

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.620", 15.75mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323hsp4032c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- : 00		04	~
Figure 68.	48-Pin SSOP Package Design		J

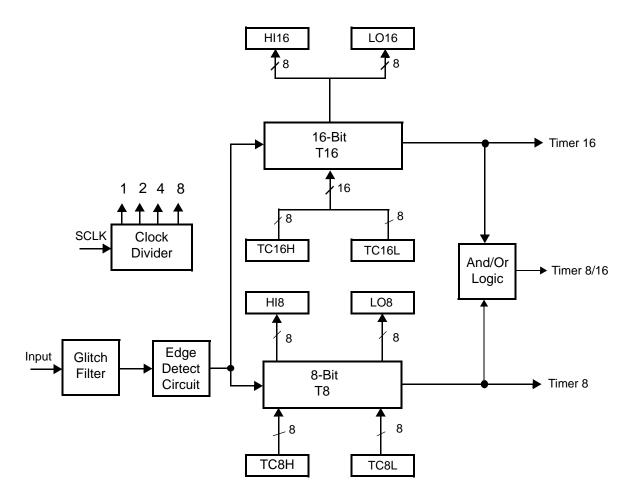


Figure 2. Counter/Timers Diagram

Pin Description

The pin configuration for the 20-pin PDIP/SOIC/SSOP is illustrated in Figure 3 and described in Table 4. The pin configuration for the 28-pin PDIP/SOIC/SSOP are depicted in Figure 4 and described in Table 5. The pin configurations for the 40-pin PDIP and 48-pin SSOP versions are illustrated in Figure 5, Figure 6, and described in Table 6.

For customer engineering code development, a UV eraseable windowed cerdip packaging is offered in 20-pin, 28-pin, and 40-pin configurations. ZiLOG does not recommend nor guarantee these packages for use in production.

ZGP323H Product Specification

	I					
NC		1	\bigcirc	48	_	NC
P25		2		47	-	NC
P26		3		46	_	P24
P27		4		45		P23
P04		5			_	P22
N/C		6			-	P21
P05		7			_	P20
P06		8		42		P03
P14		9		40		P13
P15		10		39	-	P12
P07		11		38		VSS
VDD		12	48-Pin	37		VSS
VDD		13	SSOP		_	N/C
N/C		14		35	-	P02
P16		15		34		P11
P17		16				P10
XTAL2		17		32	-	P01
XTAL1	Π	18		31		P00
P31		19		30		N/C
P32		20		29	-	PREF1/P30
P33		21		28		P36
		22		27		P37
		22		26	_	P35
VSS		23		25	_	RESET
		27		25		

Figure 6. 48-Pin SSOP Pin Configuration

Table 6. 40- and 48-Pin Configuration

40-Pin PDIP #	48-Pin SSOP #	Symbol
26	31	P00
27	32	P01
30	35	P02
34	41	P03
5	5	P04
6	7	P05
7	8	P06
10	11	P07
28	33	P10
29	34	P11
32	39	P12

Table 11. GP323HA DC Characteristics (Continued)

T _A = -40°C to +125°C								
Symbol	Parameter	V _{CC}	Min	Typ(7)	Max	Units	Conditions	Notes
V _{HVD}	Vcc High Voltage Detection			2.7		V		
Notes:								
1. All o	outputs unloaded, inpu	ıts at rail.						
2. CL1	1 = CL2 = 100 pF.							
3. Osc	cillator stopped.							
4. Osc	cillator stops when V _{CC}	falls below	V _{BO} limit.					
volt	age fluctuations are a	nticipated, su	ch as thos	e resulting			cally close to VCC and nfrared LED.	V_{SS} pins if operating
6. Cor	mparator and Timers a	re on. Interru	pt disabled	1.				

