

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	36MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	51
Program Memory Size	384KB (384K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f101rdt6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1. STM32F101xC, STM32F101xD and STM32F101xE access line block diagram

1. $T_A = -40$ °C to +85 °C (junction temperature up to 105 °C).

2. AF = alternate function on I/O port pin.

Figure 2. Clock tree

1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 36 MHz.

2. To have an ADC conversion time of 1 $\mu s,$ APB2 must be at 14 MHz or 28 MHz.

2.2 Full compatibility throughout the family

The STM32F101xx is a complete family whose members are fully pin-to-pin, software and feature compatible. In the reference manual, the STM32F101x4 and STM32F101x6 are identified as low-density devices, the STM32F101x8 and STM32F101xB are referred to as medium-density devices, and the STM32F101xC, STM32F101xD and STM32F101xE are referred to as high-density devices .

Low- and high-density devices are an extension of the STM32F101x8/B medium-density devices, they are specified in the STM32F101x4/6 and STM32F101xC/D/E datasheets, respectively.

Low-density devices feature lower Flash memory and RAM capacities, less timers and peripherals. High-density devices have higher Flash memory and RAM densities, and additional peripherals like FSMC and DAC, while remaining fully compatible with the other members of the family.

The STM32F101x4, STM32F101x6, STM32F101xC, STM32F101xD and STM32F101xE are a drop-in replacement for the STM32F101x8/B devices, allowing the user to try different memory densities and providing a greater degree of freedom during the development cycle.

Moreover, the STM32F101xx access line family is fully compatible with all existing STM32F103xx performance line and STM32F102xx USB access line devices.

				Memory size)		
	Low-density devices		Low-density devices Medium-density devices		High-density devices		
Pinout	16 KB Flash	32 KB Flash ⁽¹⁾	64 KB Flash	128 KB Flash	256 KB Flash	384 KB Flash	512 KB Flash
	4 KB RAM	6 KB RAM	10 KB RAM	16 KB RAM	32 KB RAM	48 KB RAM	48 KB RAM
144					5 × USARTs		
100			3 × USARTs		4 × 16-bit tin 3 × SPIs, 2 ×	ners. 2 × basi × I ² Cs, 1 × A[c timers DC. 2 ×
64	2 × USART	s mers	3 × 16-bit tim 2 × SPIs, 2 ×	iers I2Cs,	DACs FSMC (100	and 144 pins)
48	1 × SPI, 1 ×	< I ² C	1 × ADC				
36	1 × ADC				-		

Table 3. STM32F101xx family

1. For orderable part numbers that do not show the A internal code after the temperature range code (6), the reference datasheet for electrical characteristics is that of the STM32F101x8/B medium-density devices.

2.3 Overview

2.3.1 ARM[®] Cortex[®]-M3 core with embedded Flash and SRAM

The ARM[®] Cortex[®]-M3 processor is the latest generation of ARM[®] processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while

2.3.11 Power supply schemes

- V_{DD} = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 2.0 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 2.4 V when the ADC or DAC is used). V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{BAT} = 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

For more details on how to connect power pins, refer to Figure 9: Power supply scheme.

2.3.12 **Power supply supervisor**

The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to *Table 12: Embedded reset and power control block characteristics* for the values of $V_{POR/PDR}$ and V_{PVD} .

2.3.13 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR) and power down.

- MR is used in the nominal regulation mode (Run)
- LPR is used in the Stop modes.
- Power down is used in Standby mode: the regulator output is in high impedance: the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost)

This regulator is always enabled after reset. It is disabled in Standby mode.

2.3.14 Low-power modes

The STM32F101xC, STM32F101xD and STM32F101xE access line supports three low-power modes to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Stop mode

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.

