

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	HLVD, POR, WDT
Number of I/O	24
Program Memory Size	4KB (4K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/zgp323hss2804c00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

iii

Revision History

Each instance in Table 1 reflects a change to this document from its previous revision. To see more detail, click the appropriate link in the table.

Table 1. Revision History of this Document

Date	Revision Level	Section	Description	Page #
December 2004	02	Changed low power consumption, STOP and HALT mode current values deleted mask option note, clarified temperature ranges in Tables 6 and 8 and 10. Added new Tables 9 and 10. Also added Characterization data to Table 11 and changed Program/Erase Endurance value in Table 12.		
		Removed Preliminar	y designation	All
March 2005	03	Minor change to Tab pin CDIP parts in the	le 9 Electrical Characteristics. Added 20, 28 and 40-e Ordering Section.	11,90

PS023803-0305 Revision History

ZGP323H Product Specification

	•
v	ı

Figure 34. SCLK Circuit	58
Figure 35. Stop Mode Recovery Source	59
Figure 36. Stop Mode Recovery Register 2 ((0F)DH:D2-D4, D6 Write Only) 6	31
Figure 37. Watch-Dog Timer Mode Register (Write Only)6	62
Figure 38. Resets and WDT	63
Figure 39. TC8 Control Register ((0D)O0H: Read/Write Except Where Noted) 6	36
Figure 40. T8 and T16 Common Control Functions ((0D)01H: Read/Write) 6	37
Figure 41. T16 Control Register ((0D) 2H: Read/Write Except Where Noted) . 6	39
Figure 42. T8/T16 Control Register (0D)03H: Read/Write (Except Where	
Noted)	
Figure 43. Voltage Detection Register	
Figure 44. Port Configuration Register (PCON)(0F)00H: Write Only) 7	72
Figure 45. Stop Mode Recovery Register ((0F)0BH: D6–D0=Write Only, D7=Read Only)	73
Figure 46. Stop Mode Recovery Register 2 ((0F)0DH:D2–D4, D6 Write Only)	74
Figure 47. Watch-Dog Timer Register ((0F) 0FH: Write Only)	75
Figure 48. Port 2 Mode Register (F6H: Write Only)	75
Figure 49. Port 3 Mode Register (F7H: Write Only)	76
Figure 50. Port 0 and 1 Mode Register (F8H: Write Only)	77
Figure 51. Interrupt Priority Register (F9H: Write Only)	78
Figure 52. Interrupt Request Register (FAH: Read/Write)	79
Figure 53. Interrupt Mask Register (FBH: Read/Write)	79
Figure 54. Flag Register (FCH: Read/Write)	30
Figure 55. Register Pointer (FDH: Read/Write) 8	30
Figure 56. Stack Pointer High (FEH: Read/Write) 8	81
Figure 57. Stack Pointer Low (FFH: Read/Write)	31
Figure 58. 20-Pin CDIP Package 8	82
Figure 59. 20-Pin PDIP Package Diagram 8	32
Figure 60. 20-Pin SOIC Package Diagram 8	33
Figure 61. 20-Pin SSOP Package Diagram 8	34
Figure 62. 28-Pin SOIC Package Diagram 8	35
Figure 63. 28-Pin CDIP Package Diagram 8	36
Figure 64. 28-Pin PDIP Package Diagram 8	36
Figure 65. 28-Pin SSOP Package Diagram	37
Figure 66. 40-Pin PDIP Package Diagram 8	37
Figure 67. 40-Pin CDIP Package Diagram	88

PS023803-0305 List of Figures

Table 10. GP323HE DC Characteristics (Continued)

