

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	36MHz
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	51
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f101ret6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8	Revis	sion his	tory	16
7	Part	number	ing1	15
		6.4.2	Evaluating the maximum junction temperature for an application 1	14
		6.4.1	Reference document 1	13
	6.4	Therma	l characteristics1	13
	6.3	LQFP6	4 information	10

Table 46.	I/O static characteristics
Table 47.	Output voltage characteristics
Table 48.	I/O AC characteristics
Table 49.	NRST pin characteristics
Table 50.	TIMx characteristics
Table 51.	I ² C characteristics
Table 52.	SCL frequency (f_{PCLK1} = 36 MHz, V_{DD} = $V_{DD 12C}$ = 3.3 V)
Table 53.	STM32F10xxx SPI characteristics
Table 54.	SPI characteristics
Table 55.	ADC characteristics
Table 56.	R _{AIN} max for f _{ADC} = 14 MHz
Table 57.	ADC accuracy - limited test conditions
Table 58.	ADC accuracy
Table 59.	DAC characteristics
Table 60.	TS characteristics
Table 61.	LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package
	mechanical data
Table 62.	LQPF100 – 14 x 14 mm, 100-pin low-profile guad flat
	package mechanical data
Table 63.	LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package mechanical data
Table 64.	Package thermal characteristics
Table 65.	Ordering information scheme

2.3.11 Power supply schemes

- V_{DD} = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 2.0 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 2.4 V when the ADC or DAC is used). V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{BAT} = 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

For more details on how to connect power pins, refer to *Figure 9: Power supply scheme*.

2.3.12 **Power supply supervisor**

The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to *Table 12: Embedded reset and power control block characteristics* for the values of $V_{POR/PDR}$ and V_{PVD} .

2.3.13 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR) and power down.

- MR is used in the nominal regulation mode (Run)
- LPR is used in the Stop modes.
- Power down is used in Standby mode: the regulator output is in high impedance: the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost)

This regulator is always enabled after reset. It is disabled in Standby mode.

2.3.14 Low-power modes

The STM32F101xC, STM32F101xD and STM32F101xE access line supports three low-power modes to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Stop mode

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.

DocID14610 Rev 9

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
TIM2, TIM3, TIM4, TIM5	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

 Table 4. Timer feature comparison

General-purpose timers (TIMx)

There are up to 4 synchronizable general-purpose timers (TIM2, TIM3, TIM4 and TIM5) embedded in the STM32F101xC, STM32F101xD and STM32F101xE access line devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input captures / output compares / PWMs on the largest packages.

The general-purpose timers can work together with the advanced-control timer via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. They all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base.

Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

2.3.26 Embedded Trace Macrocell™

The ARM[®] Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F10xxx through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.

Table 5. STM32F101xC/STM32F101xD/STM32F101xE pin definitions (c Pins Alternate fu						Alternate functi	-	
	F1115						Alternate functi	
LQFP144	LQFP64	LQFP100	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
12	-	-	PF2	I/O	FT	PF2	FSMC_A2	-
13	-	-	PF3	I/O	FT	PF3	FSMC_A3	-
14	-	-	PF4	I/O	FT	PF4	FSMC_A4	-
15	-	-	PF5	I/O	FT	PF5	FSMC_A5	-
16	-	10	V _{SS_5}	S	-	V _{SS_5}	-	-
17	-	11	V _{DD_5}	S	-	V _{DD_5}	-	-
18	-	-	PF6	I/O	-	PF6	FSMC_NIORD	-
19	-	-	PF7	I/O	-	PF7	FSMC_NREG	-
20	-	-	PF8	I/O	-	PF8	FSMC_NIOWR	-
21	-	-	PF9	I/O	-	PF9	FSMC_CD	-
22	-	-	PF10	I/O	-	PF10	FSMC_INTR	-
23	5	12	OSC_IN	Ι	-	OSC_IN	-	PD0 ⁽⁷⁾
24	6	13	OSC_OUT	0	-	OSC_OUT	-	PD1 ⁽⁷⁾
25	7	14	NRST	I/O	-	NRST	-	-
26	8	15	PC0	I/O	-	PC0	ADC_IN10	-
27	9	16	PC1	I/O	-	PC1	ADC_IN11	-
28	10	17	PC2	I/O	-	PC2	ADC_IN12	-
29	11	18	PC3	I/O	-	PC3	ADC_IN13	-
30	12	19	V _{SSA}	S	-	V _{SSA}	-	-
31	-	20	V _{REF-}	S	-	V _{REF-}	-	-
32	-	21	V _{REF+}	S	-	V _{REF+}	-	-
33	13	22	V _{DDA}	S	-	V _{DDA}	-	-
34	14	23	PA0-WKUP	I/O	-	PA0	WKUP/ USART2_CTS ⁽⁸⁾ / ADC_IN0/TIM5_CH1/ TIM2_CH1_ETR ⁽⁸⁾	-
35	15	24	PA1	I/O	-	PA1	USART2_RTS ⁽⁸⁾ / ADC_IN1/TIM5_CH2 - TIM2_CH2 ⁽⁸⁾	
36	16	25	PA2	I/O	-	PA2	USART2_TX ⁽⁸⁾ / TIM5_CH3/ADC_IN2/ TIM2_CH3 ⁽⁸⁾	-