DocID14610 Rev 9

3 Pinouts and pin descriptions

Figure 3. LQFP144 pinout

1. The above figure shows the package top view.

DocID14610 Rev 9

	Pins						Alternate functions ⁽⁴⁾	
LQFP144	LQFP64	LQFP100	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
62	-	-	V _{DD_7}	S	-	V _{DD_7}	-	-
63	-	41	PE10	I/O	FT	PE10	FSMC_D7	-
64	-	42	PE11	I/O	FT	PE11	FSMC_D8	-
65	-	43	PE12	I/O	FT	PE12	FSMC_D9	-
66	-	44	PE13	I/O	FT	PE13	FSMC_D10	-
67	-	45	PE14	I/O	FT	PE14	FSMC_D11	-
68	-	46	PE15	I/O	FT	PE15	FSMC_D12	-
69	29	47	PB10	I/O	FT	PB10	I2C2_SCL/ USART3_TX ⁽⁸⁾	TIM2_CH3
70	30	48	PB11	I/O	FT	PB11	I2C2_SDA/ USART3_RX ⁽⁸⁾	TIM2_CH4
71	31	49	V _{SS_1}	S	-	V _{SS_1}	-	-
72	32	50	V _{DD_1}	S	-	V _{DD_1}	-	-
73	33	51	PB12	I/O	FT	PB12	SPI2_NSS ^{(8)/} I2C2_SMBA USART3_CK ⁽⁸⁾	-
74	34	52	PB13	I/O	FT	PB13	SPI2_SCK ⁽⁸⁾ / USART3_CTS ⁽⁸⁾	-
75	35	53	PB14	I/O	FT	PB14	SPI2_MISO ⁽⁸⁾ / USART3_RTS ⁽⁸⁾	-
76	36	54	PB15	I/O	FT	PB15	SPI2_MOSI ⁽⁸⁾	-
77	-	55	PD8	I/O	FT	PD8	FSMC_D13	USART3_TX
78	-	56	PD9	I/O	FT	PD9	FSMC_D14	USART3_RX
79	-	57	PD10	I/O	FT	PD10	FSMC_D15	USART3_CK
80	-	58	PD11	I/O	FT	PD11	FSMC_A16	USART3_CTS
81	-	59	PD12	I/O	FT	PD12	FSMC_A17	TIM4_CH1 / USART3_RTS
82	-	60	PD13	I/O	FT	PD13	FSMC_A18	TIM4_CH2
83	-	-	V _{SS_8}	S	-	V _{SS_8}	-	-
84	-	-	V _{DD_8}	S	-	V _{DD_8}	-	
85	-	61	PD14	I/O	FT	PD14	FSMC_D0	TIM4_CH3
86	-	62	PD15	I/O	FT	PD15	FSMC_D1	TIM4_CH4
87	-	-	PG2	I/O	FT	PG2	FSMC_A12	-

Table 5. STM32F101xC/STM32F101xD/STM32F101xE pin definitions (continued)

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS} .

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

5.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 3.3$ V (for the 2 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\Sigma$).

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 7*.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 8.

5.1.6 Power supply scheme

Figure 9. Power supply scheme

Caution: In *Figure 9*, the 4.7 μ F capacitor must be connected to V_{DD3}.

Figure 11. Typical current consumption in Run mode versus frequency (at 3.6 V) - code with data processing running from RAM, peripherals enabled

Figure 12. Typical current consumption in Run mode versus frequency (at 3.6 V) - code with data processing running from RAM, peripherals disabled

Figure 21. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

FSMC_BusTurnAroundDuration = 0.

Table 31. Asynchronous r	non-multiplexed SRAM/PSRAM/NOR	R read timings ^{(1) (2)}
······		

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FSMC_NE low time	5t _{HCLK} – 1.5	5t _{HCLK} + 2	ns
t _{v(NOE_NE)}	FSMC_NEx low to FSMC_NOE low	0.5	1.5	ns
t _{w(NOE)}	FSMC_NOE low time	5t _{HCLK} – 1.5	5t _{HCLK} + 1.5	ns
t _{h(NE_NOE)}	FSMC_NOE high to FSMC_NE high hold time	-1.5	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	7	ns
t _{h(A_NOE)}	Address hold time after FSMC_NOE high	0.1	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	0	ns
t _{h(BL_NOE)}	FSMC_BL hold time after FSMC_NOE high	0	-	ns
t _{su(Data_NE)}	Data to FSMC_NEx high setup time	2t _{HCLK} + 25	-	ns
t _{su(Data_NOE)}	Data to FSMC_NOEx high setup time	2t _{HCLK} + 25	-	ns
t _{h(Data_NOE)}	Data hold time after FSMC_NOE high	0	-	ns

Note:

Symbol	Parameter	Min	Max	Unit
t _{h(Data_NE)}	Data hold time after FSMC_NEx high	0	-	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	-	5	ns
t _{w(NADV)}	FSMC_NADV low time	-	t _{HCLK} + 1.5	ns

Table 31. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings^{(1) (2)}

1. C_L = 15 pF.

2. Guaranteed by characterization results, not tested in production.

^tw(NE) -FSMC_NEx - -FSMC_NOE ↓ th(NE NWE) tv(NWE NE) tw(NWE) FSMC_NWE ^tv(A_NE) ^th(A_NWE) FSMC_A[25:0] Address ⊢ ^tv(BL_NE) ^th(BL_NWE) FSMC_NBL[1:0] NBL ^{-t}v(Data_NE) ^th(Data NWE) Data FSMC_D[15:0] -tv(NADV_NE) tw(NADV)► FSMC_NADV⁽¹⁾ ai14990

Figure 22. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.

