E·XFL

Zilog - ZGP323HSS2016C00TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	16
Program Memory Size	16KB (16K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323hss2016c00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

This publication is subject to replacement by a later edition. To determine whether a later edition exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters 532 Race Street

San Jose, CA 95126-3432 Telephone: 408.558.8500 Fax: 408.558.8300 www.zilog.com

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other products and/or service names mentioned herein may be trademarks of the companies with which they are associated.

Document Disclaimer

©2005 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Devices sold by ZiLOG, Inc. are covered by warranty and limitation of liability provisions appearing in the ZiLOG, Inc. Terms and Conditions of Sale. ZiLOG, Inc. makes no warranty of merchantability or fitness for any purpose. Except with the express written approval of ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses are conveyed, implicitly or otherwise, by this document under any intellectual property rights.

Figure 2. Counter/Timers Diagram

Pin Description

The pin configuration for the 20-pin PDIP/SOIC/SSOP is illustrated in Figure 3 and described in Table 4. The pin configuration for the 28-pin PDIP/SOIC/SSOP are depicted in Figure 4 and described in Table 5. The pin configurations for the 40-pin PDIP and 48-pin SSOP versions are illustrated in Figure 5, Figure 6, and described in Table 6.

For customer engineering code development, a UV eraseable windowed cerdip packaging is offered in 20-pin, 28-pin, and 40-pin configurations. ZiLOG does not recommend nor guarantee these packages for use in production.

	T _Δ = -40°C to +105°C							
Symbol	Parameter	V _{CC}	Min	Typ(7)	Max	Units	Conditions	Notes
V _{OH2}	Output High Voltage (P36, P37, P00, P01)	2.0-5.5	V _{CC} -0.8			V	I _{OH} = -7mA	
V _{OL1}	Output Low Voltage	2.0-5.5			0.4	V	$I_{OL} = 4.0 \text{mA}$	
V _{OL2}	Output Low Voltage (P00, P01, P36, P37)	2.0-5.5			0.8	V	I _{OL} = 10mA	
V _{OFFSET}	Comparator Input Offset Voltage	2.0-5.5			25	mV		
V _{REF}	Comparator Reference Voltage	2.0-5.5	0		V _{DD} -1.75	V		
IIL	Input Leakage	2.0-5.5	-1		1	μΑ	V _{IN} = 0V, V _{CC} Pull-ups disabled	
R _{PU}	Pull-up Resistance	2.0V	200.0		700.0	KΩ	V _{IN} = 0V; Pullups selected by mask	
		3.6V	50.0		300.0	KΩ	option	
		5.0V	25.0		175.0	KΩ	_	
I _{OL}	Output Leakage	2.0-5.5	-1		1	μA	$V_{IN} = 0V, V_{CC}$	
I _{CC}	Supply Current	2.0V		1	3	mA	at 8.0 MHz	1, 2
		3.6V		5	10	mA	at 8.0 MHz	1, 2
		5.5V		10	15	mA	at 8.0 MHz	1, 2
I _{CC1}	Standby Current	2.0V		0.5	1.6	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
	(HALT Mode)	3.6V		0.8	2.0	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
		5.5V		1.3	3.2	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
I _{CC2}	Standby Current (Stop	2.0V		1.6	12	μA	$V_{IN} = 0 V, V_{CC} WDT not Running$	3
	Mode)	3.6V		1.8	15	μA	$V_{IN} = 0 V, V_{CC} WDT not Running$	3
		5.5V		1.9	18	μA	V _{IN} = 0 V, V _{CC} WDT not Running	3
		2.0V		5	30	μA	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3
		3.6V		8	40	μA	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3
		5.5V		15	60	μA	$V_{IN} = 0 V, V_{CC} WDT$ is Running	3
I _{LV}	Standby Current (Low Voltage)			1.2	6	μA	Measured at 1.3V	4
V _{BO}	V _{CC} Low Voltage Protection			1.9	2.15	V	8MHz maximum Ext. CLK Freq.	
V _{LVD}	V _{CC} Low Voltage Detection			2.4		V		
V _{HVD}	Vcc High Voltage Detection			2.7		V		

Table 10. GP323HE DC Characteristics (Continued)

Notes:

1. All outputs unloaded, inputs at rail.

2. CL1 = CL2 = 100 pF.

3. Oscillator stopped.

4. Oscillator stops when V_{CC} falls below V_{BO} limit.

 It is strongly recommended to add a filter capacitor (minimum 0.1 μF), physically close to VCC and V_{SS} pins if operating voltage fluctuations are anticipated, such as those resulting from driving an Infrared LED.