7. Typical values shown are at 25 degrees C.

Table 12. EPROM/OTP Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes
	Erase Time	15			Minutes	1,3
	Data Retention @ use years		10		Years	2
	Program/Erase Endurance	100			Cycles	1

Notes:

1. For windowed cerdip package only.

2. Standard: 0°C to 70°C; Extended: -40°C to +105°C; Automotive: -40°C to +125°C. Determined using the Arrhenius model, which is an industry standard for estimating data retention of floating gate technologies:

AF = exp[(Ea/k)*(1/Tuse - 1/TStress)] Where: Ea is the intrinsic activation energy (eV; typ. 0.8) k is Boltzman's constant (8.67 x 10-5 eV/°K) °K = -273.16°C Tuse = Use Temperature in °K TStress = Stress Temperature in °K 3. At a stable UV Lamp output of 20mW/CM²

AC Characteristics

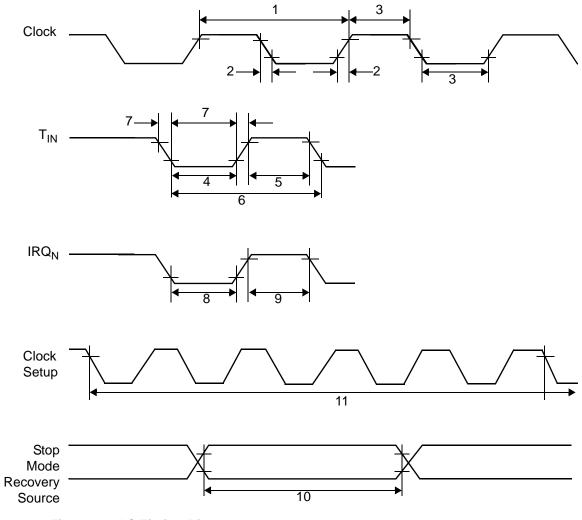


Figure 8. AC Timing Diagram

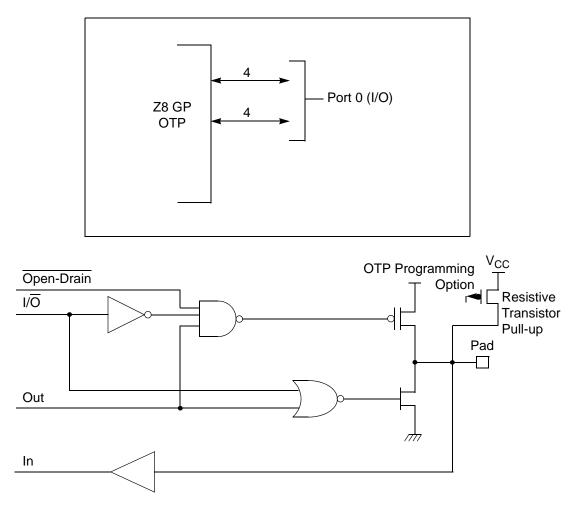


Figure 9. Port 0 Configuration

Port 1 (P17–P10)

Port 1 (see Figure 10) Port 1 can be configured for standard port input or output mode. After POR, Port 1 is configured as an input port. The output drivers are either push-pull or open-drain and are controlled by bit D1 in the PCON register.

Note: The Port 1 direction is reset to its default state following an SMR.

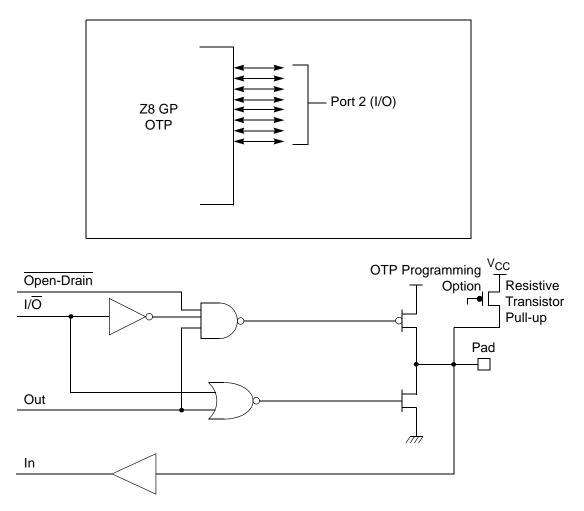


Figure 11. Port 2 Configuration

Port 3 (P37–P30)

Port 3 is a 8-bit, CMOS-compatible fixed I/O port (see Figure 12). Port 3 consists of four fixed input (P33–P30) and four fixed output (P37–P34), which can be configured under software control for interrupt and as output from the counter/timers. P30, P31, P32, and P33 are standard CMOS inputs; P34, P35, P36, and P37 are push-pull outputs.