Symbol	Parameter			Max ⁽¹⁾	Unit
	Parameter	Conditions	fhclk	T _A = 85 °C	Unit
			36 MHz	39	
	Supply current in Run mode	External clock ⁽²⁾ , all peripherals enabled	24 MHz	27	- mA
			16 MHz	20	
			8 MHz	11	
IDD		External clock ⁽²⁾ , all peripherals disabled	36 MHz	22	
			24 MHz	16.5	
			16 MHz	12.5	
			8 MHz	8	

Table 14. Maximum current consumption in Run mode, code with data processingrunning from Flash

1. Guaranteed by characterization results, not tested in production.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

Table 15. Maximum current consumption in Run mode, code with data processing running from RAM						
				Max ⁽¹⁾		

Symbol	D	Conditions	£	Max ⁽¹⁾	Unit	
Symbol	Parameter	Conditions	fhclk	T _A = 85 °C	Unit	
			36 MHz	34		
	Supply current in Run mode	External clock ⁽²⁾ , all peripherals enabled	24 MHz	24	mA	
			16 MHz	17		
			8 MHz	10		
IDD		External clock ⁽²⁾ all peripherals disabled	36 MHz	18		
			24 MHz	13		
			16 MHz	10		
			8 MHz	6		

1. Guaranteed by characterization results, tested in production at V_{DD} max, f_{HCLK} max.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

Typical current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except if it is explicitly mentioned
- The Flash access time is adjusted to f_{HCLK} frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 36 MHz)
- Prefetch is on (reminder: this bit must be set before clock setting and bus prescaling)
- When the peripherals are enabled f_{PCLK1} = f_{HCLK/4}, f_{PCLK2} = f_{HCLK/2}, f_{ADCCLK} = f_{PCLK2}/4
- When the peripherals are enabled $f_{PCLK1} = f_{HCLK}$, $f_{PCLK2} = f_{HCLK}$, $f_{ADCCLK} = f_{PCLK2}/2$

The parameters given in *Table 18* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

				Тур ⁽¹⁾	Тур ⁽¹⁾	
Symbol	Parameter	Conditions	f _{HCLK}	All peripherals enabled ⁽²⁾	All peripherals disabled	Unit
			36 MHz	26.6	16.2	
			24 MHz	18.5	11.4	
			16 MHz	12.8	8.2	
			8 MHz	7.2	5	
	Supply current in Run mode	External clock ⁽³⁾	4 MHz	4.2	3.1	
			2 MHz	2.7	2.1	mA
			1 MHz	2	1.7	
			500 kHz	1.6	1.4	
			125 kHz	1.3	1.2	
I _{DD}		Running on high speed	36 MHz	26	15.6	ШA
			24 MHz	17.9	10.8	
			16 MHz	12.2	7.6	
		internal RC	8 MHz	6.6	4.4	
		(HSI), AHB prescaler	4 MHz	3.6	2.5	
		used to	2 MHz	2.1	1.5	
		reduce the frequency	1 MHz	1.4	1.1	
			500 kHz	1	0.8	
			125 kHz	0.7	0.6	