			T _A = -40°0	C to +105	°C			
Symbol	Parameter	v_{cc}	Min	Typ(7)	Max	Units	Conditions	Notes
V _{OH2}	Output High Voltage (P36, P37, P00, P01)	2.0-5.5	V _{CC} -0.8			V	$I_{OH} = -7mA$	
V _{OL1}	Output Low Voltage	2.0-5.5			0.4	V	$I_{OL} = 4.0 \text{mA}$	
V _{OL2}	Output Low Voltage (P00, P01, P36, P37)	2.0-5.5			8.0	V	I _{OL} = 10mA	
V _{OFFSET}	Comparator Input Offset Voltage	2.0-5.5			25	mV		
V _{REF}	Comparator Reference Voltage	2.0-5.5	0		V _{DD} -1.75	V		
I _{IL}	Input Leakage	2.0-5.5	-1		1	μА	V _{IN} = 0V, V _{CC} Pull-ups disabled	
R _{PU}	Pull-up Resistance	2.0V	200.0		700.0	ΚΩ	V _{IN} = 0V; Pullups selected by mask	(
		3.6V	50.0		300.0	ΚΩ	option	
		5.0V	25.0		175.0	ΚΩ	_	-
I _{OL}	Output Leakage	2.0-5.5	-1		1	μΑ	$V_{IN} = 0V, V_{CC}$	
I _{CC}	Supply Current	2.0V		1	3	mA	at 8.0 MHz	1, 2
		3.6V		5	10	mΑ	at 8.0 MHz	1, 2
		5.5V		10	15	mA	at 8.0 MHz	1, 2
I _{CC1}	Standby Current	2.0V		0.5	1.6	mΑ	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
	(HALT Mode)	3.6V		8.0	2.0	mΑ	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
		5.5V		1.3	3.2	mA	V _{IN} = 0V, Clock at 8.0MHz	1, 2, 6
I_{CC2}	Standby Current (Stop			1.6	12	μΑ	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT not Running}$	3
	Mode)	3.6V		1.8	15	μΑ	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT not Running}$	3
		5.5V		1.9	18	μΑ	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT not Running}$	3
		2.0V		5	30	μA	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT is Running}$	3
		3.6V		8	40	μΑ	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT is Running}$	3
		5.5V		15	60	μΑ	$V_{IN} = 0 \text{ V}, V_{CC} \text{ WDT is Running}$	3
I _{LV}	Standby Current (Low Voltage)			1.2	6	μА	Measured at 1.3V	4
V_{BO}	V _{CC} Low Voltage Protection			1.9	2.15	V	8MHz maximum Ext. CLK Freq.	
V _{LVD}	V _{CC} Low Voltage Detection			2.4		V		
V _{HVD}	Vcc High Voltage Detection			2.7		V		

Notes:

- 1. All outputs unloaded, inputs at rail.
- 2. CL1 = CL2 = 100 pF.
- 3. Oscillator stopped.
- 4. Oscillator stops when $\rm V_{CC}$ falls below $\rm V_{BO}$ limit.
- 5. It is strongly recommended to add a filter capacitor (minimum 0.1 μ F), physically close to VCC and V_{SS} pins if operating voltage fluctuations are anticipated, such as those resulting from driving an Infrared LED.
- 6. Comparator and Timers are on. Interrupt disabled.
- 7. Typical values shown are at 25 degrees C.

PS023803-0305 DC Characteristics

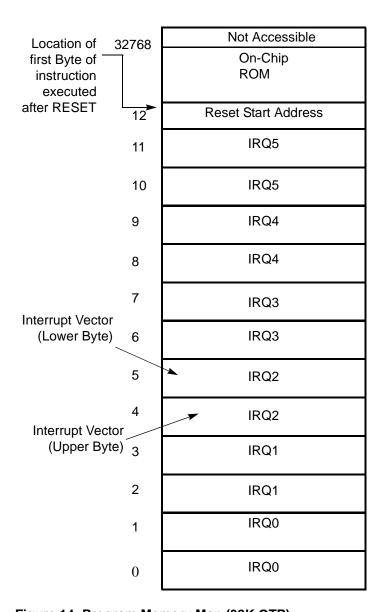


Figure 14. Program Memory Map (32K OTP)

Expanded Register File

The register file has been expanded to allow for additional system control registers and for mapping of additional peripheral devices into the register address area. The Z8[®] register address space (R0 through R15) has been implemented as 16 banks, with 16 registers per bank. These register groups are known as the

ERF (Expanded Register File). Bits 7–4 of register RP select the working register group. Bits 3–0 of register RP select the expanded register file bank.

Note: An expanded register bank is also referred to as an expanded register group (see Figure 15).

