/Timer0. Typically, this register holds the number of counts when the input signal is 1.

Field	Bit Position		Description
T8_Capture_HI	[7:0]	R/W	Captured Data - No Effect

T8_Capture_LO—L08(D)0AH

This register holds the captured data from the output of the 8-bit Counter/Timer0. Typically, this register holds the number of counts when the input signal is 0.

Field	Bit Position		Description
T8_Capture_L0	[7:0]	R/W	Captured Data - No Effect

T16_Capture_HI—HI16(D)09H

This register holds the captured data from the output of the 16-bit Counter/ Timer16. This register holds the MS-Byte of the data.

Field	Bit Position		Description
T16_Capture_HI	[7:0]	R/W	Captured Data - No Effect

T16_Capture_LO—L016(D)08H

This register holds the captured data from the output of the 16-bit Counter/ Timer16. This register holds the LS-Byte of the data.

Field	Bit Position	Description
T16_Capture_LO	[7:0]	R/W Captured Data - No Effect

Counter/Timer2 MS-Byte Hold Register—TC16H(D)07H

Field	Bit Position		Description
T16_Data_HI	[7:0]	R/W	Data

Capture_INT_Mask

Set this bit to allow an interrupt when data is captured into either LO8 or HI8 upon a positive or negative edge detection in demodulation mode.

Counter_INT_Mask

Set this bit to allow an interrupt when T8 has a timeout.

P34_Out

This bit defines whether P34 is used as a normal output pin or the T8 output.

T8 and T16 Common Functions—CTR1(0D)01H

This register controls the functions in common with the T8 and T16.

Table 16 lists and briefly describes the fields for this register.

Field	Bit Position		Value	Description
Mode	7	R/W	0*	Transmit Mode
				Demodulation Mode
P36_Out/	-6	R/W		Transmit Mode
Demodulator_Input			0*	Port Output
			1	T8/T16 Output
				Demodulation Mode
			0*	P31
			1	P20
T8/T16_Logic/	54	R/W		Transmit Mode
Edge _Detect			00**	AND
			01	OR
			10	NOR
			11	NAND
				Demodulation Mode
			00**	Falling Edge
			01	Rising Edge
			10	Both Edges
			11	Reserved

Table 16. CTR1(0D)01H T8 and T16 Common Functions

Figure 24. Demodulation Mode Flowchart

T16 Transmit Mode

In NORMAL or PING-PONG mode, the output of T16 when not enabled, is dependent on CTR1, D0. If it is a 0, T16_OUT is a 1; if it is a 1, T16_OUT is 0. You can force the output of T16 to either a 0 or 1 whether it is enabled or not by programming CTR1 D3; D2 to a 10 or 11.

When T16 is enabled, TC16H * 256 + TC16L is loaded, and T16_OUT is switched to its initial value (CTR1, D0). When T16 counts down to 0, T16_OUT is toggled (in NORMAL or PING-PONG mode), an interrupt (CTR2, D1) is generated (if enabled), and a status bit (CTR2, D5) is set. See Figure 25.

Figure 25. 16-Bit Counter/Timer Circuits

Note: Global interrupts override this function as described in "Interrupts" on page 50.

If T16 is in SINGLE-PASS mode, it is stopped at this point (see Figure 26). If it is in Modulo-N Mode, it is loaded with TC16H * 256 + TC16L, and the counting continues (see Figure 27).

You can modify the values in TC16H and TC16L at any time. The new values take effect when they are loaded.

If D6 of CTR2 Is 1

T16 ignores the subsequent edges in the input signal and continues counting down. A timeout of T8 causes T16 to capture its current value and generate an interrupt if enabled (CTR2, D2). In this case, T16 does not reload and continues counting. If the D6 bit of CTR2 is toggled (by writing a 0 then a 1 to it), T16 captures and reloads on the next edge (rising, falling, or both depending on CTR1, D5; D4), continuing to ignore subsequent edges.

This T16 mode generally measures mark time, the length of an active carrier signal burst.

If T16 reaches 0, T16 continues counting from FFFFh. Meanwhile, a status bit (CTR2 D5) is set, and an interrupt timeout can be generated if enabled (CTR2 D1).

Ping-Pong Mode

This operation mode is only valid in TRANSMIT Mode. T8 and T16 must be programmed in Single-Pass mode (CTR0, D6; CTR2, D6), and Ping-Pong mode must be programmed in CTR1, D3; D2. The user can begin the operation by enabling either T8 or T16 (CTR0, D7 or CTR2, D7). For example, if T8 is enabled, T8_OUT is set to this initial value (CTR1, D1). According to T8_OUT's level, TC8H or TC8L is loaded into T8. After the terminal count is reached, T8 is disabled, and T16 is enabled. T16_OUT then switches to its initial value (CTR1, D0), data from TC16H and TC16L is loaded, and T16 starts to count. After T16 reaches the terminal count, it stops, T8 is enabled again, repeating the entire cycle. Interrupts can be allowed when T8 or T16 reaches terminal control (CTR0, D1; CTR2, D1). To stop the ping-pong operation, write 00 to bits D3 and D2 of CTR1. See Figure 28.