6. Comparator and Timers are on. Interrupt disabled.

7. Typical values shown are at 25 degrees C.

Table 11. GP323HA DC Characteristics (Continued)

	T _A = -40°C to +125°C							
Symbol	Parameter	V _{CC}	Min	Typ(7)	Max	Units	Conditions	Notes
V _{HVD}	Vcc High Voltage Detection			2.7		V		
Notes:								
1. All o	outputs unloaded, inpu	uts at rail.						
2. CL1	= CL2 = 100 pF.							
3. Osc	illator stopped.							
4. Osc	illator stops when V _{CO}	c falls below '	V _{BO} limit.					
5. It is volt	strongly recommender age fluctuations are a	ed to add a fil nticipated, su	ter capacit ch as thos	or (minimu e resulting	ım 0.1 μl from dri	F), physi ving an l	cally close to VCC and nfrared LED.	V_{SS} pins if operating
6. Cor	nparator and Timers a	re on. Interru	pt disabled	d		-		

7. Typical values shown are at 25 degrees C.

Table 12. EPROM/OTP Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes
	Erase Time	15			Minutes	1,3
	Data Retention @ use years		10		Years	2
	Program/Erase Endurance	100			Cycles	1

Notes:

1. For windowed cerdip package only.

2. Standard: 0°C to 70°C; Extended: -40°C to +105°C; Automotive: -40°C to +125°C. Determined using the Arrhenius model, which is an industry standard for estimating data retention of floating gate technologies:

AF = exp[(Ea/k)*(1/Tuse - 1/TStress)] Where: Ea is the intrinsic activation energy (eV; typ. 0.8) k is Boltzman's constant (8.67 x 10-5 eV/°K) °K = -273.16°C Tuse = Use Temperature in °K TStress = Stress Temperature in °K 3. At a stable UV Lamp output of 20mW/CM²

Pin Functions

XTAL1 Crystal 1 (Time-Based Input)

This pin connects a parallel-resonant crystal or ceramic resonator to the on-chip oscillator input. Additionally, an optional external single-phase clock can be coded to the on-chip oscillator input.

XTAL2 Crystal 2 (Time-Based Output)

This pin connects a parallel-resonant crystal or ceramic resonant to the on-chip oscillator output.

Port 0 (P07-P00)

Port 0 is an 8-bit, bidirectional, CMOS-compatible port. These eight I/O lines are configured under software control as a nibble I/O port. The output drivers are push-pull or open-drain controlled by bit D2 in the PCON register.

If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 mode register. After a hardware reset, Port 0 is configured as an input port.

An optional pull-up transistor is available as a mask option on all Port 0 bits with nibble select.

Notes: Internal pull-ups are disabled on any given pin or group of port pins when programmed into output mode.

The Port 0 direction is reset to its default state following an SMR.

The counter/timers are mapped into ERF group D. Access is easily performed using the following:

LD	RP, #0Dh	;	Select ERF D
for access to bank D			
		;	(working
register group 0)			
LD	R0,#xx	;	load CTR0
LD	1, #xx	;	load CTR1
LD	R1, 2	;	CTR2→CTR1
LD	RP, #0Dh	;	Select ERF D
for access to bank D			
		;	(working
register group 0)			
LD	RP, #7Dh	;	Select
expanded register bank	D and working	;	register
group 7 of bank 0 for a	ccess.		
LD	71h, 2		
; CTRL2 \rightarrow register 71h			
LD	R1, 2		
; CTRL2 \rightarrow register 71h			

Register File

>

The register file (bank 0) consists of 4 I/O port registers, 237 general-purpose registers, 16 control and status registers (R0–R3, R4–R239, and R240–R255, respectively), and two expanded registers groups in Banks D (see Table 15) and F. Instructions can access registers directly or indirectly through an 8-bit address field, thereby allowing a short, 4-bit register address to use the Register Pointer (Figure 17). In the 4-bit mode, the register file is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working register group.