31

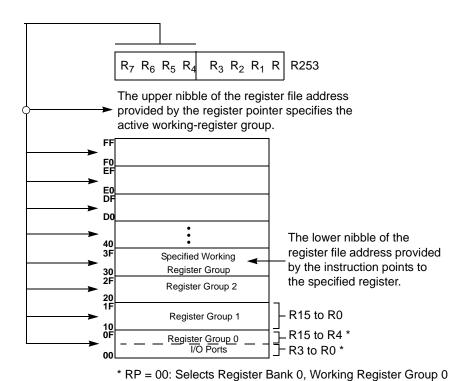


Figure 17. Register Pointer—Detail

Stack

The internal register file is used for the stack. An 8-bit Stack Pointer SPL (R255) is used for the internal stack that resides in the general-purpose registers (R4–R239). SPH (R254) can be used as a general-purpose register.

Timers

T8_Capture_HI—HI8(D)0BH

This register holds the captured data from the output of the 8-bit Counter/Timer0. Typically, this register holds the number of counts when the input signal is 1.

Field	Bit Position		Description
T8_Capture_HI	[7:0]	R/W	Captured Data - No Effect

T8_Capture_LO—L08(D)0AH

This register holds the captured data from the output of the 8-bit Counter/Timer0. Typically, this register holds the number of counts when the input signal is 0.

Field	Bit Position		Description
T8_Capture_L0	[7:0]	R/W	Captured Data - No Effect

T16_Capture_HI—HI16(D)09H

This register holds the captured data from the output of the 16-bit Counter/ Timer16. This register holds the MS-Byte of the data.

Field	Bit Position		Description
T16_Capture_HI	[7:0]	R/W	Captured Data - No Effect

T16_Capture_LO—L016(D)08H

This register holds the captured data from the output of the 16-bit Counter/ Timer16. This register holds the LS-Byte of the data.

Field	Bit Position	Description
T16_Capture_LO	[7:0]	R/W Captured Data - No Effect

Counter/Timer2 MS-Byte Hold Register—TC16H(D)07H

Field	Bit Position		Description
T16_Data_HI	[7:0]	R/W	Data

Table 18. CTR3 (D)03H: T8/T16 Control Register (Continued)

Field	Bit Position	Bit Position		Description
Reserved	43210	R	1	Always reads 11111
		W	X	No Effect

^{*}Indicates the value upon Power-On Reset.

Counter/Timer Functional Blocks

Input Circuit

The edge detector monitors the input signal on P31 or P20. Based on CTR1 D5–D4, a pulse is generated at the Pos Edge or Neg Edge line when an edge is detected. Glitches in the input signal that have a width less than specified (CTR1 D3, D2) are filtered out (see Figure 18).

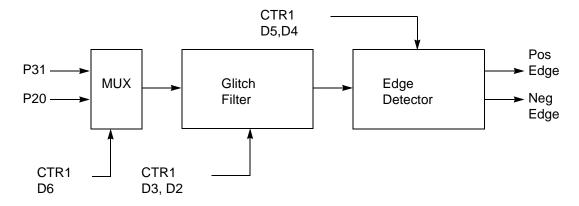


Figure 18. Glitch Filter Circuitry

T8 Transmit Mode

Before T8 is enabled, the output of T8 depends on CTR1, D1. If it is 0, T8_OUT is 1; if it is 1, T8_OUT is 0. See Figure 19.

^{**}Indicates the value upon Power-On Reset. Not reset with a Stop Mode recovery.

Note: The letter h denotes hexadecimal values.

Transition from 0 to FFh is not a timeout condition.

 \bigwedge

Caution: Using the same instructions for stopping the counter/timers and setting the status bits is not recommended.

Two successive commands are necessary. First, the counter/timers must be stopped. Second, the status bits must be reset. These commands are required because it takes one counter/timer clock interval for the initiated event to actually occur. See Figure 21 and Figure 22.

