

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	16
Program Memory Size	32KB (32K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323hss2032c00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

This publication is subject to replacement by a later edition. To determine whether a later edition exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters

532 Race Street San Jose, CA 95126-3432 Telephone: 408.558.8500

Fax: 408.558.8300 www.zilog.com

ZiLOG is a registered trademark of ZiLOG Inc. in the United States and in other countries. All other products and/or service names mentioned herein may be trademarks of the companies with which they are associated.

Document Disclaimer

©2005 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices, applications, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Devices sold by ZiLOG, Inc. are covered by warranty and limitation of liability provisions appearing in the ZiLOG, Inc. Terms and Conditions of Sale. ZiLOG, Inc. makes no warranty of merchantability or fitness for any purpose. Except with the express written approval of ZiLOG, use of information, devices, or technology as critical components of life support systems is not authorized. No licenses are conveyed, implicitly or otherwise, by this document under any intellectual property rights.

Disclaimer PS023803-0305

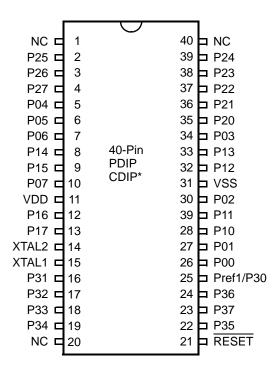
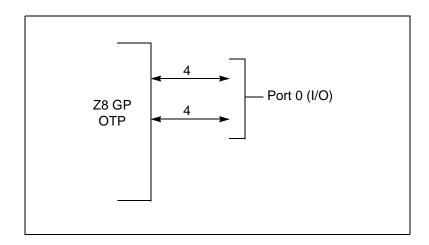
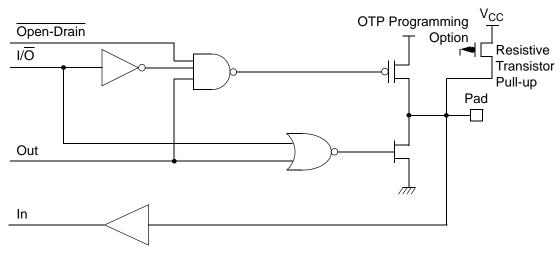
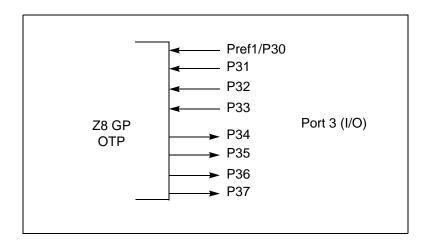



Figure 5. 40-Pin PDIP/CDIP* Pin Configuration

Note: *Windowed Cerdip. These units are intended to be used for engineering code development only. ZiLOG does not recommend/guarantee this package for production use.

PS023803-0305 Pin Description




Figure 9. Port 0 Configuration

Port 1 (P17-P10)

Port 1 (see Figure 10) Port 1 can be configured for standard port input or output mode. After POR, Port 1 is configured as an input port. The output drivers are either push-pull or open-drain and are controlled by bit D1 in the PCON register.

Note: The Port 1 direction is reset to its default state following an SMR.

PS023803-0305 Pin Functions

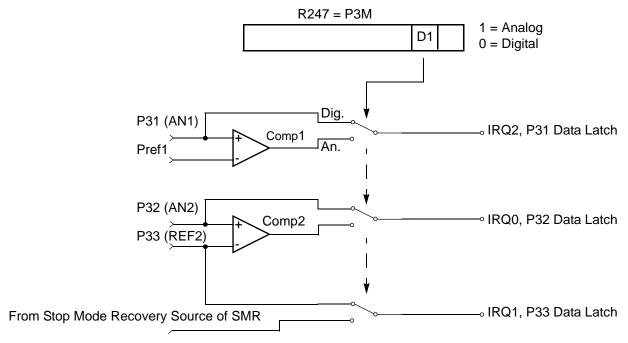


Figure 12. Port 3 Configuration

Two on-board comparators process analog signals on P31 and P32, with reference to the voltage on Pref1 and P33. The analog function is enabled by programming the Port 3 Mode Register (bit 1). P31 and P32 are programmable as rising, falling, or both edge triggered interrupts (IRQ register bits 6 and 7). Pref1 and P33 are the comparator reference voltage inputs. Access to the Counter Timer edge-detection circuit is through P31 or P20 (see "T8 and T16 Common Functions—

PS023803-0305 Pin Functions

CTR1(0D)01H" on page 35). Other edge detect and IRQ modes are described in Table 14.