Table 18. Typical current consumption in Run mode, code with data processingrunning from Flash

1. Typical values are measures at $T_A = 25$ °C, $V_{DD} = 3.3$ V.

2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

3. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

DocID14610 Rev 9

				Тур ⁽¹⁾	Тур ⁽¹⁾	Unit
Symbol	Parameter	Conditions	^f нс∟к	All peripherals enabled ⁽²⁾	All peripherals disabled	
			36 MHz	15.1	3.6	
			24 MHz	10.4	2.6	
			16 MHz	7.2	2	
			8 MHz	3.9	1.3	
		External clock ⁽³⁾	4 MHz	2.6	1.2	
	Supply current in Sleep mode		2 MHz	1.85	1.15	
			1 MHz	1.5	1.1	
			500 kHz	1.3	1.05	
1			125 kHz	1.2	1.05	mA
I _{DD}		Running on High	36 MHz	14.5	3	
			24 MHz	9.8	2	
			16 MHz	6.6	1.4	
		Speed Internal	8 MHz	3.3	0.7	
		RC (HSI), AHB prescaler used to	4 MHz	2	0.6	
		reduce the	2 MHz	1.25	0.55	
		frequency	1 MHz	0.9	0.5	
			500 kHz	0.7	0.45	
			125 kHz	0.6	0.45	

Table 19. Typical current consumption in Sleep mode, code running from Flash or RAM

1. Typical values are measures at $T_A = 25 \text{ °C}$, $V_{DD} = 3.3 \text{ V}$.

2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

3. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 20*. The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- ambient operating temperature and V_{DD} supply voltage conditions summarized in Table 7.

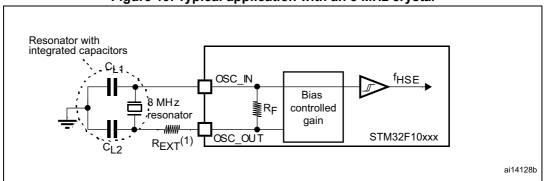


Figure 19. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 24*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter Conditions		Min	Тур	Max	Unit	
R _F	Feedback resistor	-	-	-	5	-	MΩ
С	Recommended load capacitance versus equivalent serial resistance of the crystal (R _S)	R _S = 30 KΩ	-	-	-	15	pF
I ₂	LSE driving current	V_{DD} = 3.3 V V_{IN} = V_{SS}	-	-	-	1.4	μA
9 _m	Oscillator transconductance	-	-	5	-	-	µA/V
		V _{DD} is stabilized	T _A = 50 °C	-	1.5	-	
			T _A = 25 °C	-	2.5	-	
			T _A = 10 °C	-	4	-	
+ (3)			T _A = 0 °C	-	6	-	
t _{SU(LSE)} ⁽³⁾	Startup time		T _A = -10 °C	-	10	-	S
			T _A = -20 °C	-	17	-	
			T _A = -30 °C	-	32	-	
			T _A = -40 °C	-	60	-	

Table 24. LSE oscillator characteristics (f_{LSE} = 32.768 kHz)^{(1) (2)}

1. Guaranteed by characterization results, not tested in production.

2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

3. t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

- 2. Refer to application note AN2868 "STM32F10xxx internal RC oscillator (HSI) calibration" available from the ST website www.st.com
- 3. Guaranteed by design, not tested in production.
- 4. Guaranteed by characterization results, not tested in production.

Low-speed internal (LSI) RC oscillator

Table 26. LSI oscillator characteristics (1))
--	----	---

Symbol	Parameter	Min	Тур	Мах	Unit
f _{LSI} ⁽²⁾	Frequency	30	40	60	kHz
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	85	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	-	0.65	1.2	μA

1. V_{DD} = 3 V, T_A = -40 to 85 °C unless otherwise specified.

2. Guaranteed by characterization results, not tested in production.

3. Guaranteed by design, not tested in production.

Wakeup time from low-power mode

The wakeup times given in *Table 27* are measured on a wakeup phase with an 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:

- Stop or Standby mode: the clock source is the RC oscillator
- Sleep mode: the clock source is the clock that was set before entering Sleep mode.