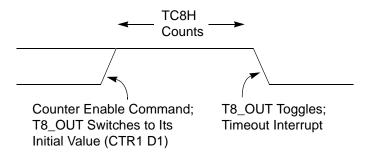


Figure 21. T8_OUT in Single-Pass Mode

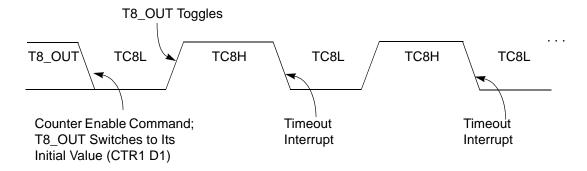


Figure 22. T8_OUT in Modulo-N Mode

T8 Demodulation Mode

The user must program TC8L and TC8H to FFH. After T8 is enabled, when the first edge (rising, falling, or both depending on CTR1, D5; D4) is detected, it starts to count down. When a subsequent edge (rising, falling, or both depending on CTR1, D5; D4) is detected during counting, the current value of T8 is complemented and put into one of the capture registers. If it is a positive edge, data is put

into LO8; if it is a negative edge, data is put into HI8. From that point, one of the edge detect status bits (CTR1, D1; D0) is set, and an interrupt can be generated if enabled (CTR0, D2). Meanwhile, T8 is loaded with FFh and starts counting again. If T8 reaches 0, the timeout status bit (CTR0, D5) is set, and an interrupt can be generated if enabled (CTR0, D1). T8 then continues counting from FFH (see Figure 23 and Figure 24).

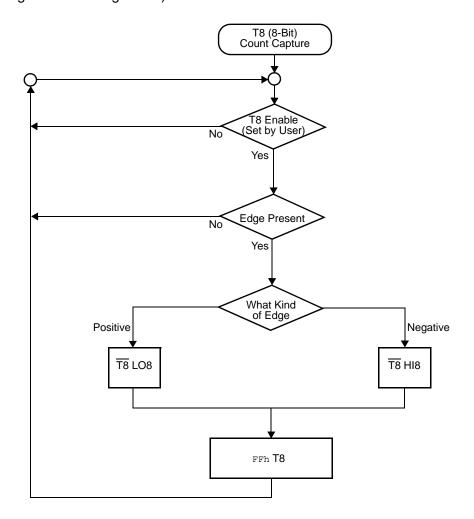


Figure 23. Demodulation Mode Count Capture Flowchart

48

If D6 of CTR2 Is 1

T16 ignores the subsequent edges in the input signal and continues counting down. A timeout of T8 causes T16 to capture its current value and generate an interrupt if enabled (CTR2, D2). In this case, T16 does not reload and continues counting. If the D6 bit of CTR2 is toggled (by writing a 0 then a 1 to it), T16 captures and reloads on the next edge (rising, falling, or both depending on CTR1, D5; D4), continuing to ignore subsequent edges.

This T16 mode generally measures mark time, the length of an active carrier signal burst.

If T16 reaches 0, T16 continues counting from FFFFh. Meanwhile, a status bit (CTR2 D5) is set, and an interrupt timeout can be generated if enabled (CTR2 D1).

Ping-Pong Mode

This operation mode is only valid in TRANSMIT Mode. T8 and T16 must be programmed in Single-Pass mode (CTR0, D6; CTR2, D6), and Ping-Pong mode must be programmed in CTR1, D3; D2. The user can begin the operation by enabling either T8 or T16 (CTR0, D7 or CTR2, D7). For example, if T8 is enabled, T8_OUT is set to this initial value (CTR1, D1). According to T8_OUT's level, TC8H or TC8L is loaded into T8. After the terminal count is reached, T8 is disabled, and T16 is enabled. T16_OUT then switches to its initial value (CTR1, D0), data from TC16H and TC16L is loaded, and T16 starts to count. After T16 reaches the terminal count, it stops, T8 is enabled again, repeating the entire cycle. Interrupts can be allowed when T8 or T16 reaches terminal control (CTR0, D1; CTR2, D1). To stop the ping-pong operation, write 00 to bits D3 and D2 of CTR1. See Figure 28.

Note: Enabling ping-pong operation while the counter/timers are running might cause intermittent counter/timer function. Disable the counter/timers and reset the status flags before instituting this operation.

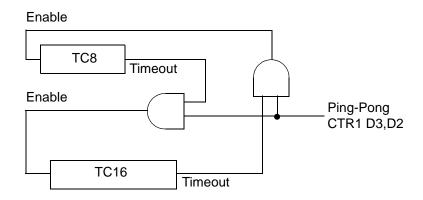


Figure 28. Ping-Pong Mode Diagram

Initiating PING-PONG Mode

First, make sure both counter/timers are not running. Set T8 into Single-Pass mode (CTR0, D6), set T16 into SINGLE-PASS mode (CTR2, D6), and set the Ping-Pong mode (CTR1, D2; D3). These instructions can be in random order. Finally, start PING-PONG mode by enabling either T8 (CTR0, D7) or T16 (CTR2, D7). See Figure 29.

