

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	24
Program Memory Size	4KB (4K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.600", 15.24mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323hsp2804c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Development Features

Table 2 lists the features of ZiLOG[®]'s ZGP323H members.

Table 2. Features

Device	OTP (KB)	RAM (Bytes)	I/O Lines	Voltage Range
ZGP323H OTP MCU Family	4, 8, 16, 32	237	32, 24 or 16	2.0V–5.5V

- Low power consumption–18mW (typical)
- T = Temperature
 - S = Standard 0° to +70°C
 - $E = Extended 40^{\circ} to + 105^{\circ}C$
 - A = Automotive -40° to $+125^{\circ}$ C
- Three standby modes:
 - STOP— (typical 1.8µA)
 - HALT— (typical 0.8mA)
 - Low voltage reset
- Special architecture to automate both generation and reception of complex pulses or signals:
 - One programmable 8-bit counter/timer with two capture registers and two load registers
 - One programmable 16-bit counter/timer with one 16-bit capture register pair and one 16-bit load register pair
 - Programmable input glitch filter for pulse reception
- Six priority interrupts
 - Three external
 - Two assigned to counter/timers
 - One low-voltage detection interrupt
- Low voltage detection and high voltage detection flags
- Programmable Watch-Dog Timer/Power-On Reset (WDT/POR) circuits
- Two independent comparators with programmable interrupt polarity
- Programmable EPROM options
 - Port 0: 0–3 pull-up transistors
 - Port 0: 4–7 pull-up transistors

Pin Functions

XTAL1 Crystal 1 (Time-Based Input)

This pin connects a parallel-resonant crystal or ceramic resonator to the on-chip oscillator input. Additionally, an optional external single-phase clock can be coded to the on-chip oscillator input.

XTAL2 Crystal 2 (Time-Based Output)

This pin connects a parallel-resonant crystal or ceramic resonant to the on-chip oscillator output.

Port 0 (P07-P00)

Port 0 is an 8-bit, bidirectional, CMOS-compatible port. These eight I/O lines are configured under software control as a nibble I/O port. The output drivers are push-pull or open-drain controlled by bit D2 in the PCON register.

If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 mode register. After a hardware reset, Port 0 is configured as an input port.

An optional pull-up transistor is available as a mask option on all Port 0 bits with nibble select.

Notes: Internal pull-ups are disabled on any given pin or group of port pins when programmed into output mode.

The Port 0 direction is reset to its default state following an SMR.

Figure 12. Port 3 Configuration

Two on-board comparators process analog signals on P31 and P32, with reference to the voltage on Pref1 and P33. The analog function is enabled by programming the Port 3 Mode Register (bit 1). P31 and P32 are programmable as rising, falling, or both edge triggered interrupts (IRQ register bits 6 and 7). Pref1 and P33 are the comparator reference voltage inputs. Access to the Counter Timer edgedetection circuit is through P31 or P20 (see "T8 and T16 Common Functions—

29

The upper nibble of the register pointer (see Figure 16) selects which working register group, of 16 bytes in the register file, is accessed out of the possible 256. The lower nibble selects the expanded register file bank and, in the case of the Z8 GP family, banks 0, F, and D are implemented. A OH in the lower nibble allows the normal register file (bank 0) to be addressed. Any other value from 1H to FH exchanges the lower 16 registers to an expanded register bank.

Figure 16. Register Pointer

Example: Z8 GP: (See Figure 15 on page 28)

R253 RP = 00h R0 = Port 0 R1 = Port 1 R2 = Port 2 R3 = Port 3

But if:

R253 RP = 0Dh R0 = CTR0 R1 = CTR1 R2 = CTR2R3 = Reserved

The counter/timers are mapped into ERF group D. Access is easily performed using the following:

LD	RP, #0Dh	;	Select ERF D
for access to bank D			
		;	(working
register group 0)			
LD	R0,#xx	;	load CTR0
LD	1, #xx	;	load CTR1
LD	R1, 2	;	CTR2→CTR1
LD	RP, #0Dh	;	Select ERF D
for access to bank D			
		;	(working
register group 0)			
LD	RP, #7Dh	;	Select
expanded register bank	D and working	;	register
group 7 of bank 0 for a	ccess.		
LD	71h, 2		
; CTRL2 \rightarrow register 71h			
LD	R1, 2		
; CTRL2 \rightarrow register 71h			

Register File

>

The register file (bank 0) consists of 4 I/O port registers, 237 general-purpose registers, 16 control and status registers (R0–R3, R4–R239, and R240–R255, respectively), and two expanded registers groups in Banks D (see Table 15) and F. Instructions can access registers directly or indirectly through an 8-bit address field, thereby allowing a short, 4-bit register address to use the Register Pointer (Figure 17). In the 4-bit mode, the register file is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working register group.