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

Symbol	Parameter	Тур	Unit
t _{WUSLEEP} ⁽¹⁾	Wakeup from Sleep mode	1.8	μs
t _{WUSTOP} ⁽¹⁾	Wakeup from Stop mode (regulator in run mode)	3.6	
	Wakeup from Stop mode (regulator in low-power mode)	5.4	μs
twustdby ⁽¹⁾	Wakeup from Standby mode	50	μs

Table 27. Low-power mode wakeup timings

1. The wakeup times are measured from the wakeup event to the point at which the user application code reads the first instruction.

5.3.8 PLL characteristics

The parameters given in *Table 28* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

Symbol	Parameter		11		
		Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
f _{PLL_IN}	PLL input clock ⁽²⁾	1	8.0	25	MHz
	PLL input clock duty cycle	40	-	60	%
f _{PLL_OUT}	PLL multiplier output clock	16	-	36	MHz
t _{LOCK}	PLL lock time	-	-	200	μs
Jitter	Cycle-to-cycle jitter	-	-	300	ps

1. Guaranteed by characterization results, not tested in production.

2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by $f_{\mathsf{PLL}_\mathsf{OUT}}$.

5.3.9 Memory characteristics

Flash memory

The characteristics are given at $T_A = -40$ to 85 °C unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
t _{prog}	16-bit programming time	$T_A = -40$ to +85 °C	40	52.5	70	μs
t _{ERASE}	Page (2 KB) erase time	$T_A = -40$ to +85 °C	20	-	40	ms
t _{ME}	Mass erase time	$T_A = -40$ to +85 °C	20	-	40	ms
I _{DD}	Supply current	Read mode f _{HCLK} = 36 MHz with 1 wait state, V _{DD} = 3.3 V	-	-	28	mA
		Write mode f _{HCLK} = 36 MHz, V _{DD} = 3.3 V	-	-	7	mA
		Erase mode f _{HCLK} = 36 MHz, V _{DD} = 3.3 V	-	-	5	mA
		Power-down mode / Halt, V _{DD} = 3.0 to 3.6 V	-	-	50	μA
V _{prog}	Programming voltage		2	-	3.6	V

Table 29. Flash memory characteristics

1. Guaranteed by design, not tested in production.

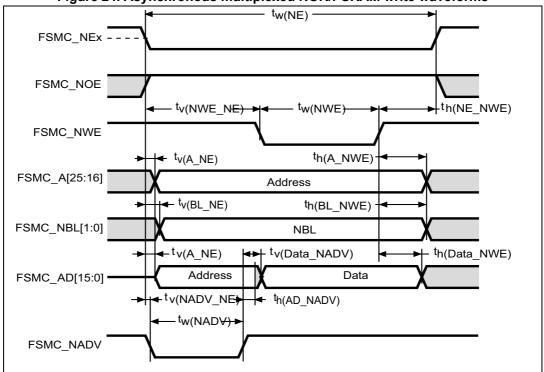


Figure 24. Asynchronous multiplexed NOR/PSRAM write waveforms

Table 34. Asynchronous	multiplexed NOR/P	SRAM write timings ⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FSMC_NE low time	5t _{HCLK} – 1	5t _{HCLK} + 2	ns
t _{v(NWE_NE)}	FSMC_NEx low to FSMC_NWE low	1t _{HCLK}	1t _{HCLK} + 1	ns
t _{w(NWE)}	FSMC_NWE low time	3t _{HCLK} – 1	2	ns
t _{h(NE_NWE)}	FSMC_NWE high to FSMC_NE high hold time	t _{HCLK} – 1	-	ns
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	7	ns
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	3	5	ns
t _{w(NADV)}	FSMC_NADV low time	t _{HCLK} – 1	t _{HCLK} + 1	ns
t _{h(AD_NADV)}	FSMC_AD (address) valid hold time after FSMC_NADV high	t _{HCLK} – 3	-	ns
t _{h(A_NWE)}	Address hold time after FSMC_NWE high	1t _{HCLK}	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	1.6	ns
t _{h(BL_NWE)}	FSMC_BL hold time after FSMC_NWE high	t _{HCLK} – 1.5	-	ns
t _{v(Data_NADV)}	FSMC_NADV high to Data valid	-	t _{HCLK} + 1.5	ns
t _{h(Data_NWE)}	Data hold time after FSMC_NWE high	t _{HCLK} – 5	-	ns