33

Counter/Timer2 LS-Byte Hold Register—TC16L(D)06H

Field	Bit Position		Description
T16_Data_LO	[7:0]	R/W	Data

Counter/Timer8 High Hold Register—TC8H(D)05H

Field	Bit Position		Description
T8_Level_HI	[7:0]	R/W	Data

Counter/Timer8 Low Hold Register—TC8L(D)04H

Field	Bit Position		Description
T8_Level_LO	[7:0]	R/W	Data

CTR0 Counter/Timer8 Control Register—CTR0(D)00H

Table 15 lists and briefly describes the fields for this register.

Table 15. CTR0(D)00H Counter/Timera	3 Control Register
-------------------------------------	---------------------------

Field	Bit Position		Value	Description
T8_Enable	7	R/W	0*	Counter Disabled
			1	Counter Enabled
			0	Stop Counter
			1	Enable Counter
Single/Modulo-N	-6	R/W	0*	Modulo-N
-			1	Single Pass
Time_Out	5	R/W	0**	No Counter Time-Out
			1	Counter Time-Out Occurred
			0	No Effect
			1	Reset Flag to 0
T8 _Clock	43	R/W	0 0**	SCLK
			0 1	SCLK/2
			10	SCLK/4
			11	SCLK/8
Capture_INT_Mask	2	R/W	0**	Disable Data Capture Interrupt
			1	Enable Data Capture Interrupt

into LO8; if it is a negative edge, data is put into HI8. From that point, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt can be generated if enabled (CTR0, D2). Meanwhile, T8 is loaded with FFh and starts counting again. If T8 reaches 0, the timeout status bit (CTR0, D5) is set, and an interrupt can be generated if enabled (CTR0, D1). T8 then continues counting from FFH (see Figure 23 and Figure 24).

Figure 23. Demodulation Mode Count Capture Flowchart

46

T16 Transmit Mode

In NORMAL or PING-PONG mode, the output of T16 when not enabled, is dependent on CTR1, D0. If it is a 0, T16_OUT is a 1; if it is a 1, T16_OUT is 0. You can force the output of T16 to either a 0 or 1 whether it is enabled or not by programming CTR1 D3; D2 to a 10 or 11.

When T16 is enabled, TC16H * 256 + TC16L is loaded, and T16_OUT is switched to its initial value (CTR1, D0). When T16 counts down to 0, T16_OUT is toggled (in NORMAL or PING-PONG mode), an interrupt (CTR2, D1) is generated (if enabled), and a status bit (CTR2, D5) is set. See Figure 25.

Figure 25. 16-Bit Counter/Timer Circuits

Note: Global interrupts override this function as described in "Interrupts" on page 50.

If T16 is in SINGLE-PASS mode, it is stopped at this point (see Figure 26). If it is in Modulo-N Mode, it is loaded with TC16H * 256 + TC16L, and the counting continues (see Figure 27).

You can modify the values in TC16H and TC16L at any time. The new values take effect when they are loaded.

Figure 30. Interrupt Block Diagram

FF	NOP	;	clear	the pipeline
6F	Stop	;	enter	Stop Mode
or				
FF	NOP	;	clear	the pipeline
7F	HALT	;	enter	HALT Mode

Port Configuration Register

The Port Configuration (PCON) register (Figure 32) configures the comparator output on Port 3. It is located in the expanded register 2 at Bank F, location 00.

PCON(FH)00H

* Default setting after reset

Figure 32. Port Configuration Register (PCON) (Write Only)

Comparator Output Port 3 (D0)

Bit 0 controls the comparator used in Port 3. A 1 in this location brings the comparator outputs to P34 and P37, and a 0 releases the Port to its standard I/O configuration.

Port 1 Output Mode (D1)

Bit 1 controls the output mode of port 1. A 1 in this location sets the output to push-pull, and a 0 sets the output to open-drain.

Figure 34. SCLK Circuit

Stop-Mode Recovery Source (D2, D3, and D4)

These three bits of the SMR specify the wake-up source of the Stop recovery (Figure 35 and Table 22).

Stop-Mode Recovery Register 2—SMR2(F)0DH

Table 21 lists and briefly describes the fields for this register.