Note: Comparators are powered down by entering Stop Mode. For P31-P33 to be used in a Stop Mode Recovery (SMR) source, these inputs must be placed into digital mode.

Table 14. Port 3 Pin Function Summary

Pin	I/O	Counter/Timers	Comparator	Interrupt
Pref1/P30	IN		RF1	
P31	IN	IN	AN1	IRQ2
P32	IN		AN2	IRQ0
P33	IN		RF2	IRQ1
P34	OUT	Т8	AO1	
P35	OUT	T16		
P36	OUT	T8/16		
P37	OUT		AO2	
P20	I/O	IN		

Port 3 also provides output for each of the counter/timers and the AND/OR Logic (see Figure 13). Control is performed by programming bits D5-D4 of CTR1, bit 0 of CTR0, and bit 0 of CTR2.

PS023803-0305 Pin Functions

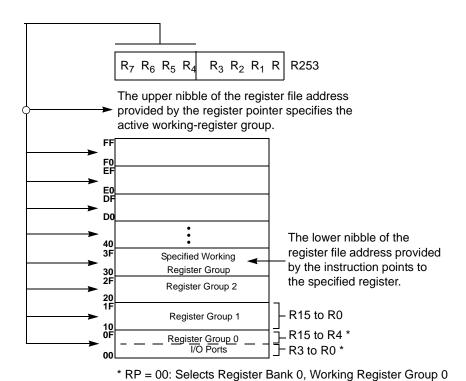


Figure 17. Register Pointer—Detail

Stack

The internal register file is used for the stack. An 8-bit Stack Pointer SPL (R255) is used for the internal stack that resides in the general-purpose registers (R4–R239). SPH (R254) can be used as a general-purpose register.

When T8 is enabled, the output T8_OUT switches to the initial value (CTR1, D1). If the initial value (CTR1, D1) is 0, TC8L is loaded; otherwise, TC8H is loaded into the counter. In SINGLE-PASS Mode (CTR0, D6), T8 counts down to 0 and stops, T8_OUT toggles, the timeout status bit (CTR0, D5) is set, and a timeout interrupt can be generated if it is enabled (CTR0, D1). In Modulo-N Mode, upon reaching terminal count, T8_OUT is toggled, but no interrupt is generated. From that point, T8 loads a new count (if the T8_OUT level now is 0), TC8L is loaded; if it is 1, TC8H is loaded. T8 counts down to 0, toggles T8_OUT, and sets the timeout status bit (CTR0, D5), thereby generating an interrupt if enabled (CTR0, D1). One cycle is thus completed. T8 then loads from TC8H or TC8L according to the T8_OUT level and repeats the cycle. See Figure 20.

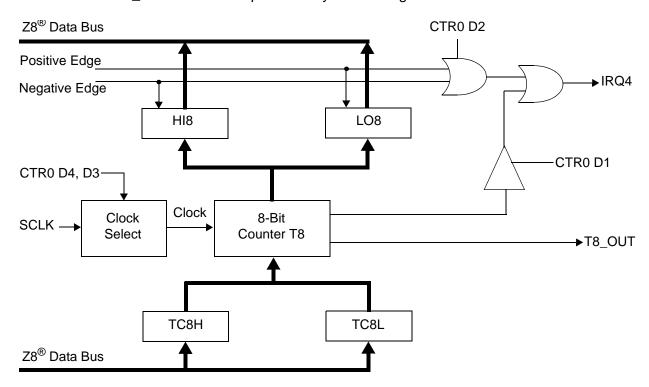


Figure 20. 8-Bit Counter/Timer Circuits

You can modify the values in TC8H or TC8L at any time. The new values take effect when they are loaded.