Field	Bit Position		Value	Description
Transmit_Submode/	32	R/W		Transmit Mode
Glitch_Filter			00*	Normal Operation
			01	Ping-Pong Mode
			10	T16_Out = 0
			11	T16_Out = 1
				Demodulation Mode
			00*	No Filter
			01	4 SCLK Cycle
			10	8 SCLK Cycle
			11	Reserved
Initial_T8_Out/	1-			Transmit Mode
Rising Edge		R/W	0*	T8_OUT is 0 Initially
			1	T8_OUT is 1 Initially
				Demodulation Mode
		R	0*	No Rising Edge
			1	Rising Edge Detected
		W	0	No Effect
			1	Reset Flag to 0
Initial_T16_Out/	0			Transmit Mode
Falling_Edge		R/W	0*	T16_OUT is 0 Initially
			1	T16_OUT is 1 Initially
				Demodulation Mode
		R	0*	No Falling Edge
			1	Falling Edge Detected
		W	0	No Effect
			1	Reset Flag to 0

Table 16.CTR1(0D)01H T8 and T16 Common Functions (Continued)

Note:

*Default at Power-On Reset

*Default at Power-On Reset. Not reset with Stop Mode recovery.

Mode

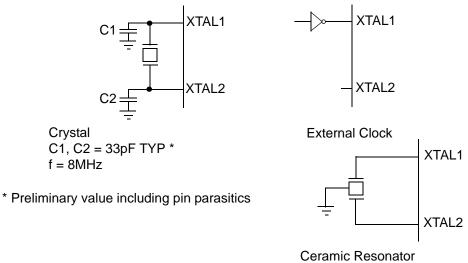
If the result is 0, the counter/timers are in TRANSMIT mode; otherwise, they are in DEMODULATION mode.

P36_Out/Demodulator_Input

In TRANSMIT Mode, this bit defines whether P36 is used as a normal output pin or the combined output of T8 and T16.

In DEMODULATION Mode, this bit defines whether the input signal to the Counter/Timers is from P20 or P31.

If the input signal is from Port 31, a capture event may also generate an IRQ2 interrupt. To prevent generating an IRQ2, either disable the IRQ2 interrupt by clearing its IMR bit D2 or use P20 as the input.



53

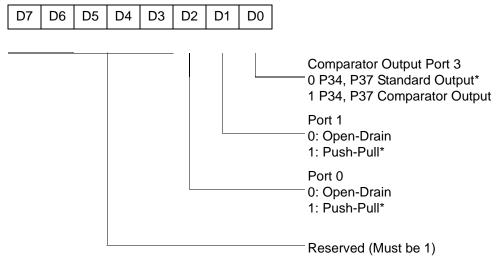
Clock

The device's on-chip oscillator has a high-gain, parallel-resonant amplifier, for connection to a crystal or ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal must be AT cut, 1 MHz to 8 MHz maximum, with a series resistance (RS) less than or equal to 100 Ω . The on-chip oscillator can be driven with a suitable external clock source.

The crystal must be connected across XTAL1 and XTAL2 using the recommended capacitors (capacitance greater than or equal to 22 pF) from each pin to ground.

f = 8mHz

Figure 31. Oscillator Configuration



FF	NOP	; clear the pipeline
6F	Stop	; enter Stop Mode
or		
FF	NOP	; clear the pipeline
7F	HALT	; enter HALT Mode

Port Configuration Register

The Port Configuration (PCON) register (Figure 32) configures the comparator output on Port 3. It is located in the expanded register 2 at Bank F, location 00.

PCON(FH)00H

* Default setting after reset

Figure 32. Port Configuration Register (PCON) (Write Only)

Comparator Output Port 3 (D0)

Bit 0 controls the comparator used in Port 3. A 1 in this location brings the comparator outputs to P34 and P37, and a 0 releases the Port to its standard I/O configuration.

Port 1 Output Mode (D1)

Bit 1 controls the output mode of port 1. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.