Table 32. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings⁽¹⁾⁽²⁾

			J.	
Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FSMC_NE low time	3t _{HCLK} – 1	3t _{HCLK} + 2	ns
t _{v(NWE_NE)}	FSMC_NEx low to FSMC_NWE low	t _{HCLK} – 0.5	t _{HCLK} + 1.5	ns
t _{w(NWE)}	FSMC_NWE low time	t _{HCLK} – 0.5	t _{HCLK} + 1.5	ns
t _{h(NE_NWE)}	FSMC_NWE high to FSMC_NE high hold time	t _{HCLK}	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	7.5	ns
t _{h(A_NWE)}	Address hold time after FSMC_NWE high	t _{HCLK}	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	1.5	ns
t _{h(BL_NWE)}	FSMC_BL hold time after FSMC_NWE high	t _{HCLK} – 0.5	-	ns
t _{v(Data_NE)}	FSMC_NEx low to Data valid	-	t _{HCLK} + 7	ns

Synchronous waveforms and timings

Figure 25 through *Figure 28* represent synchronous waveforms and *Table 36* through *Table 38* provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

- BurstAccessMode = FSMC_BurstAccessMode_Enable;
- MemoryType = FSMC_MemoryType_CRAM;
- WriteBurst = FSMC_WriteBurst_Enable;
- CLKDivision = 1; (0 is not supported, see the STM32F10xxx reference manual)
- DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM

Figure 25. Synchronous multiplexed NOR/PSRAM read timings

5.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation).

The test results are given in Table 45

		Functional s		
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on OSC_IN32, OSC_OUT32, PA4, PA5, PC13	-0	+0	
I _{INJ}	Injected current on all FT pins	-5	+0	mA
	Injected current on any other pin	-5	+5	

Table 45. I/O current injection susceptibility

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 43* and *Table 48*, respectively.

Unless otherwise specified, the parameters given in *Table 48* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

MODEx [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Мах	Unit
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_L = 50 pF, V_{DD} = 2 V to 3.6 V	2	MHz
10 t _{f(IO)out}		Output high to low level fall time	C = 50 pE V = 2 V to 3 eV	125 ⁽³⁾	20
	t _{r(IO)out}	Output low to high level rise time	C _L = 30 μr, v _{DD} = 2 v to 3.0 v	125 ⁽³⁾	115
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_{L} = 50 pF, V_{DD} = 2 V to 3.6 V	10	MHz
01	01 time			25 ⁽³⁾	20
	t _{r(IO)out}	Output low to high level rise time	$C_{L} = 50 \text{ pr}, V_{DD} = 2 \text{ V to 3.6 V}$	25 ⁽³⁾	115
			C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	50	MHz
	F _{max(IO)out}	Maximum Frequency ⁽²⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	30	MHz
			C_L = 50 pF, V_{DD} = 2 V to 2.7 V	20	MHz
			C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	5 ⁽³⁾	
11	t _{f(IO)out}	Output high to low level fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	8 ⁽³⁾	
			C_L = 50 pF, V_{DD} = 2 V to 2.7 V	12 ⁽³⁾	
		Output low to high level rise	C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	5 ⁽³⁾	ns
	t _{r(IO)out}	time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	8 ⁽³⁾	
			C_{L} = 50 pF, V_{DD} = 2 V to 2.7 V	12 ⁽³⁾	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10	ns

Table 48. I/O AC characteristics⁽¹⁾

1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F10xxx reference manual for a description of GPIO Port configuration register.