 \bigwedge

Caution

To ensure known operation do not write these registers at the time the values are to be loaded into the counter/timer. *An initial count of 1 is not allowed (a non-function occurs).* An initial count of 0 causes TC8 to count from 0 to FFH to FEH.

into LO8; if it is a negative edge, data is put into HI8. From that point, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt can be generated if enabled (CTR0, D2). Meanwhile, T8 is loaded with FFh and starts counting again. If T8 reaches 0, the timeout status bit (CTR0, D5) is set, and an interrupt can be generated if enabled (CTR0, D1). T8 then continues counting from FFH (see Figure 23 and Figure 24).

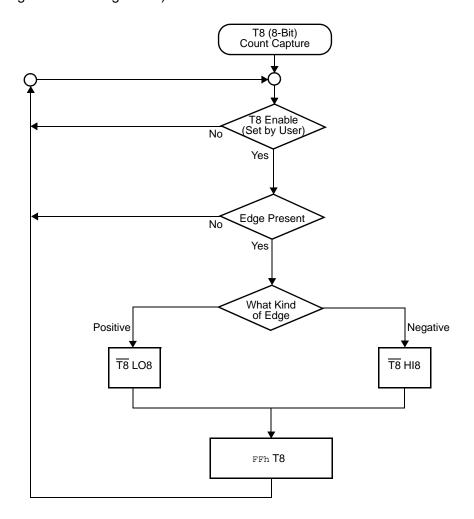
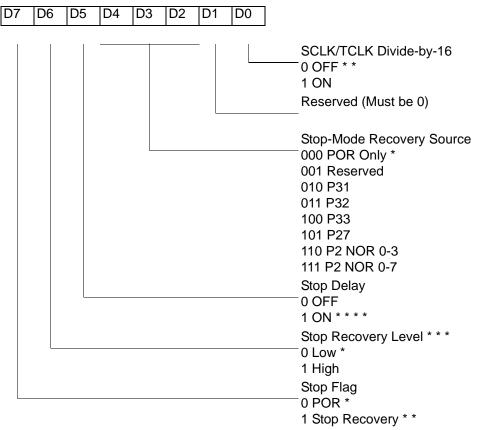



Figure 23. Demodulation Mode Count Capture Flowchart

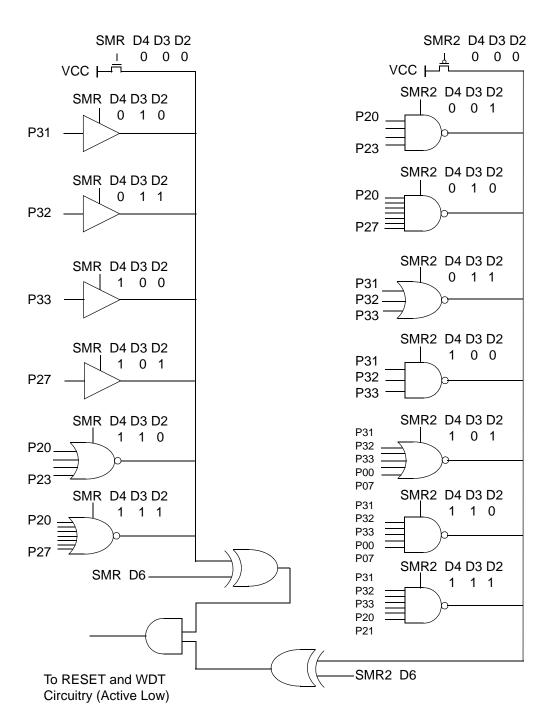
SMR(0F)0BH

- * Default after Power On Reset or Watch-Dog Reset
- * * Default setting after Reset and Stop Mode Recovery
- * * * At the XOR gate input
- * * * * Default setting after reset. Must be 1 if using a crystal or resonator clock source.

Figure 33. STOP Mode Recovery Register

SCLK/TCLK Divide-by-16 Select (D0)

D0 of the SMR controls a divide-by-16 prescaler of SCLK/TCLK (Figure 34). This control selectively reduces device power consumption during normal processor execution (SCLK control) and/or Halt Mode (where TCLK sources interrupt logic). After Stop Mode Recovery, this bit is set to a 0.



