

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	16
Program Memory Size	4KB (4K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323hss2004g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

iii

Revision History

Each instance in Table 1 reflects a change to this document from its previous revision. To see more detail, click the appropriate link in the table.

Table 1. Revision History of this Document

Date	Revision Level	Section	Description	Page #
December 2004			note, clarified temperature ranges in Tables 6 and 8 Tables 9 and 10. Also added Characterization data to	11,12,
		Removed Preliminar	y designation	All
March 2005	03	Minor change to Tab pin CDIP parts in the	le 9 Electrical Characteristics. Added 20, 28 and 40-e Ordering Section.	11,90

PS023803-0305 Revision History

ZGP323H Product Specification

	•
v	ı

Figure 34. SCLK Circuit	58
Figure 35. Stop Mode Recovery Source	59
Figure 36. Stop Mode Recovery Register 2 ((0F)DH:D2-D4, D6 Write Only) 6	31
Figure 37. Watch-Dog Timer Mode Register (Write Only)6	62
Figure 38. Resets and WDT	63
Figure 39. TC8 Control Register ((0D)O0H: Read/Write Except Where Noted) 6	36
Figure 40. T8 and T16 Common Control Functions ((0D)01H: Read/Write) 6	37
Figure 41. T16 Control Register ((0D) 2H: Read/Write Except Where Noted) . 6	39
Figure 42. T8/T16 Control Register (0D)03H: Read/Write (Except Where	
Noted)	
Figure 43. Voltage Detection Register	
Figure 44. Port Configuration Register (PCON)(0F)00H: Write Only) 7	72
Figure 45. Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only)	73
Figure 46. Stop Mode Recovery Register 2 ((0F)0DH:D2–D4, D6 Write Only)	74
Figure 47. Watch-Dog Timer Register ((0F) 0FH: Write Only)	75
Figure 48. Port 2 Mode Register (F6H: Write Only)	75
Figure 49. Port 3 Mode Register (F7H: Write Only)	76
Figure 50. Port 0 and 1 Mode Register (F8H: Write Only)	77
Figure 51. Interrupt Priority Register (F9H: Write Only)	78
Figure 52. Interrupt Request Register (FAH: Read/Write)	79
Figure 53. Interrupt Mask Register (FBH: Read/Write)	79
Figure 54. Flag Register (FCH: Read/Write)	30
Figure 55. Register Pointer (FDH: Read/Write) 8	30
Figure 56. Stack Pointer High (FEH: Read/Write) 8	81
Figure 57. Stack Pointer Low (FFH: Read/Write)	31
Figure 58. 20-Pin CDIP Package 8	82
Figure 59. 20-Pin PDIP Package Diagram 8	32
Figure 60. 20-Pin SOIC Package Diagram 8	33
Figure 61. 20-Pin SSOP Package Diagram 8	34
Figure 62. 28-Pin SOIC Package Diagram 8	35
Figure 63. 28-Pin CDIP Package Diagram 8	36
Figure 64. 28-Pin PDIP Package Diagram 8	36
Figure 65. 28-Pin SSOP Package Diagram	37
Figure 66. 40-Pin PDIP Package Diagram 8	37
Figure 67. 40-Pin CDIP Package Diagram	88

PS023803-0305 List of Figures

Eiguro 60	19 Din SSOD Dockago Docign	 'n
rigui e oo.	40-FIII SSOF FACKAGE DESIGN	 7

PS023803-0305 List of Figures

23

CTR1(0D)01H" on page 35). Other edge detect and IRQ modes are described in Table 14.

Note: Comparators are powered down by entering Stop Mode. For P31-P33 to be used in a Stop Mode Recovery (SMR) source, these inputs must be placed into digital mode.

Table 14. Port 3 Pin Function Summary

Pin	I/O	Counter/Timers	Comparator	Interrupt
Pref1/P30	IN		RF1	
P31	IN	IN	AN1	IRQ2
P32	IN		AN2	IRQ0
P33	IN		RF2	IRQ1
P34	OUT	Т8	AO1	
P35	OUT	T16		
P36	OUT	T8/16		
P37	OUT		AO2	
P20	I/O	IN		

Port 3 also provides output for each of the counter/timers and the AND/OR Logic (see Figure 13). Control is performed by programming bits D5-D4 of CTR1, bit 0 of CTR0, and bit 0 of CTR2.