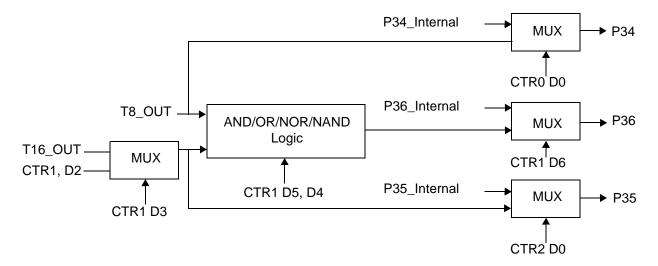


Figure 29. Output Circuit

The initial value of T8 or T16 must not be 1. Stopping the timer and restarting the timer reloads the initial value to avoid an unknown previous value.

50

During PING-PONG Mode

The enable bits of T8 and T16 (CTR0, D7; CTR2, D7) are set and cleared alternately by hardware. The timeout bits (CTR0, D5; CTR2, D5) are set every time the counter/timers reach the terminal count.

Interrupts

The ZGP323H features six different interrupts (Table 19). The interrupts are maskable and prioritized (Figure 30). The six sources are divided as follows: three sources are claimed by Port 3 lines P33–P31, two by the counter/timers (Table 19) and one for low voltage detection. The Interrupt Mask Register (globally or individually) enables or disables the six interrupt requests.

The source for IRQ is determined by bit 1 of the Port 3 mode register (P3M). When in digital mode, Pin P33 is the source. When in analog mode the output of the Stop mode recovery source logic is used as the source for the interrupt. See Figure 35, Stop Mode Recovery Source, on page 59.

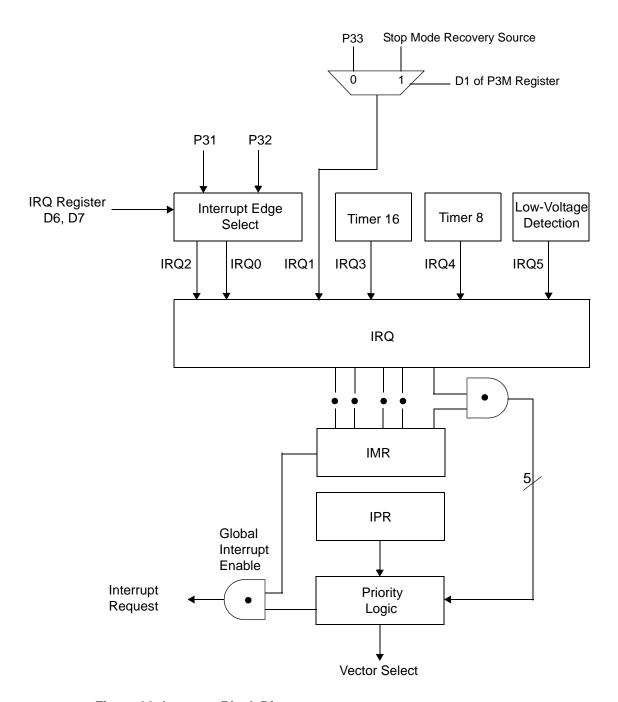


Figure 30. Interrupt Block Diagram

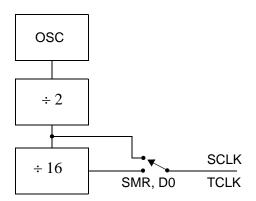


Figure 34. SCLK Circuit

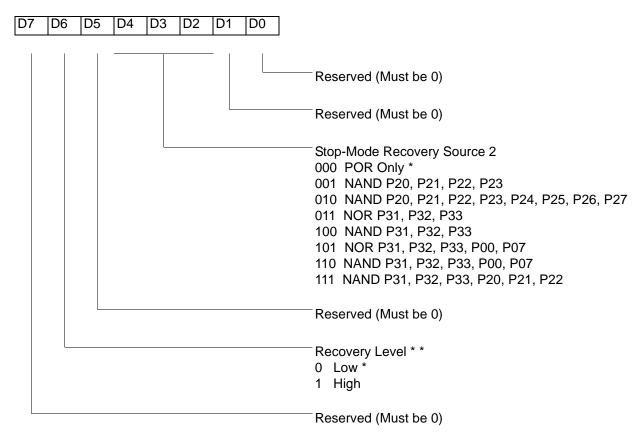
Stop-Mode Recovery Source (D2, D3, and D4)

These three bits of the SMR specify the wake-up source of the Stop recovery (Figure 35 and Table 22).