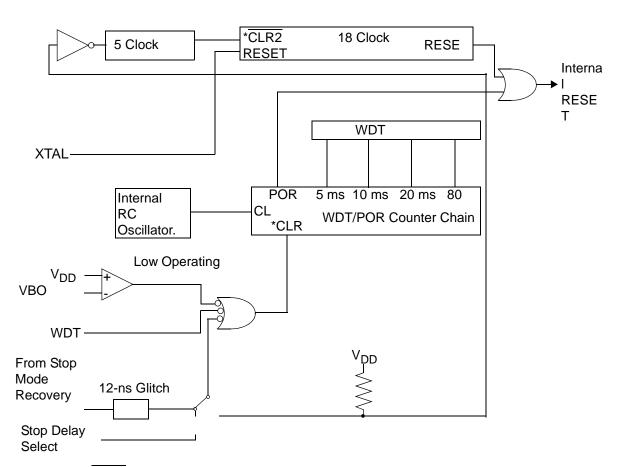

Figure 35. Stop Mode Recovery Source

Table 23. Watch-Dog Timer Time Select

D1	D0	Timeout of Internal RC-Oscillator
0	0	5ms min.
0	1	10ms min.
1	0	20ms min.
1	1	80ms min.

WDTMR During Halt (D2)

This bit determines whether or not the WDT is active during HALT Mode. A 1 indicates active during HALT. The default is 1. See Figure 38.

^{*} CLR1 and CLR2 enable the WDT/POR and 18 Clock Reset timers respectively upon a Low-to-

Figure 38. Resets and WDT

WDTMR During STOP (D3)

This bit determines whether or not the WDT is active during STOP Mode. Because the XTAL clock is stopped during STOP Mode, the on-board RC has to be selected as the clock source to the WDT/POR counter. A 1 indicates active during Stop. The default is 1.

EPROM Selectable Options

There are seven EPROM Selectable Options to choose from based on ROM code requirements. These options are listed in Table 24.

Table 24. EPROM Selectable Options

Port 00-03 Pull-Ups	On/Off
Port 04–07 Pull-Ups	On/Off
Port 10–13 Pull-Ups	On/Off
Port 14–17 Pull-Ups	On/Off
Port 20–27 Pull-Ups	On/Off
EPROM Protection	On/Off
Watch-Dog Timer at Power-On Reset	On/Off

Voltage Brown-Out/Standby

An on-chip Voltage Comparator checks that the V_{DD} is at the required level for correct operation of the device. Reset is globally driven when V_{DD} falls below V_{BO} . A small drop in V_{DD} causes the XTAL1 and XTAL2 circuitry to stop the crystal or resonator clock. If the V_{DD} is allowed to stay above V_{RAM} , the RAM content is preserved. When the power level is returned to above V_{BO} , the device performs a POR and functions normally.

CTR2(0D)02H

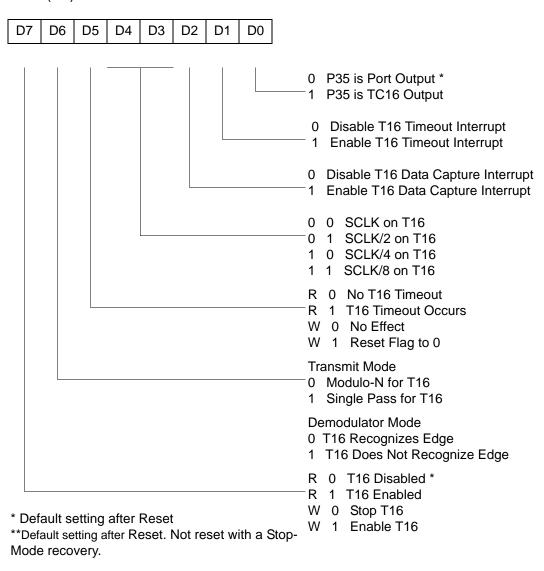
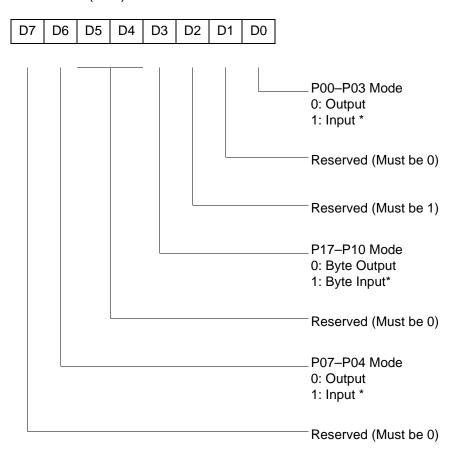



Figure 41. T16 Control Register ((0D) 2H: Read/Write Except Where Noted)

R248 P01M(F8H)

^{*} Default setting after reset; only P00, P01 and P07 are available on 20-pin configurations.