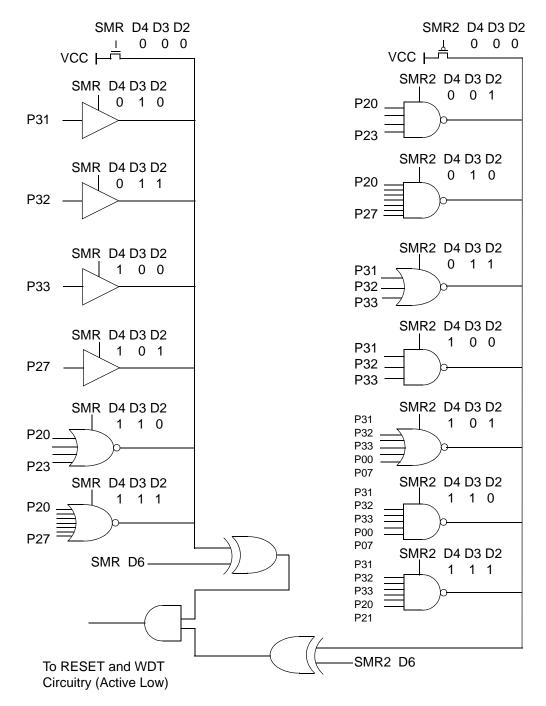


Figure 35. Stop Mode Recovery Source

ZGP323H Product Specification

Table 22. Stop Mode Recovery Source

SMR:432			Operation		
D4	D3	D2	Description of Action		
0	0	0	POR and/or external reset recovery		
0	0	1	Reserved		
0	1	0	P31 transition		
0	1	1	P32 transition		
1	0	0	P33 transition		
1	0	1	P27 transition		
1	1	0	Logical NOR of P20 through P23		
1	1	1	Logical NOR of P20 through P27		

Note: Any Port 2 bit defined as an output drives the corresponding input to the default state. This condition allows the remaining inputs to control the AND/OR function. Refer to SMR2 register on page 61 for other recover sources.

Stop Mode Recovery Delay Select (D5)

This bit, if Low, disables the T_{POR} delay after Stop Mode Recovery. The default configuration of this bit is 1. If the "fast" wake up is selected, the Stop Mode Recovery source must be kept active for at least 5 TpC.

Note: This bit must be set to 1 if using a crystal or resonator clock source. The T_{POR} delay allows the clock source to stabilize before executing instructions.

Stop Mode Recovery Edge Select (D6)

A 1 in this bit position indicates that a High level on any one of the recovery sources wakes the device from Stop Mode. A 0 indicates Low level recovery. The default is 0 on POR.

Cold or Warm Start (D7)

This bit is read only. It is set to 1 when the device is recovered from Stop Mode. The bit is set to 0 when the device reset is other than Stop Mode Recovery (SMR).

Stop Mode Recovery Register 2 (SMR2)

This register determines the mode of Stop Mode Recovery for SMR2 (Figure 36).

SMR2(0F)DH

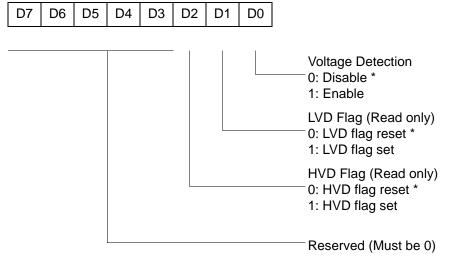
D7	D6	D5	D4	D3	D2	D1	D0	
						_		 Reserved (Must be 0) Reserved (Must be 0) Stop-Mode Recovery Source 2 000 POR Only * 001 NAND P20, P21, P22, P23 010 NAND P20, P21, P22, P23, P24, P25, P26, P27 011 NOR P31, P32, P33 100 NAND P31, P32, P33 101 NOR P31, P32, P33, P00, P07 110 NAND P31, P32, P33, P00, P07 111 NAND P31, P32, P33, P20, P21, P22
								Reserved (Must be 0)
								Recovery Level * * 0 Low * 1 High
								Reserved (Must be 0)

Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery.