Figure 24. Demodulation Mode Flowchart

46

T16 Transmit Mode

In NORMAL or PING-PONG mode, the output of T16 when not enabled, is dependent on CTR1, D0. If it is a 0, T16_OUT is a 1; if it is a 1, T16_OUT is 0. You can force the output of T16 to either a 0 or 1 whether it is enabled or not by programming CTR1 D3; D2 to a 10 or 11.

When T16 is enabled, TC16H * 256 + TC16L is loaded, and T16_OUT is switched to its initial value (CTR1, D0). When T16 counts down to 0, T16_OUT is toggled (in NORMAL or PING-PONG mode), an interrupt (CTR2, D1) is generated (if enabled), and a status bit (CTR2, D5) is set. See Figure 25.

Figure 25. 16-Bit Counter/Timer Circuits

Note: Global interrupts override this function as described in "Interrupts" on page 50.

If T16 is in SINGLE-PASS mode, it is stopped at this point (see Figure 26). If it is in Modulo-N Mode, it is loaded with TC16H * 256 + TC16L, and the counting continues (see Figure 27).

You can modify the values in TC16H and TC16L at any time. The new values take effect when they are loaded.

Figure 35. Stop Mode Recovery Source

Stop Mode Recovery Register 2 (SMR2)

This register determines the mode of Stop Mode Recovery for SMR2 (Figure 36).

SMR2(0F)DH

D7	D6	D5	D4	D3	D2	D1	D0]
								 Reserved (Must be 0) Reserved (Must be 0) Stop-Mode Recovery Source 2 000 POR Only * 001 NAND P20, P21, P22, P23 010 NAND P20, P21, P22, P23, P24, P25, P26, P27 011 NOR P31, P32, P33 100 NAND P31, P32, P33 101 NOR P31, P32, P33, P00, P07 110 NAND P31, P32, P33, P00, P07 111 NAND P31, P32, P33, P20, P21, P22
								Reserved (Must be 0) Recovery Level * * 0 Low * 1 High
								Reserved (Must be 0)

Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery.

* Default setting after reset

* * At the XOR gate input

Figure 36. Stop Mode Recovery Register 2 ((0F)DH:D2–D4, D6 Write Only)

If SMR2 is used in conjunction with SMR, either of the specified events causes a Stop Mode Recovery.

Note: Port pins configured as outputs are ignored as an SMR or SMR2 recovery source. For example, if the NAND or P23–P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23–P21) form the NAND equation.

62

Watch-Dog Timer Mode Register (WDTMR)

The Watch-Dog Timer (WDT) is a retriggerable one-shot timer that resets the Z8[®] CPU if it reaches its terminal count. The WDT must initially be enabled by executing the WDT instruction. On subsequent executions of the WDT instruction, the WDT is refreshed. The WDT circuit is driven by an on-board RC-oscillator. The WDT instruction affects the Zero (Z), Sign (S), and Overflow (V) flags.

The POR clock source the internal RC-oscillator. Bits 0 and 1 of the WDT register control a tap circuit that determines the minimum timeout period. Bit 2 determines whether the WDT is active during HALT, and Bit 3 determines WDT activity during Stop. Bits 4 through 7 are reserved (Figure 37). This register is accessible only during the first 60 processor cycles (120 XTAL clocks) from the execution of the first instruction after Power-On-Reset, Watch-Dog Reset, or a Stop-Mode Recovery (Figure 36). After this point, the register cannot be modified by any means (intentional or otherwise). The WDTMR cannot be read. The register is located in Bank F of the Expanded Register Group at address location 0Fh. It is organized as shown in Figure 37.

WDTMR(0F)0Fh

* Default setting after reset

Figure 37. Watch-Dog Timer Mode Register (Write Only)

WDT Time Select (D0, D1)

This bit selects the WDT time period. It is configured as indicated in Table 23.