PS023803-0305 Pin Functions

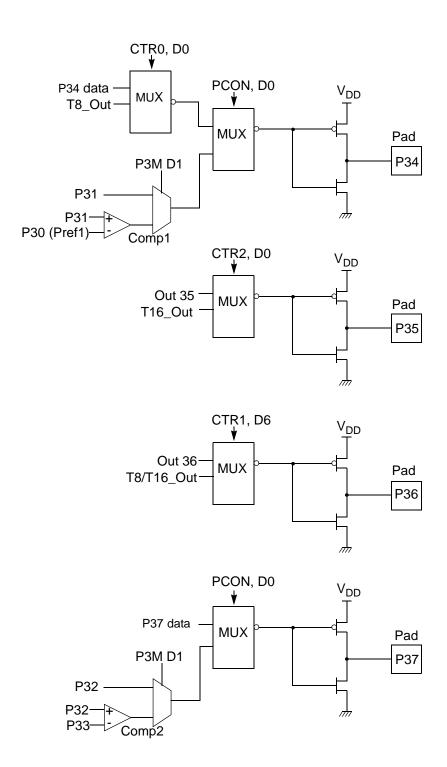


Figure 13. Port 3 Counter/Timer Output Configuration

PS023803-0305 Pin Functions

Table 16. CTR1(0D)01H T8 and T16 Common Functions (Continued)

Field	Bit Position		Value	Description
Transmit_Submode/	32	R/W		Transmit Mode
Glitch_Filter			00*	Normal Operation
			01	Ping-Pong Mode
			10	T16_Out = 0
			11	T16_Out = 1
				Demodulation Mode
			00*	No Filter
			01	4 SCLK Cycle
			10	8 SCLK Cycle
			11	Reserved
Initial_T8_Out/	1-			Transmit Mode
Rising Edge		R/W	0*	T8_OUT is 0 Initially
			1	T8_OUT is 1 Initially
				Demodulation Mode
		R	0*	No Rising Edge
			1	Rising Edge Detected
		W	0	No Effect
			1	Reset Flag to 0
Initial_T16_Out/	0			Transmit Mode
Falling_Edge		R/W	0*	T16_OUT is 0 Initially
			1	T16_OUT is 1 Initially
				Demodulation Mode
		R	0*	No Falling Edge
			1	Falling Edge Detected
		W	0	No Effect
			1	Reset Flag to 0

Note:

Mode

If the result is 0, the counter/timers are in TRANSMIT mode; otherwise, they are in DEMODULATION mode.

P36_Out/Demodulator_Input

In TRANSMIT Mode, this bit defines whether P36 is used as a normal output pin or the combined output of T8 and T16.

In DEMODULATION Mode, this bit defines whether the input signal to the Counter/Timers is from P20 or P31.

If the input signal is from Port 31, a capture event may also generate an IRQ2 interrupt. To prevent generating an IRQ2, either disable the IRQ2 interrupt by clearing its IMR bit D2 or use P20 as the input.

^{*}Default at Power-On Reset

^{*}Default at Power-On Reset. Not reset with Stop Mode recovery.

T16 Transmit Mode

In NORMAL or PING-PONG mode, the output of T16 when not enabled, is dependent on CTR1, D0. If it is a 0, T16_OUT is a 1; if it is a 1, T16_OUT is 0. You can force the output of T16 to either a 0 or 1 whether it is enabled or not by programming CTR1 D3; D2 to a 10 or 11.

When T16 is enabled, TC16H * 256 + TC16L is loaded, and T16_OUT is switched to its initial value (CTR1, D0). When T16 counts down to 0, T16_OUT is toggled (in NORMAL or PING-PONG mode), an interrupt (CTR2, D1) is generated (if enabled), and a status bit (CTR2, D5) is set. See Figure 25.