2. The maximum frequency is defined in *Figure 43*.

3. Guaranteed by design, not tested in production.

Figure 45. I²C bus AC waveforms and measurement circuit⁽¹⁾

- 1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}.$
- 1. R_S = series protection resistor.
- 2. R_P = external pull-up resistor.
- 3. V_{DD_I2C} is the I2C bus power supply.

f _{SCL}	I2C_CCR value
(kHz)	R _P = 4.7 kΩ
400	0x801E
300	0x8028
200	0x803C
100	0x00B4
50	0x0168
20	0x0384

Table 52. SCL frequency $(f_{PCLK1} = 36 \text{ MHz}, V_{DD} = V_{DD | 12C} = 3.3 \text{ V})^{(1)(2)}$

1. R_P = External pull-up resistance, f_{SCL} = I^2C speed.

For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application.

The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

T _s (cycles)	t _S (μs)	R _{AIN} max (kΩ)
1.5	0.11	0.4
7.5	0.54	5.9
13.5	0.96	11.4
28.5	2.04	25.2
41.5	2.96	37.2
55.5	3.96	50
71.5	5.11	NA
239.5	17.1	NA

Table 56, RAIN	max for	fADC =	14 MHz ⁽¹⁾
----------------	---------	--------	-----------------------

1. Guaranteed by design, not tested in production.

Table 57. ADC accuracy -	 limited test conditions⁽¹⁾⁽²) 	2)
--------------------------	--	----

Symbol	Parameter	Test conditions	Тур	Max ⁽³⁾	Unit
ET	Total unadjusted error	$f_{PCLK2} = 28 \text{ MHz},$	±1.3	±2	
EO	Offset error	$f_{ADC} = 14 \text{ MHz}, R_{AIN} < 10 \text{ k}\Omega,$ VDDA = 3 V to 3 6 V TA = 25	±1	±1.5	
EG	Gain error	°C	±0.5	±1.5	LSB
ED	Differential linearity error	Measurements made after	±0.7	±1	
EL	Integral linearity error	$V_{\text{REF+}} = V_{\text{DDA}}$	±0.8	±1.5	

1. ADC DC accuracy values are measured after internal calibration.

ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current. Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in *Section 5.3.13* does not affect the ADC accuracy. 2.

3. Guaranteed by characterization results, not tested in production.

Symbol	Parameter	Test conditions	Тур	Max ⁽⁴⁾	Unit		
ET	Total unadjusted error	f - 20 MUz	±2	±5			
EO	Offset error	$f_{ADC} = 14 \text{ MHz},$ $f_{ADC} = 14 \text{ MHz}, R_{AIN} < 10 \text{ k}\Omega,$	±1.5	±2.5			
EG	Gain error	$V_{DDA} = 2.4 V \text{ to } 3.6 V$	±1.5	±3	LSB		
ED	Differential linearity error	Measurements made after	±1	±2			
EL	Integral linearity error		±1.5	±3			

Table 58 ADC accuracy⁽¹⁾ (2)(3)

1. ADC DC accuracy values are measured after internal calibration.

2. Better performance could be achieved in restricted V_{DD}, frequency, V_{REF} and temperature ranges.

3. ADC accuracy vs. negative injection current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 5.3.13 does not affect the ADC accuracy.

Guaranteed by characterization results, not tested in production. 4.

Figure 49. ADC accuracy characteristics

Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit	Comments
I _{DDVREF+}	DAC DC current consumption in quiescent mode (Standby mode)		-	220	μA	With no load, worst code (0xF1C) at V_{REF+} = 3.6 V in terms of DC consumption on the inputs.
		-	-	380	μA	With no load, middle code (0x800) on the inputs.
I _{DDA}	in quiescent mode ⁽³⁾	-	-	480	μA	With no load, worst code (0xF1C) at V_{REF+} = 3.6 V in terms of DC consumption on the inputs.
DNL ⁽¹⁾	Differential non linearity	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration.
	consecutive code-1LSB)	-	-	±2	LSB	Given for the DAC in 12-bit configuration.
	Integral non linearity (difference between measured value at	-	-	±1	LSB	Given for the DAC in 10-bit configuration.
INL ⁽¹⁾	Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	±4	LSB	Given for the DAC in 12-bit configuration.
	Offset error (difference between measured value at Code (0x800) and the ideal value = V _{REF+} /2)	-	-	±10	mV	
Offset ⁽¹⁾		-	-	±3	LSB	Given for the DAC in 10-bit at V _{REF+} = 3.6 V.
		-	-	±12	LSB	Given for the DAC in 12-bit at V _{REF+} = 3.6 V.
Gain error ⁽¹⁾	Gain error	-	-	±0.5	%	Given for the DAC in 12bit configuration.
tsettlingv	V Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±1LSB		3	4	μs	$C_{LOAD} \le 50 \text{ pF}, R_{LOAD} \ge 5 \text{ k}\Omega$
Update rate ⁽¹⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	-	-	1	MS/s	$C_{LOAD} \le 50 \text{ pF}, \text{ R}_{LOAD} \ge 5 \text{ k}\Omega$
t _{wakeup} (1)	Wakeup time from off state (Setting the ENx bit in the DAC Control register)	-	6.5	10	μs	$C_{LOAD} \le 50 \text{ pF}, R_{LOAD} \ge 5 \text{ k}\Omega$ input code between lowest and highest possible ones.
PSRR+ ⁽²⁾ Power supply rejection ratio (to V _{DDA}) (static DC measurement67		-40	dB	No R _{LOAD} , C _{LOAD} = 50 pF		