WDTMR During STOP (D3)

This bit determines whether or not the WDT is active during STOP Mode. Because the XTAL clock is stopped during STOP Mode, the on-board RC has to be selected as the clock source to the WDT/POR counter. A 1 indicates active during Stop. The default is 1.

EPROM Selectable Options

There are seven EPROM Selectable Options to choose from based on ROM code requirements. These options are listed in Table 24.

Table 24. EPROM Selectable Options

Port 00–03 Pull-Ups	On/Off
Port 04–07 Pull-Ups	On/Off
Port 10–13 Pull-Ups	On/Off
Port 14–17 Pull-Ups	On/Off
Port 20–27 Pull-Ups	On/Off
EPROM Protection	On/Off
Watch-Dog Timer at Power-On Reset	On/Off

Voltage Brown-Out/Standby

An on-chip Voltage Comparator checks that the V_{DD} is at the required level for correct operation of the device. Reset is globally driven when V_{DD} falls below V_{BO}. A small drop in V_{DD} causes the XTAL1 and XTAL2 circuitry to stop the crystal or resonator clock. If the V_{DD} is allowed to stay above V_{RAM}, the RAM content is preserved. When the power level is returned to above V_{BO}, the device performs a POR and functions normally.

Notes: Take care in differentiating the Transmit Mode from Demodulation Mode. Depending on which of these two modes is operating, the CTR1 bit has different functions.

Changing from one mode to another cannot be performed without disabling the counter/timers.

SMR(0F)0BH

- * Default setting after reset
- * * Set after Stop Mode Recovery
- * * * At the XOR gate input
- * * * * Default setting after reset. Must be 1 if using a crystal or resonator clock source.
- * * * * * Default setting after Power On Reset. Not reset with a Stop Mode recovery.

Figure 45. Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only)

Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery.

* Default setting after reset. Not reset with a Stop Mode recovery.

* * At the XOR gate input

Figure 46. Stop Mode Recovery Register 2 ((0F)0DH:D2–D4, D6 Write Only)

R247 P3M(F7H)

* Default setting after reset. Not reset with a Stop Mode recovery.

Figure 49. Port 3 Mode Register (F7H: Write Only)

MILLIMETER

MAX

2.65

0.30

2.44

0.46

0.30

12.95

7.60

10.65

0.40

1.00

1.07

1.27 BSC

INCH

мах

.104

.012

.096

.018

.012

.510

.299

.419

.016

.039

.042

.050 BSC

MIN

.094

.004

.088

.014

.009

.496

.291

.394

.012

.024

.038

Figure 60. 20-Pin SOIC Package Diagram

PS023803-0305

A1	 ¥↓ ↓ δ
↓	A2 A

		MILLIMETER	2	INCH		
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
А	1.73	1.86	1.99	0.068	0.073	0.078
A1	0.05	0.13	0.21	0.002	0.005	0.008
A2	1.68	1.73	1.78	0.066	0.068	0.070
В	0.25		0.38	0.010		0.015
С	0.09	-	0.20	0.004	0.006	0.008
D	10.07	10.20	10.33	0.397	0.402	0.407
E	5.20	5.30	5.38	0.205	0.209	0.212
е	0.65 TYP				0.0256 TYF)
н	7.65	7.80	7.90	0.301	0.307	0.311
L	0.63	0.75	0.95	0.025	0.030	0.037

CONTROLLING DIMENSIONS: MM LEADS ARE COPLANAR WITHIN .004 INCHES.

<u>DETAIL 'A'</u>

0-8

Figure 65. 28-Pin SSOP Package Diagram

SYMBOL	MILLIN	IETER	INC	Η
SIMDOL	MIN	MAX	MIN	MAX
A1	0.51	1.02	.020	.040
A2	3.18	3.94	.125	.155
В	0.38	0.53	.015	.021
B1	1.02	1.52	.040	.060
С	0.23	0.38	.009	.015
D	52.07	52.58	2.050	2.070
E	15.24	15.75	.600	.620
E1	13.59	14.22	.535	.560
e	2.54	TYP	.100	TYP
eA	15.49	16.76	.610	.660
L	3.05	3.81	.120	.150
Q1	1.40	1.91	.055	.075
2	1.52	2.20	060	000