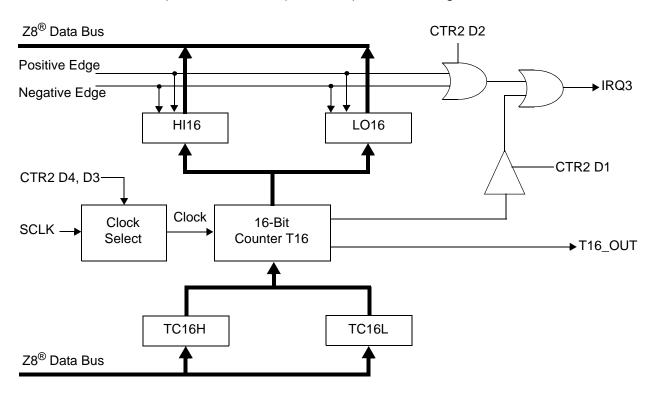


Figure 25. 16-Bit Counter/Timer Circuits

Note: Global interrupts override this function as described in "Interrupts" on page 50.

If T16 is in SINGLE-PASS mode, it is stopped at this point (see Figure 26). If it is in Modulo-N Mode, it is loaded with TC16H * 256 + TC16L, and the counting continues (see Figure 27).

You can modify the values in TC16H and TC16L at any time. The new values take effect when they are loaded.

Do not load these registers at the time the values are to be loaded into the counter/timer to ensure known operation. An initial count of 1 is not allowed. An initial count of 0 causes T16 to count from 0 to FFFFH to FFFEH. Transition from 0 to FFFFH is not a timeout condition.

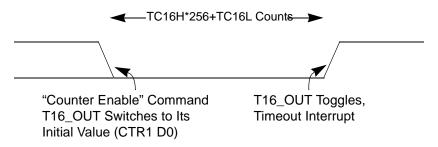


Figure 26. T16_OUT in Single-Pass Mode

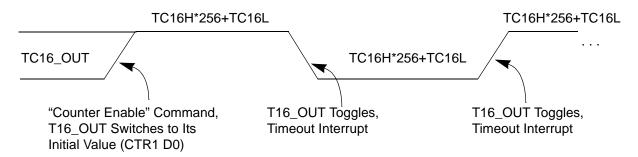


Figure 27. T16_OUT in Modulo-N Mode

T16 DEMODULATION Mode

The user must program TC16L and TC16H to FFH. After T16 is enabled, and the first edge (rising, falling, or both depending on CTR1 D5; D4) is detected, T16 captures H116 and LO16, reloads, and begins counting.

If D6 of CTR2 Is 0

When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current count in T16 is complemented and put into HI16 and LO16. When data is captured, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt is generated if enabled (CTR2, D2). T16 is loaded with FFFFH and starts again.

This T16 mode is generally used to measure space time, the length of time between bursts of carrier signal (marks).

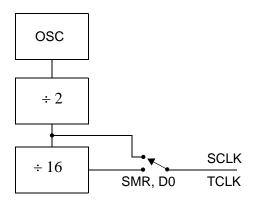


Figure 34. SCLK Circuit

Stop-Mode Recovery Source (D2, D3, and D4)

These three bits of the SMR specify the wake-up source of the Stop recovery (Figure 35 and Table 22).

Stop-Mode Recovery Register 2—SMR2(F)0DH

Table 21 lists and briefly describes the fields for this register.

Table 21.SMR2(F)0DH:Stop Mode Recovery Register 2*

Field	Bit Position		Value	Description
Reserved	7		0	Reserved (Must be 0)
Recovery Level	-6	W	0 [†]	Low
			1	High
Reserved	5		0	Reserved (Must be 0)
Source	432	W	000 [†]	A. POR Only
			001	B. NAND of P23-P20
			010	C. NAND of P27-P20
			011	D. NOR of P33-P31
			100	E. NAND of P33-P31
			101	F. NOR of P33-P31, P00, P07
			110	G. NAND of P33-P31, P00, P07
			111	H. NAND of P33-P31, P22-P20
Reserved	10		00	Reserved (Must be 0)

Notes:

^{*} Port pins configured as outputs are ignored as a SMR recovery source. † Indicates the value upon Power-On Reset