Stop-Mode Recovery Register 2—SMR2(F)0DH

Table 21 lists and briefly describes the fields for this register.

Table 21.SMR2(F)0DH:Stop Mode Recovery Register 2*


Field	Bit Position		Value	Description
Reserved	7		0	Reserved (Must be 0)
Recovery Level	-6	W	0 [†]	Low
			1	High
Reserved	5		0	Reserved (Must be 0)
Source	432	W	000 [†]	A. POR Only
			001	B. NAND of P23-P20
			010	C. NAND of P27-P20
			011	D. NOR of P33-P31
			100	E. NAND of P33-P31
			101	F. NOR of P33-P31, P00, P07
			110	G. NAND of P33-P31, P00, P07
			111	H. NAND of P33-P31, P22-P20
Reserved	10		00	Reserved (Must be 0)

Notes:

^{*} Port pins configured as outputs are ignored as a SMR recovery source. † Indicates the value upon Power-On Reset

Stop Mode Recovery Register 2 (SMR2)

This register determines the mode of Stop Mode Recovery for SMR2 (Figure 36). SMR2(0F)DH

Note: If used in conjunction with SMR, either of the two specified events causes a Stop-Mode Recovery.

- * Default setting after reset
- * * At the XOR gate input

Figure 36. Stop Mode Recovery Register 2 ((0F)DH:D2-D4, D6 Write Only)

If SMR2 is used in conjunction with SMR, either of the specified events causes a Stop Mode Recovery.

Note: Port pins configured as outputs are ignored as an SMR or SMR2 recovery source. For example, if the NAND or P23–P20 is selected as the recovery source and P20 is configured as an output, the remaining SMR pins (P23–P21) form the NAND equation.

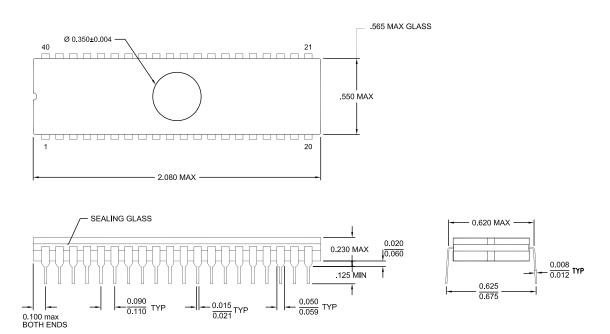


Figure 67. 40-Pin CDIP Package Diagram

PS023803-0305 Package Information

Ordering Information

32KB Standard Temperature: 0° to +70°C			
Part Number	Description	Part Number	Description
ZGP323HSH4832C	48-pin SSOP 32K OTP	ZGP323HSS2832C	28-pin SOIC 32K OTP
ZGP323HSP4032C	40-pin PDIP 32K OTP	ZGP323HSH2032C	20-pin SSOP 32K OTP
ZGP323HSK2832E	28-pin CDIP 32K OTP	ZGP323HSK2032E	20-pin CDIP 32K OTP
ZGP323HSK4032E	40-pin CDIP 32K OTP	ZGP323HSP2032C	20-pin PDIP 32K OTP
ZGP323HSH2832C	28-pin SSOP 32K OTP	ZGP323HSS2032C	20-pin SOIC 32K OTP
ZGP323HSP2832C	28-pin PDIP 32K OTP		

32KB Extended Temperature: -40° to +105°C			
Part Number	Description	Part Number	Description
ZGP323HEH4832C	48-pin SSOP 32K OTP	ZGP323HES2832C	28-pin SOIC 32K OTP
ZGP323HEP4032C	40-pin PDIP 32K OTP	ZGP323HEH2032C	20-pin SSOP 32K OTP
ZGP323HEH2832C	28-pin SSOP 32K OTP	ZGP323HEP2032C	20-pin PDIP 32K OTP
ZGP323HEP2832C	28-pin PDIP 32K OTP	ZGP323HES2032C	20-pin SOIC 32K OTP