* Default setting after reset

* * At the XOR gate input

Figure 36. Stop Mode Recovery Register 2 ((0F)DH:D2–D4, D6 Write Only)

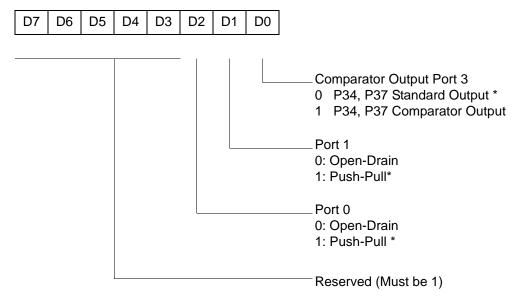

If SMR2 is used in conjunction with SMR, either of the specified events causes a Stop Mode Recovery.

Note: Port pins configured as outputs are ignored as an SMR or SMR2 recovery source. For example, if the NAND or P23–P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23–P21) form the NAND equation.

LVD(0D)0CH

* Default setting after reset.

Figure 43. Voltage Detection Register


Note: Do not modify register P01M while checking a low-voltage condition. Switching noise of both ports 0 and 1 together might trigger the LVD flag.

Expanded Register File Control Registers (0F)

The expanded register file control registers (0F) are depicted in Figures 44 through Figure 57.

PCON(0F)00H

* Default setting after reset

Figure 44. Port Configuration Register (PCON)(0F)00H: Write Only)

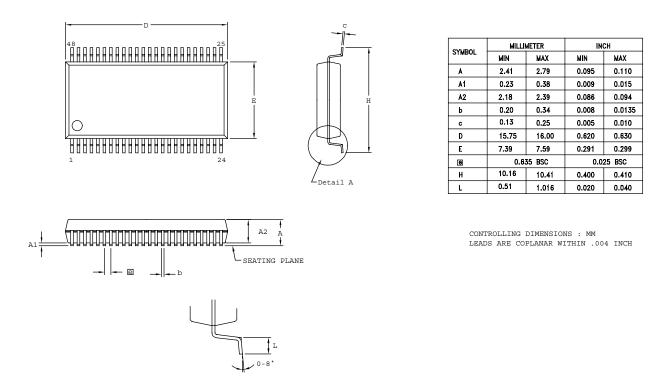


Figure 68. 48-Pin SSOP Package Design

Note: Check with ZiLOG on the actual bonding diagram and coordinate for chip-on-board assembly.

ZGP323H Product Specification

Ordering Information

32KB Standard Temperature: 0° to +70°C

	•		
Part Number	Description	Part Number	Description
ZGP323HSH4832C	48-pin SSOP 32K OTP	ZGP323HSS2832C	28-pin SOIC 32K OTP
ZGP323HSP4032C	40-pin PDIP 32K OTP	ZGP323HSH2032C	20-pin SSOP 32K OTP
ZGP323HSK2832E	28-pin CDIP 32K OTP	ZGP323HSK2032E	20-pin CDIP 32K OTP
ZGP323HSK4032E	40-pin CDIP 32K OTP	ZGP323HSP2032C	20-pin PDIP 32K OTP
ZGP323HSH2832C	28-pin SSOP 32K OTP	ZGP323HSS2032C	20-pin SOIC 32K OTP
ZGP323HSP2832C	28-pin PDIP 32K OTP		

32KB Extended Temperature: -40° to +105°C

	•		
Part Number	Description	Part Number	Description
ZGP323HEH4832C	48-pin SSOP 32K OTP	ZGP323HES2832C	28-pin SOIC 32K OTP
ZGP323HEP4032C	40-pin PDIP 32K OTP	ZGP323HEH2032C	20-pin SSOP 32K OTP
ZGP323HEH2832C	28-pin SSOP 32K OTP	ZGP323HEP2032C	20-pin PDIP 32K OTP
ZGP323HEP2832C	28-pin PDIP 32K OTP	ZGP323HES2032C	20-pin SOIC 32K OTP