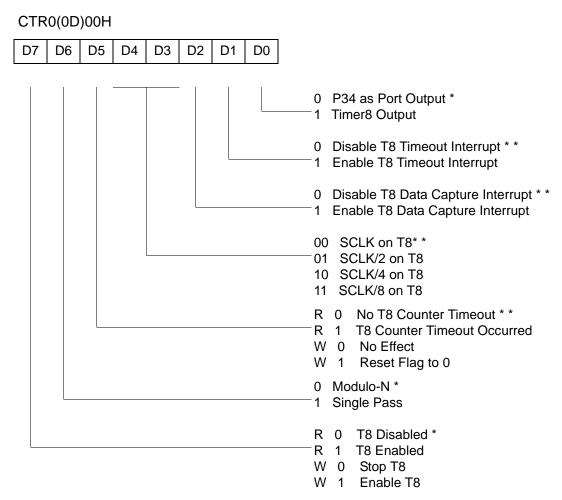
WDTMR During STOP (D3)

This bit determines whether or not the WDT is active during STOP Mode. Because the XTAL clock is stopped during STOP Mode, the on-board RC has to be selected as the clock source to the WDT/POR counter. A 1 indicates active during Stop. The default is 1.

EPROM Selectable Options

There are seven EPROM Selectable Options to choose from based on ROM code requirements. These options are listed in Table 24.

Table 24. EPROM Selectable Options


Port 00-03 Pull-Ups	On/Off
Port 04–07 Pull-Ups	On/Off
Port 10–13 Pull-Ups	On/Off
Port 14–17 Pull-Ups	On/Off
Port 20–27 Pull-Ups	On/Off
EPROM Protection	On/Off
Watch-Dog Timer at Power-On Reset	On/Off

Voltage Brown-Out/Standby

An on-chip Voltage Comparator checks that the V_{DD} is at the required level for correct operation of the device. Reset is globally driven when V_{DD} falls below V_{BO} . A small drop in V_{DD} causes the XTAL1 and XTAL2 circuitry to stop the crystal or resonator clock. If the V_{DD} is allowed to stay above V_{RAM} , the RAM content is preserved. When the power level is returned to above V_{BO} , the device performs a POR and functions normally.

Expanded Register File Control Registers (0D)

The expanded register file control registers (0D) are depicted in Figure 39 through Figure 43.

^{*} Default setting after reset.

Figure 39. TC8 Control Register ((0D)O0H: Read/Write Except Where Noted)

^{* *} Default setting after Reset.. Not reset with a Stop-Mode recovery.

69

CTR2(0D)02H

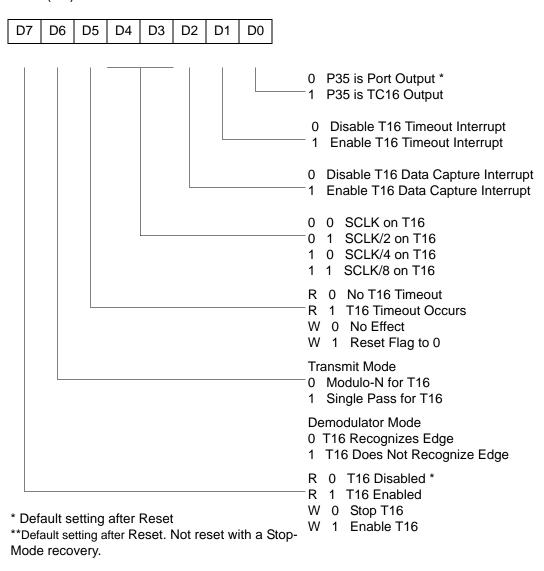
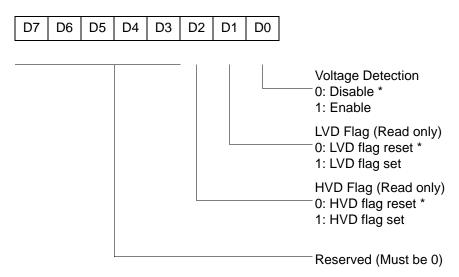



Figure 41. T16 Control Register ((0D) 2H: Read/Write Except Where Noted)