32KB Automotive Temperature: -40° to +125°C			
Part Number	Description	Part Number	Description
ZGP323HAH4832C	48-pin SSOP 32K OTP	ZGP323HAS2832C	28-pin SOIC 32K OTP
ZGP323HAP4032C	40-pin PDIP 32K OTP	ZGP323HAH2032C	20-pin SSOP 32K OTP
ZGP323HAH2832C	28-pin SSOP 32K OTP	ZGP323HAP2032C	20-pin PDIP 32K OTP
ZGP323HAP2832C	28-pin PDIP 32K OTP	ZGP323HAS2032C	20-pin SOIC 32K OTP
Replace C with G fo	r Lead-Free Packaging		

PS023803-0305 Ordering Information

93

4ND Standard Telli	perature: 0° to +70°C	T	
Part Number	Description	Part Number	Description
ZGP323HSH4804C	48-pin SSOP 4K OTP	ZGP323HSS2804C	28-pin SOIC 4K OTP
ZGP323HSP4004C	40-pin PDIP 4K OTP	ZGP323HSH2004C	20-pin SSOP 4K OTP
ZGP323HSH2804C	28-pin SSOP 4K OTP	ZGP323HSP2004C	20-pin PDIP 4K OTP
ZGP323HSP2804C	28-pin PDIP 4K OTP	ZGP323HSS2004C	20-pin SOIC 4K OTP
4KB Extended Tem	perature: -40° to +105°0		
Dord Number	Deceriation	David Manuali au	
Part Number	Description	Part Number	Description
ZGP323HEH4804C			Description 28-pin SOIC 4K OTP
ZGP323HEH4804C		ZGP323HES2804C	
ZGP323HEH4804C ZGP323HEP4004C	48-pin SSOP 4K OTP	ZGP323HES2804C ZGP323HEH2004C	28-pin SOIC 4K OTP
ZGP323HEH4804C ZGP323HEP4004C ZGP323HEH2804C	48-pin SSOP 4K OTP 40-pin PDIP 4K OTP	ZGP323HES2804C ZGP323HEH2004C ZGP323HEP2004C	28-pin SOIC 4K OTP 20-pin SSOP 4K OTP

4KB Automotive Temperature: -40° to +125°C			
Part Number	Description	Part Number	Description
ZGP323HAH4804C	48-pin SSOP 4K OTP	ZGP323HAS2804C	28-pin SOIC 4K OTP
ZGP323HAP4004C	40-pin PDIP 4K OTP	ZGP323HAH2004C	20-pin SSOP 4K OTP
ZGP323HAH2804C	28-pin SSOP 4K OTP	ZGP323HAP2004C	20-pin PDIP 4K OTP
ZGP323HAP2804C	28-pin PDIP 4K OTP	ZGP323HAS2004C	20-pin SOIC 4K OTP
Replace C with G for	Lead-Free Packaging		

Additional Components			
Part Number	Description	Part Number	Description
ZGP323ICE01ZEM (For 3.6V Emulation only)	Emulator/programmer	ZGP32300100ZPR (Ethernet)	Programming system
		ZGP32300200ZPR (USB)	Programming system

PS023803-0305 Ordering Information

T8_Capture_LO 32
register file 30
expanded 26
register pointer 29
detail 31
reset pin function 25
resets and WDT 63
S
SCLK circuit 58
single-pass mode
T16_OUT 47
T8_OUT 43
stack 31
standard test conditions 10
standby modes 1
stop instruction, counter/timer 54
stop mode recovery
2 register 61
source 59
stop mode recovery 2 61
stop mode recovery register 57
T
T16 transmit mode 46
T16_Capture_HI 32
T8 transmit mode 40
T8_Capture_HI 32
test conditions, standard 10
test load diagram 10
timing diagram, AC 16
transmit mode flowchart 41
V
VCC 5
voltage
brown-out/standby 64
detection and flags 65
voltage detection register 71 W
watch-dog timer
mode registerwatch-dog timer mode register 62
time select 63

X XTAL1 5 XTAL1 pin function 18 XTAL2 5 XTAL2 pin function 18