CONTROLLING DIMENSIONS : INCH

Figure 66. 40-Pin PDIP Package Diagram

Figure 67. 40-Pin CDIP Package Diagram

16KB Standard Temperature: 0° to +70°C

Part Number	Description	Part Number	Description
ZGP323HSH4816C	48-pin SSOP 16K OTP	ZGP323HSS2816C	28-pin SOIC 16K OTP
ZGP323HSP4016C	40-pin PDIP 16K OTP	ZGP323HSH2016C	20-pin SSOP 16K OTP
ZGP323HSH2816C	28-pin SSOP 16K OTP	ZGP323HSP2016C	20-pin PDIP 16K OTP
ZGP323HSP2816C	28-pin PDIP 16K OTP	ZGP323HSS2016C	20-pin SOIC 16K OTP

16KB Extended Temperature: -40° to +105°C					
Part Number	Description	Part Number	Description		
ZGP323HEH4816C	48-pin SSOP 16K OTP	ZGP323HES2816C	28-pin SOIC 16K OTP		
ZGP323HEP4016C	40-pin PDIP 16K OTP	ZGP323HEH2016C	20-pin SSOP 16K OTP		
ZGP323HEH2816C	28-pin SSOP 16K OTP	ZGP323HEP2016C	20-pin PDIP 16K OTP		
ZGP323HEP2816C	28-pin PDIP 16K OTP	ZGP323HES2016C	20-pin SOIC 16K OTP		

16KB Automotive Temperature: -40° to +125°CPart NumberDescriptionPart NumberDescriptionZGP323HAH4816C48-pin SSOP 16K OTPZGP323HAS2816C28-pin SOIC 16K OTPZGP323HAP4016C40-pin PDIP 16K OTPZGP323HAH2016C20-pin SSOP 16K OTPZGP323HAH2816C28-pin SSOP 16K OTPZGP323HAP2016C20-pin PDIP 16K OTPZGP323HAP2816C28-pin PDIP 16K OTPZGP323HAS2016C20-pin SOIC 16K OTPZGP323HAP2816C28-pin PDIP 16K OTPZGP323HAS2016C20-pin SOIC 16K OTPReplace C with G for Lead-Free Packaging

8KB Standard Temperature: 0° to +70°C

Part Number	Description	Part Number	Description
ZGP323HSH4808C	48-pin SSOP 8K OTP	ZGP323HSS2808C	28-pin SOIC 8K OTP
ZGP323HSP4008C	40-pin PDIP 8K OTP	ZGP323HSH2008C	20-pin SSOP 8K OTP
ZGP323HSH2808C	28-pin SSOP 8K OTP	ZGP323HSP2008C	20-pin PDIP 8K OTP
ZGP323HSP2808C	28-pin PDIP 8K OTP	ZGP323HSS2008C	20-pin SOIC 8K OTP

8KB Extended Temperature: -40° to +105°C

Part Number	Description	Part Number	Description
ZGP323HEH4808C	48-pin SSOP 8K OTP	ZGP323HES2808C	28-pin SOIC 8K OTP
ZGP323HEP4008C	40-pin PDIP 8K OTP	ZGP323HEH2008C	20-pin SSOP 8K OTP
ZGP323HEH2808C	28-pin SSOP 8K OTP	ZGP323HEP2008C	20-pin PDIP 8K OTP
ZGP323HEP2808C	28-pin PDIP 8K OTP	ZGP323HES2008C	20-pin SOIC 8K OTP

8KB Automotive Temperature: -40° to +125°C

Part Number	Description	Part Number	Description
	Becchption	T alt Hallbol	Beeenpaien
ZGP323HAH4808C	48-pin SSOP 8K OTP	ZGP323HAS2808C	28-pin SOIC 8K OTP
ZGP323HAP4008C	40-pin PDIP 8K OTP	ZGP323HAH2008C	20-pin SSOP 8K OTP
ZGP323HAH2808C	28-pin SSOP 8K OTP	ZGP323HAP2008C	20-pin PDIP 8K OTP
ZGP323HAP2808C	28-pin PDIP 8K OTP	ZGP323HAS2008C	20-pin SOIC 8K OTP
Replace C with G for Lead-Free Packaging			