1. C_L = 15 pF.

2. Guaranteed by characterization results, not tested in production..

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FSMC_CLK period	55.5	-	ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_NEx low (x = 02)	-	1.5	ns
t _{d(CLKL-NExH)}	FSMC_CLK low to FSMC_NEx high (x = 02)	2	-	ns
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low	-	4	ns
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	5	-	ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x = 1625)	-	0	ns
t _{d(CLKL-AIV)}	FSMC_CLK low to FSMC_Ax invalid (x = 1625)	2	-	ns
t _{d(CLKH-NOEL)}	FSMC_CLK high to FSMC_NOE low	-	1	ns
t _{d(CLKL-NOEH)}	FSMC_CLK low to FSMC_NOE high	0.5	-	ns
t _{d(CLKL-ADV)}	FSMC_CLK low to FSMC_AD[15:0] valid	-	12	ns
t _{d(CLKL-ADIV)}	FSMC_CLK low to FSMC_AD[15:0] invalid	0	-	ns
t _{su(ADV-CLKH)}	FSMC_A/D[15:0] valid data before FSMC_CLK high	6	-	ns
t _{h(CLKH-ADV)}	FSMC_A/D[15:0] valid data after FSMC_CLK high	0	-	ns
t _{su(NWAITV-CLKH)}	FSMC_NWAIT valid before FSMC_CLK high	8	-	ns
t _{h(CLKH-NWAITV)}	FSMC_NWAIT valid after FSMC_CLK high	2	-	ns

Table 35. Synchronous multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾

1. C_L = 15 pF.

2. Guaranteed by characterization results, not tested in production..

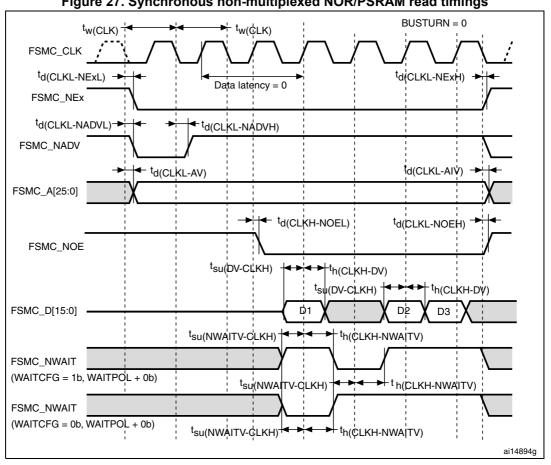


Figure 27. Synchronous non-multiplexed NOR/PSRAM read timings

Table 37. Synchronous non-multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(CLK)}	FSMC_CLK period	55.5	-	ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_NEx low (x = 02)	-	1.5	ns
t _{d(CLKL-NExH)}	FSMC_CLK low to FSMC_NEx high (x = 02)	2	-	ns
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low	-	4	ns
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	5	-	ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x = 025)	-	0	ns
t _{d(CLKL-AIV)}	FSMC_CLK low to FSMC_Ax invalid (x = 025)	4	-	ns
t _{d(CLKH-NOEL)}	FSMC_CLK high to FSMC_NOE low	-	1.5	ns
t _{d(CLKL-NOEH)}	FSMC_CLK low to FSMC_NOE high	1.5	-	ns
t _{su(DV-CLKH)}	FSMC_D[15:0] valid data before FSMC_CLK high	6.5	-	ns
t _{h(CLKH-DV)}	FSMC_D[15:0] valid data after FSMC_CLK high	7	-	ns
t _{su(NWAITV-CLKH)}	FSMC_NWAIT valid before FSMC_SMCLK high	7	-	ns
t _{h(CLKH-NWAITV)}	FSMC_NWAIT valid after FSMC_CLK high	2	-	ns