LVD(0D)0CH

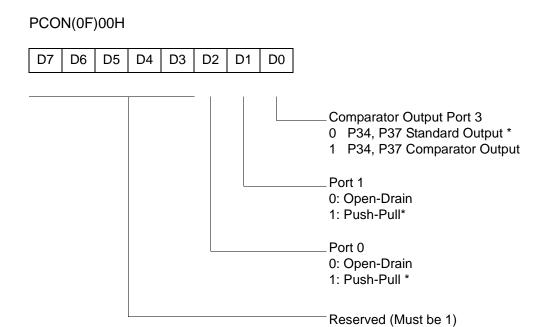
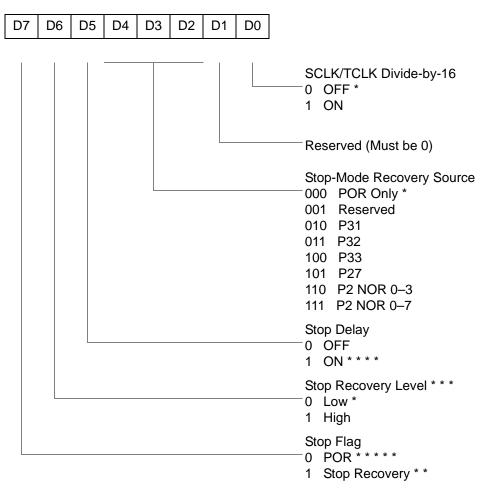

^{*} Default setting after reset.

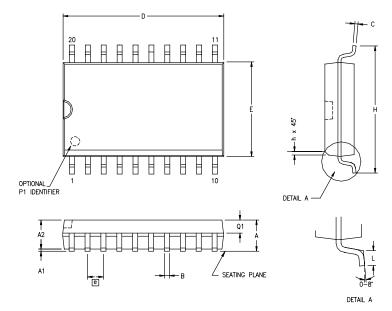
Figure 43. Voltage Detection Register

Note: Do not modify register P01M while checking a low-voltage condition. Switching noise of both ports 0 and 1 together might trigger the LVD flag.

Expanded Register File Control Registers (0F)


The expanded register file control registers (0F) are depicted in Figures 44 through Figure 57.

^{*} Default setting after reset


Figure 44. Port Configuration Register (PCON)(0F)00H: Write Only)

SMR(0F)0BH

- * Default setting after reset
- * * Set after Stop Mode Recovery
- * * * At the XOR gate input
- * * * * Default setting after reset. Must be 1 if using a crystal or resonator clock source.
- * * * * * Default setting after Power On Reset. Not reset with a Stop Mode recovery.

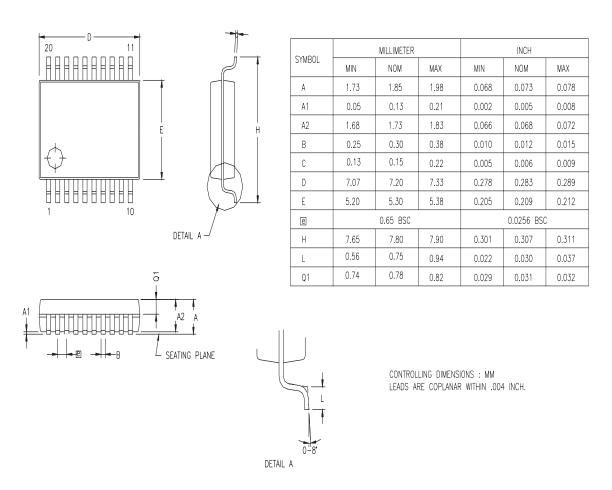
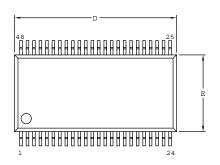
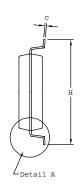
Figure 45. Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only)

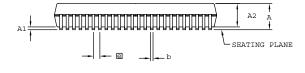
SYMBOL	MILLIMETER		INCH	
SYMBOL	MIN	MAX	MIN	MAX
Α	2.40	2.65	.094	.104
A1	0.10	0.30	.004	.012
A2	2.24	2.44	.088	.096
В	0.36	0.46	.014	.018
С	0.23	0.30	.009	.012
D	12.60	12.95	.496	.510
E	7.40	7.60	.291	.299
е	1.27	BSC	.050	BSC
Н	10.00	10.65	.394	.419
h	0.30	0.40	.012	.016
L	0.60	1.00	.024	.039
Q1	0.97	1.07	.038	.042