Figure 50. Port 0 and 1 Mode Register (F8H: Write Only)

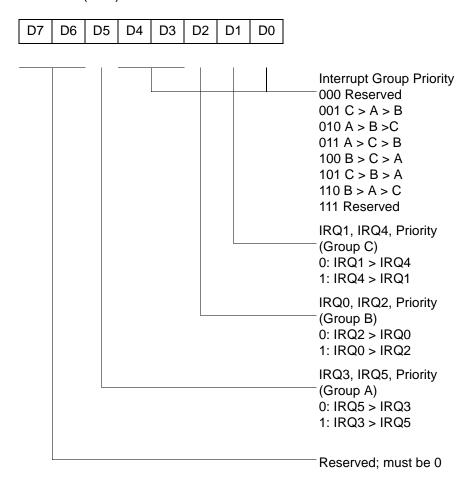
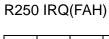



Figure 51. Interrupt Priority Register (F9H: Write Only)

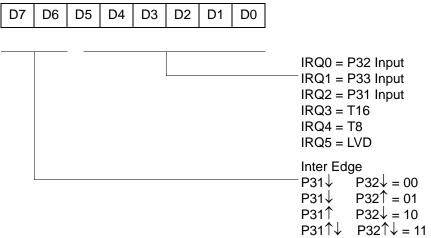
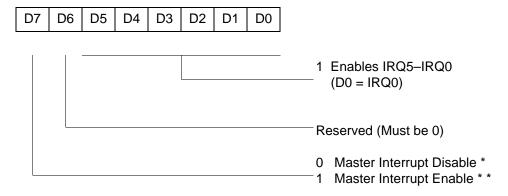



Figure 52. Interrupt Request Register (FAH: Read/Write)

R251 IMR(FBH)

^{*} Default setting after reset

Figure 53. Interrupt Mask Register (FBH: Read/Write)

^{* *} Only by using EI, DI instruction; DI is required before changing the IMR register

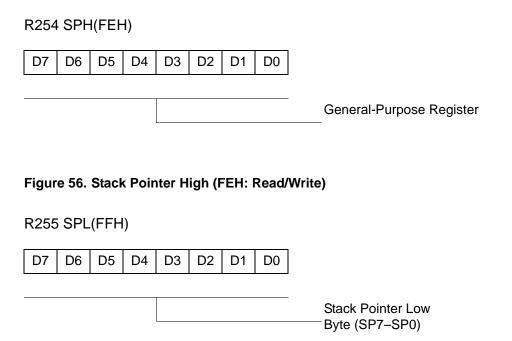


Figure 57. Stack Pointer Low (FFH: Read/Write)

Package Information

Package information for all versions of ZGP323H is depicted in Figures 59 through Figure 68.

PS023803-0305 Package Information

Numerics	demodulation mode flowchart 45
16-bit counter/timer circuits 46	EPROM selectable options 64
20-pin DIP package diagram 82	glitch filter circuitry 40
20-pin SSOP package diagram 84	halt instruction 54
28-pin DIP package diagram 86	input circuit 40
28-pin SOICpackage diagram 85	interrupt block diagram 51
28-pin SSOP package diagram 87	interrupt types, sources and vectors 52
40-pin DIP package diagram 87	oscillator configuration 53
48-pin SSOP package diagram 89	output circuit 49
8-bit counter/timer circuits 42	ping-pong mode 48
A	port configuration register 55
absolute maximum ratings 10	resets and WDT 63
AC	SCLK circuit 58
characteristics 16	stop instruction 54
timing diagram 16	stop mode recovery register 57
address spaces, basic 2	stop mode recovery register 2 61
architecture 2	stop mode recovery source 59
expanded register file 28	T16 demodulation mode 47
В	T16 transmit mode 46
basic address spaces 2	T16_OUT in modulo-N mode 47
block diagram, ZLP32300 functional 3	T16_OUT in single-pass mode 47
C	T8 demodulation mode 43
capacitance 11	T8 transmit mode 40
characteristics	T8_OUT in modulo-N mode 43
AC 16	T8_OUT in single-pass mode 43
DC 11	transmit mode flowchart 41
clock 53	voltage detection and flags 65
comparator inputs/outputs 25	watch-dog timer mode register 62
configuration	watch-dog timer time select 63
port 0 19	CTR(D)01h T8 and T16 Common Functions
port 1 20	35
port 2 21	D
port 3 22	DC characteristics 11
port 3 counter/timer 24	demodulation mode
counter/timer	count capture flowchart 44
16-bit circuits 46	flowchart 45
8-bit circuits 42	T16 47
brown-out voltage/standby 64	T8 43
clock 53	description
demodulation mode count capture flow-	functional 25
chart 44	general 2