Field	Bit Position		Value	Description
Reserved	7		0	Reserved (Must be 0)
Recovery Level	-6	W	0 [†]	Low
-			1	High
Reserved	5		0	Reserved (Must be 0)
Source	432	W	000†	A. POR Only
			001	B. NAND of P23–P20
			010	C. NAND of P27–P20
			011	D. NOR of P33–P31
			100	E. NAND of P33–P31
			101	F. NOR of P33–P31, P00, P07
			110	G. NAND of P33–P31, P00, P07
			111	H. NAND of P33–P31, P22–P20
Reserved	10		00	Reserved (Must be 0)

Table 21.SMR2(F)0DH:Stop	Mode Recovery	Register	2*
--------------------------	---------------	----------	----

Notes:

* Port pins configured as outputs are ignored as a SMR recovery source. † Indicates the value upon Power-On Reset

Figure 35. Stop Mode Recovery Source

Expanded Register File Control Registers (0D)

The expanded register file control registers (0D) are depicted in Figure 39 through Figure 43.

CTR0(0D)00H

D7	D6	D5	D4	D3	D2	D1	D0	
								 0 P34 as Port Output * 1 Timer8 Output 0 Disable T8 Timeout Interrupt * * 1 Enable T8 Timeout Interrupt 0 Disable T8 Data Capture Interrupt * * 1 Enable T8 Data Capture Interrupt * * 1 Enable T8 Data Capture Interrupt 00 SCLK on T8* * 00 SCLK on T8* * 01 SCLK/2 on T8 10 SCLK/4 on T8 11 SCLK/8 on T8 R 0 No T8 Counter Timeout * * R 1 T8 Counter Timeout Occurred W 0 No Effect W 1 Reset Flag to 0 0 Modulo-N * 1 Single Pass R 0 T8 Disabled * R 1 T8 Enabled W 0 Stop T8 W 4 Enable T9
								VV I ETIADIE IO

* Default setting after reset.

* * Default setting after Reset.. Not reset with a Stop-Mode recovery.

Figure 39. TC8 Control Register ((0D)O0H: Read/Write Except Where Noted)

LVD(0D)0CH

* Default setting after reset.

Figure 43. Voltage Detection Register

Note: Do not modify register P01M while checking a low-voltage condition. Switching noise of both ports 0 and 1 together might trigger the LVD flag.

Expanded Register File Control Registers (0F)

The expanded register file control registers (0F) are depicted in Figures 44 through Figure 57.

WDTMR(0F)0FH

* Default setting after reset. Not reset with a Stop Mode recovery.

Figure 47. Watch-Dog Timer Register ((0F) 0FH: Write Only)

Standard Control Registers

R246 P2M(F6H)

* Default setting after reset. Not reset with a Stop Mode recovery.

Figure 48. Port 2 Mode Register (F6H: Write Only)

MILLIMETER

MAX

2.65

0.30

2.44

0.46

0.30

12.95

7.60

10.65

0.40

1.00

1.07

1.27 BSC

INCH

мах

.104

.012

.096

.018

.012

.510

.299

.419

.016

.039

.042

.050 BSC

MIN

.094

.004

.088

.014

.009

.496

.291

.394

.012

.024

.038

Figure 60. 20-Pin SOIC Package Diagram

PS023803-0305

	MILLIMETER		INCH			
MIN	NOM	MAX	MIN	NOM	MAX	
1.73	1.85	1.98	0.068	0.073	0.078	
0.05	0.13	0.21	0.002	0.005	0.008	
1.68	1.73	1.83	0.066	0.068	0.072	
0.25	0.30	0.38	0.010	0.012	0.015	
0.13	0.15	0.22	0.005	0.006	0.009	
7.07	7.20	7.33	0.278	0.283	0.289	
5.20	5.30	5.38	0.205	0.209	0.212	
	0.65 BSC			0.0256 BSC	;	
7.65	7.80	7.90	0.301	0.307	0.311	
0.56	0.75	0.94	0.022	0.030	0.037	
0.74	0.78	0.82	0.029	0.031	0.032	
	MIN 1.73 0.05 1.68 0.25 0.13 7.07 5.20 7.65 0.56 0.74	MILLIMETER MIN NOM 1.73 1.85 0.05 0.13 1.68 1.73 0.25 0.30 0.13 0.15 7.07 7.20 5.20 5.30 0.65 BSC 7.65 7.80 0.56 0.75 0.74 0.78	MILLIMETER MIN NOM MAX 1.73 1.85 1.98 0.05 0.13 0.21 1.68 1.73 1.83 0.25 0.30 0.38 0.13 0.15 0.22 7.07 7.20 7.33 5.20 5.30 5.38 0.65 BSC 7.65 7.80 7.90 0.56 0.75 0.94 0.74 0.78 0.82	MILLIMETER MIN MAX MIN 1.73 1.85 1.98 0.068 0.05 0.13 0.21 0.002 1.68 1.73 1.83 0.066 0.25 0.30 0.38 0.010 0.13 0.15 0.22 0.005 7.07 7.20 7.33 0.278 5.20 5.30 5.38 0.205 7.65 7.80 7.90 0.301 0.56 0.75 0.94 0.022 0.74 0.78 0.82 0.029	MILLIMETER INCH MIN NOM MAX MIN NOM 1.73 1.85 1.98 0.068 0.073 0.05 0.13 0.21 0.002 0.005 1.68 1.73 1.83 0.066 0.068 0.25 0.30 0.38 0.010 0.012 0.13 0.15 0.22 0.005 0.006 7.07 7.20 7.33 0.278 0.283 5.20 5.30 5.38 0.205 0.209 O.055 BSC 7.65 7.80 7.90 0.301 0.307 0.56 0.75 0.94 0.022 0.030 0.74 0.78 0.82 0.029 0.31	