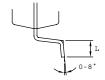
CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

Figure 60. 20-Pin SOIC Package Diagram

PS023803-0305 Package Information

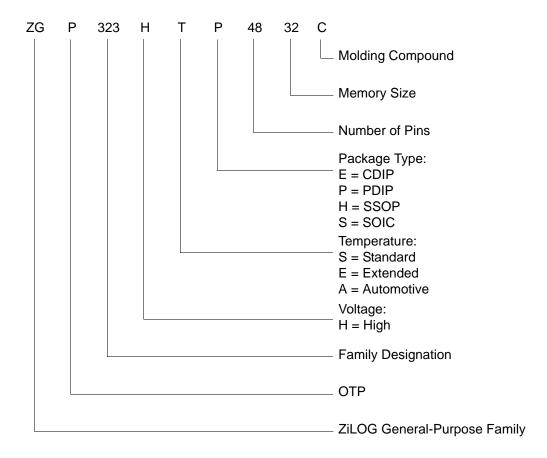





Figure 61. 20-Pin SSOP Package Diagram


PS023803-0305 Package Information

SYMBOL	MILLI	METER	IN	СН
SIMBOL	MIN	MAX	MIN	MAX
A	2.41	2.79	0.095	0.110
A1	0.23	0.38	0.009	0.015
A2	2.18	2.39	0.086	0.094
b	0.20	0.34	0.008	0.0135
c	0.13	0.25	0.005	0.010
D	15.75	16.00	0.620	0.630
E	7.39	7.59	0.291	0.299
е	0.635 BSC		0.0	25 BSC
Н	10.16	10.41	0.400	0.410
L	0.51	1.016	0.020	0.040

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH


Figure 68. 48-Pin SSOP Package Design

Note: Check with ZiLOG on the actual bonding diagram and coordinate for chip-on-board assembly.

PS023803-0305 Package Information

95

Example

PS023803-0305 Ordering Information

pin 4	program memory map 26
E	RAM 25
EPROM	register description 65
selectable options 64	register file 30
expanded register file 26	register pointer 29
expanded register file architecture 28	register pointer detail 31
expanded register file control registers 71	SMR2(F)0D1h register 40
flag 80	stack 31
interrupt mask register 79	TC16H(D)07h register 32
interrupt priority register 78	TC16L(D)06h register 33
interrupt request register 79	TC8H(D)05h register 33
port 0 and 1 mode register 77	TC8L(D)04h register 33
port 2 configuration register 75	G
port 3 mode register 76	glitch filter circuitry 40
port configuration register 75	H
register pointer 80	halt instruction, counter/timer 54
stack pointer high register 81	I
stack pointer low register 81	input circuit 40
stop-mode recovery register 73	interrupt block diagram, counter/timer 51
stop-mode recovery register 2 74	interrupt types, sources and vectors 52
T16 control register 69	L
T8 and T16 common control functions reg-	low-voltage detection register 65
ister 67	M
T8/T16 control register 70	memory, program 25
TC8 control register 66	modulo-N mode
watch-dog timer register 75	T16_OUT 47
F	T8_OUT 43
features	0
standby modes 1	oscillator configuration 53
functional description	output circuit, counter/timer 49
counter/timer functional blocks 40	P
CTR(D)01h register 35	package information
CTR0(D)00h register 33	20-pin DIP package diagram 82
CTR2(D)02h register 37	20-pin SSOP package diagram 84
CTR3(D)03h register 39	28-pin DIP package diagram 86
expanded register file 26	28-pin SOIC package diagram 85
expanded register file architecture 28	28-pin SOIC package diagram 87
HI16(D)09h register 32	40-pin DIP package diagram 87
HI8(D)09h register 32	48-pin SSOP package diagram 89
L08(D)0Ah register 32	pin configuration
` '	1
L0I6(D)08h register 32	20-pin DIP/SOIC/SSOP 5