Table 59. DAC characteristics (continued)

1. Guaranteed by characterization results, not tested in production.

2. Guaranteed by design, not tested in production.

3. Quiescent mode refers to the state of the DAC when a steady value is kept on the output so that no dynamic consumption is involved.

6.2 LQFP100 package information

Figure 57. LQFP100 – 14 x 14 mm, 100-pin low-profile quad flat package outline

1. Drawing is not to scale.

Table 62	LQPF100 - 14 x	<mark>x 14</mark> mm,	100-pin	low-profile	quad	flat
	packag	ge mecha	anical da	ta		

		•	•				
Symbol		millimeters		inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Мах	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
с	0.090	-	0.200	0.0035	-	0.0079	
D	15.800	16.000	16.200	0.622	0.6299	0.6378	
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
D3	-	12.000	-	-	0.4724	-	
E	15.800	16.000	16.200	0.622	0.6299	0.6378	
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591	

DocID14610 Rev 9

Date	Revision	Changes
19-Apr-2011	8	Updated footnotes below Table 7: Voltage characteristics on page 38 and Table 8: Current characteristics on page 39 Updated tw min in Table 21: High-speed external user clock characteristics on page 51 Updated startup time in Table 24: LSE oscillator characteristics (f_{LSE} = 32.768 kHz) on page 55 Updated Table 31: Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings on page 60 Updated FSMC sync data latency in Figure 25 thru Figure 28 Updated Figure 38: NAND controller waveforms for common memory write access and Table 40: Switching characteristics for NAND Flash read and write cycles on page 78 Updated Figure 44: Recommended NRST pin protection Added Section 5.3.13: I/O current injection characteristics Updated note 2 in Table 51: I^2C characteristics on page 90 Updated Figure 45: I^2C bus AC waveforms and measurement circuit ⁽¹⁾
15-May-2015	9	Added OSC_IN/OSC_OUT remap functions and updated PD0/PD1 in Table 5: STM32F101xC/STM32F101xD/STM32F101xE pin definitions. Modified Section 2.3.21: GPIOs (general-purpose inputs/outputs) on page 20. Updated notes related to parameters not tested in production in the whole document. Updated Table 20: Peripheral current consumption on page 50. Updated CDM standard and values in Section : Electrostatic discharge (ESD). Modified Section : Output driving current on page 84. Updated Figure 43: I/O AC characteristics definition. Updated conditions related to Section : I ² C interface characteristics. Modified Table 51: I ² C characteristics on page 90, updated Figure 45: I ² C bus AC waveforms and measurement circuit ⁽¹⁾ and V _{DD} /V _{DD_12C} conditions in Table 52: SCL frequency (f _{PCLK1} = 36 MHz, V _{DD} = V _{DD_12C} = 3.3 V) on page 91. Modified Figure 48: SPI timing diagram - master mode ⁽¹⁾ on page 95. Modified note 3 in Table 58: ADC accuracy on page 98. Updated I _{DDA} definition in Table 59: DAC characteristics on page 100 and removed comment related to the offset parameter for ±10 mV. Corrected "CLKL-NOEL" in Section 5.3.10: FSMC characteristics on page 59. Updated Section 6.1: LQFP144 package information on page 103 and added Section : Device marking for LQFP144 on page 106. Updated Section 6.2: LQFP100 package information on page 107 and added Section : Device marking for LQFP100 on page 110.

Table 66. Document revision history (continued)