32KB Automotive Temperature: -40° to +125°C					
Part Number	Description	Part Number	Description		
ZGP323HAH4832C	48-pin SSOP 32K OTP	ZGP323HAS2832C	28-pin SOIC 32K OTP		
ZGP323HAP4032C	40-pin PDIP 32K OTP	ZGP323HAH2032C	20-pin SSOP 32K OTP		
ZGP323HAH2832C	28-pin SSOP 32K OTP	ZGP323HAP2032C	20-pin PDIP 32K OTP		
ZGP323HAP2832C	28-pin PDIP 32K OTP	ZGP323HAS2032C	20-pin SOIC 32K OTP		
Replace C with G for	r Lead-Free Packaging				

16KB Standard Temperature: 0° to +70°C

Part Number	Description	Part Number	Description
ZGP323HSH4816C	48-pin SSOP 16K OTP	ZGP323HSS2816C	28-pin SOIC 16K OTP
ZGP323HSP4016C	40-pin PDIP 16K OTP	ZGP323HSH2016C	20-pin SSOP 16K OTP
ZGP323HSH2816C	28-pin SSOP 16K OTP	ZGP323HSP2016C	20-pin PDIP 16K OTP
ZGP323HSP2816C	28-pin PDIP 16K OTP	ZGP323HSS2016C	20-pin SOIC 16K OTP

16KB Extended Temperature: -40° to +105°C					
Part Number	Description	Part Number	Description		
ZGP323HEH4816C	48-pin SSOP 16K OTP	ZGP323HES2816C	28-pin SOIC 16K OTP		
ZGP323HEP4016C	40-pin PDIP 16K OTP	ZGP323HEH2016C	20-pin SSOP 16K OTP		
ZGP323HEH2816C	28-pin SSOP 16K OTP	ZGP323HEP2016C	20-pin PDIP 16K OTP		
ZGP323HEP2816C	28-pin PDIP 16K OTP	ZGP323HES2016C	20-pin SOIC 16K OTP		

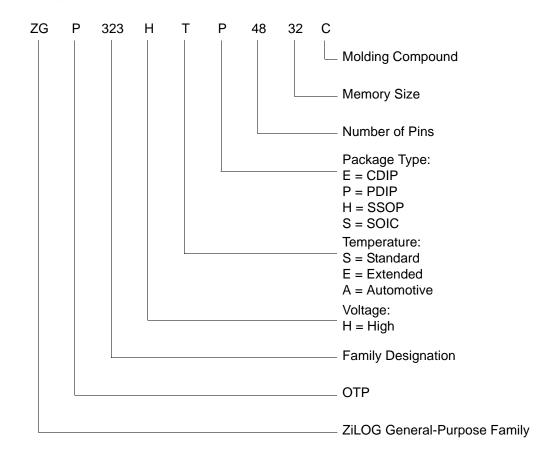
16KB Automotive Temperature: -40° to +125°CPart NumberDescriptionPart NumberDescriptionZGP323HAH4816C48-pin SSOP 16K OTPZGP323HAS2816C28-pin SOIC 16K OTPZGP323HAP4016C40-pin PDIP 16K OTPZGP323HAH2016C20-pin SSOP 16K OTPZGP323HAH2816C28-pin SSOP 16K OTPZGP323HAP2016C20-pin PDIP 16K OTPZGP323HAP2816C28-pin PDIP 16K OTPZGP323HAS2016C20-pin SOIC 16K OTPZGP323HAP2816C28-pin PDIP 16K OTPZGP323HAS2016C20-pin SOIC 16K OTPReplace C with G for Lead-Free Packaging

For fast results, contact your local ZiLOG sales office for assistance in ordering the part desired.

Codes

ZG = ZiLOG General Purpose Family

P = OTP


- 323 = Family Designation
- H = High Voltage
- T = Temparature
 - S = Standard 0° to +70°C
 - $E = Extended 40^{\circ} to + 105^{\circ}C$
 - A = Automotive -40° to $+125^{\circ}C$
- P = Package Type:
 - K = CDIP
 - P = PDIP
 - H = SSOP
 - S = SOIC

= Number of Pins

- CC = Memory Size
- M = Molding Compound
- C = Standard Plastic Packaging Molding Compound
- G = Green Plastic Molding Compound
- E = Standard Cer Dip flow

Example