DETAIL A

Н

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

Figure 61. 20-Pin SSOP Package Diagram

Figure 63. 28-Pin CDIP Package Diagram

SVMBOI	OPT #	MILLIN	IETER	INCH		
SIMDOL	OF I #	MíN	MAX	MIN	MAX	
A1		0.38	1.02	.015	.040	
A2		3.18	4.19	.125	.165	
В		0.38	0.53	.015	.021	
D1	01	1.40	1.65	.055	.065	
	02	1.14	1.40	.045	.055	
С		0.23	0.38	.009	.015	
п	01	36.58	37.34	1.440	1.470	
	02	35.31	35.94	1.390	1.415	
E		15.24	15.75	.600	.620	
E1	01	13.59	14.10	.535	.555	
_ _ 1	02	12.83	13.08	.505	.515	
e		2.54	TYP	.100 BSC		
eA		15.49	16.76	.610	.660	
L		3.05	3.81	.120	.150	
01	01	1.40	1.91	.055	.075	
	02	1.40	1.78	.055	.070	
•	01	1.52	2.29	.060	.090	
5	02	1.02	1.52	.040	.060	

CONTROLLING DIMENSIONS : INCH

01

02

STANDARD

Figure 64. 28-Pin PDIP Package Diagram

A1	 ¥↓ ↓ δ
↓	A2 A

		MILLIMETER	2	INCH			
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
А	1.73	1.86	1.99	0.068	0.073	0.078	
A1	0.05	0.13	0.21	0.002	0.005	0.008	
A2	1.68	1.73	1.78	0.066	0.068	0.070	
В	0.25		0.38	0.010		0.015	
С	0.09	-	0.20	0.004	0.006	0.008	
D	10.07	10.20	10.33	0.397	0.402	0.407	
E	5.20	5.30	5.38	0.205	0.209	0.212	
е	0.65 TYP				0.0256 TYF)	
Н	7.65	7.80	7.90	0.301	0.307	0.311	
L	0.63	0.75	0.95	0.025	0.030	0.037	

CONTROLLING DIMENSIONS: MM LEADS ARE COPLANAR WITHIN .004 INCHES.

<u>DETAIL 'A'</u>

0-8

Figure 65. 28-Pin SSOP Package Diagram

SAMBU	MILLIN	IETER	INCH				
SIMDOL	MIN	MAX	MIN	MAX			
A1	0.51	1.02	.020	.040			
A2	3.18	3.94	.125	.155			
В	0.38	0.53	.015	.021			
B1	1.02	1.52	.040	.060			
С	0.23	0.38	.009	.015			
D	52.07	52.58	2.050	2.070			
E	15.24	15.75	.600	.620			
E1	13.59	14.22	.535	.560			
e	2.54	TYP	.100	TYP			
eA	15.49	16.76	.610	.660			
L	3.05	3.81	.120	.150			
Q1	1.40	1.91	.055	.075			
2	1.52	2.20	060	000			

CONTROLLING DIMENSIONS : INCH

Figure 66. 40-Pin PDIP Package Diagram