)

Note: Enabling ping-pong operation while the counter/timers are running might cause intermittent counter/timer function. Disable the counter/timers and reset the status flags before instituting this operation.

During PING-PONG Mode

The enable bits of T8 and T16 (CTR0, D7; CTR2, D7) are set and cleared alternately by hardware. The timeout bits (CTR0, D5; CTR2, D5) are set every time the counter/timers reach the terminal count.

Interrupts

The ZGP323H features six different interrupts (Table 19). The interrupts are maskable and prioritized (Figure 30). The six sources are divided as follows: three sources are claimed by Port 3 lines P33–P31, two by the counter/timers (Table 19) and one for low voltage detection. The Interrupt Mask Register (globally or individually) enables or disables the six interrupt requests.

The source for IRQ is determined by bit 1 of the Port 3 mode register (P3M). When in digital mode, Pin P33 is the source. When in analog mode the output of the Stop mode recovery source logic is used as the source for the interrupt. See Figure 35, Stop Mode Recovery Source, on page 59.

Port 0 Output Mode (D2)

Bit 2 controls the output mode of port 0. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.

Stop-Mode Recovery Register (SMR)

This register selects the clock divide value and determines the mode of Stop Mode Recovery (Figure 33). All bits are write only except bit 7, which is read only. Bit 7 is a flag bit that is hardware set on the condition of Stop recovery and reset by a power-on cycle. Bit 6 controls whether a low level or a high level at the XORgate input (Figure 35 on page 59) is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits D2, D3, and D4 of the SMR register specify the source of the Stop Mode Recovery signal. Bits D0 determines if SCLK/ TCLK are divided by 16 or not. The SMR is located in Bank F of the Expanded Register Group at address OBH.

Figure 35. Stop Mode Recovery Source

Table 23. Watch-Dog Timer Time Select

D1	D0	Timeout of Internal RC-Oscillator
0	0	5ms min.
0	1	10ms min.
1	0	20ms min.
1	1	80ms min.

WDTMR During Halt (D2)

This bit determines whether or not the WDT is active during HALT Mode. A 1 indicates active during HALT. The default is 1. See Figure 38.

* CLR1 and CLR2 enable the WDT/POR and 18 Clock Reset timers respectively upon a Low-to-

Figure 38. Resets and WDT

Notes: Take care in differentiating the Transmit Mode from Demodulation Mode. Depending on which of these two modes is operating, the CTR1 bit has different functions.

Changing from one mode to another cannot be performed without disabling the counter/timers.

R250 IRQ(FAH)

Figure 52. Interrupt Request Register (FAH: Read/Write)

R251 IMR(FBH)

* Default setting after reset

* * Only by using EI, DI instruction; DI is required before changing the IMR register

Figure 53. Interrupt Mask Register (FBH: Read/Write)

MILLIMETER

MAX

2.65

0.30

2.44

0.46

0.30

12.95

7.60

10.65

0.40

1.00

1.07

1.27 BSC

INCH

мах

.104

.012

.096

.018

.012

.510

.299

.419

.016

.039

.042

.050 BSC

MIN

.094

.004

.088

.014

.009

.496

.291

.394

.012

.024

.038

Figure 60. 20-Pin SOIC Package Diagram

PS023803-0305

ZGP323H Z8[®] OTP Microcontroller with IR Timers

pin 4 Ε **EPROM** selectable options 64 expanded register file 26 expanded register file architecture 28 expanded register file control registers 71 flag 80 interrupt mask register 79 interrupt priority register 78 interrupt request register 79 port 0 and 1 mode register 77 port 2 configuration register 75 port 3 mode register 76 port configuration register 75 register pointer 80 stack pointer high register 81 stack pointer low register 81 stop-mode recovery register 73 stop-mode recovery register 2 74 T16 control register 69 T8 and T16 common control functions register 67 T8/T16 control register 70 TC8 control register 66 watch-dog timer register 75 F features standby modes 1 functional description counter/timer functional blocks 40 CTR(D)01h register 35 CTR0(D)00h register 33 CTR2(D)02h register 37 CTR3(D)03h register 39 expanded register file 26 expanded register file architecture 28 HI16(D)09h register 32 HI8(D)0Bh register 32 L08(D)0Ah register 32 L0I6(D)08h register 32

program memory map 26 **RAM 25** register description 65 register file 30 register pointer 29 register pointer detail 31 SMR2(F)0D1h register 40 stack 31 TC16H(D)07h register 32 TC16L(D)06h register 33 TC8H(D)05h register 33 TC8L(D)04h register 33 G glitch filter circuitry 40 Η halt instruction, counter/timer 54 input circuit 40 interrupt block diagram, counter/timer 51 interrupt types, sources and vectors 52 L low-voltage detection register 65 Μ memory, program 25 modulo-N mode T16 OUT 47 T8 OUT 43 0 oscillator configuration 53 output circuit, counter/timer 49 Ρ package information 20-pin DIP package diagram 82 20-pin SSOP package diagram 84 28-pin DIP package diagram 86 28-pin SOIC package diagram 85 28-pin SSOP package diagram 87 40-pin DIP package diagram 87 48-pin SSOP package diagram 89 pin configuration 20-pin DIP/SOIC/SSOP 5