28 nin DID/SOIC/SSOD 6	HI8/D)0Dh 22
28-pin DIP/SOIC/SSOP 6	HI8(D)0Bh 32
40- and 48-pin 8	interrupt priority 78
40-pin DIP 7	interrupt request 79
48-pin SSOP 8	interruptmask 79
pin functions	L016(D)08h 32
port 0 (P07 - P00) 18	L08(D)0Ah 32
port 0 (P17 - P10) 19	LVD(D)0Ch 65
port 0 configuration 19	pointer 80
port 1 configuration 20	port 0 and 1 77
port 2 (P27 - P20) 20	port 2 configuration 75
port 2 (P37 - P30) 21	port 3 mode 76
port 2 configuration 21	port configuration 55, 75
port 3 configuration 22	SMR2(F)0Dh 40
port 3 counter/timer configuration 24	stack pointer high 81
reset) 25	stack pointer low 81
XTAL1 (time-based input 18	stop mode recovery 57
XTAL2 (time-based output) 18	stop mode recovery 2 61
ping-pong mode 48	stop-mode recovery 73
port 0 configuration 19	stop-mode recovery 2 74
port 0 pin function 18	T16 control 69
port 1 configuration 20	T8 and T16 common control functions 67
port 1 pin function 19	T8/T16 control 70
port 2 configuration 21	TC16H(D)07h 32
port 2 pin function 20	TC16L(D)06h 33
port 3 configuration 22	TC8 control 66
port 3 pin function 21	TC8H(D)05h 33
port 3counter/timer configuration 24	TC8L(D)04h 33
port configuration register 55	voltage detection 71
power connections 3	watch-dog timer 75
power supply 5	register description
program memory 25	Counter/Timer2 LS-Byte Hold 33
map 26	Counter/Timer2 MS-Byte Hold 32
R	Counter/Timer8 Control 33
ratings, absolute maximum 10	Counter/Timer8 High Hold 33
register 61	Counter/Timer8 Low Hold 33
CTR(D)01h 35	CTR2 Counter/Timer 16 Control 37
CTR0(D)00h 33	CTR3 T8/T16 Control 39
CTR2(D)02h 37	Stop Mode Recovery2 40
CTR3(D)03h 39	T16_Capture_LO 32
flag 80	T8 and T16 Common functions 35
HI16(D)09h 32	T8_Capture_HI 32
	-

T8_Capture_LO 32
register file 30
expanded 26
register pointer 29
detail 31
reset pin function 25
resets and WDT 63
S
SCLK circuit 58
single-pass mode
T16_OUT 47
T8_OUT 43
stack 31
standard test conditions 10
standby modes 1
stop instruction, counter/timer 54
stop mode recovery
2 register 61
source 59
stop mode recovery 2 61
stop mode recovery register 57
T
T16 transmit mode 46
T16_Capture_HI 32
T8 transmit mode 40
T8_Capture_HI 32
test conditions, standard 10
test load diagram 10
timing diagram, AC 16
transmit mode flowchart 41
V
VCC 5
voltage
brown-out/standby 64
detection and flags 65
voltage detection register 71 W
watch-dog timer
mode registerwatch-dog timer mode register 62
time select 63

X XTAL1 5 XTAL1 pin function 18 XTAL2 5 XTAL2 pin function 18