1. C_L = 15 pF.

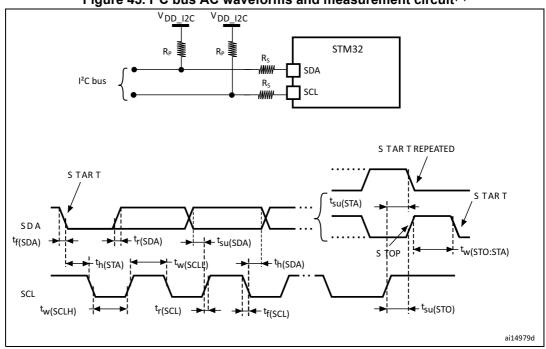


Figure 45. I²C bus AC waveforms and measurement circuit⁽¹⁾

- 1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}.$
- 1. R_S = series protection resistor.
- 2. R_P = external pull-up resistor.
- 3. V_{DD_I2C} is the I2C bus power supply.

f _{SCL}	I2C_CCR value
(kHz)	R _P = 4.7 kΩ
400	0x801E
300	0x8028
200	0x803C
100	0x00B4
50	0x0168
20	0x0384

Table 52. SCL frequency $(f_{PCLK1} = 36 \text{ MHz}, V_{DD} = V_{DD | 12C} = 3.3 \text{ V})^{(1)(2)}$

1. R_P = External pull-up resistance, f_{SCL} = I^2C speed.

For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application.

SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 53Table 54* are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 10*.

Refer to *Section 5.3.13: I/O current injection characteristics* for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions	Min	Max	Unit
f _{SCK}		Master mode	-	10	MHz
1/t _{c(SCK)}	SPI clock frequency	Slave mode	-	10	IVITIZ
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C = 30 pF	-	8	
t _{su(NSS)} ⁽¹⁾	NSS setup time	Slave mode	4t _{PCLK}	-	
t _{h(NSS)} ⁽¹⁾	NSS hold time	Slave mode	73	-	
t _{w(SCKH)} ⁽¹⁾ t _{w(SCKL)} ⁽¹⁾	SCK high and low time	Master mode, f _{PCLK} = 36 MHz, presc = 4	50	60	
		Master mode - SPI1	3	-	
t _{su(MI)} ⁽¹⁾ t _{su(SI)} ⁽¹⁾	Data input setup time	Master mode - SPI2	5	-	
(SI)		Slave mode	4	-	
▲ (1)		Master mode - SPI1	4	-	
t _{h(MI)} ⁽¹⁾	Data input hold time Master mode - SPI2	Master mode - SPI2	6	-	
t _{h(SI)} ⁽¹⁾		Slave mode	5	-	ns
t _{a(SO)} ⁽¹⁾⁽²⁾	Data output access	Slave mode, f _{PCLK} = 36 MHz, presc = 4	0	55	
u(00)	time	Slave mode, f _{PCLK} = 20 MHz	-	4t _{PCLK}	
t _{dis(SO)} ⁽¹⁾⁽³⁾	Data output disable time	Slave mode	10	-	
t _{v(SO)} ⁽¹⁾	Data output valid time	Slave mode (after enable edge)	-	25	
t _{v(MO)} ⁽¹⁾	Data output valid time	Master mode (after enable edge)	-	6	
t _{h(SO)} ⁽¹⁾	Data output hold	Slave mode (after enable edge)	25	-	
t _{h(MO)} ⁽¹⁾	time	Master mode (after enable edge)	6	-	

Table 53. STM32F10xxx SPI characteristics

1. Guaranteed by characterization results, not tested in production.

2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z

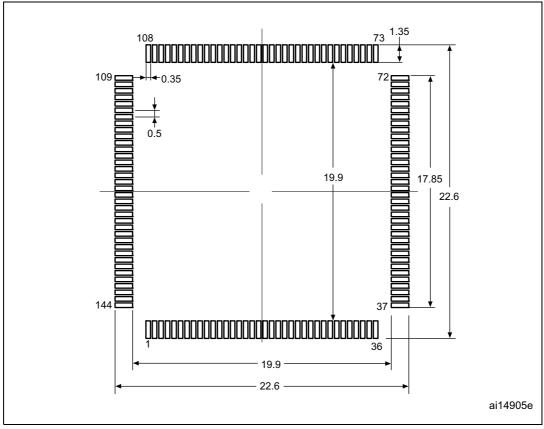
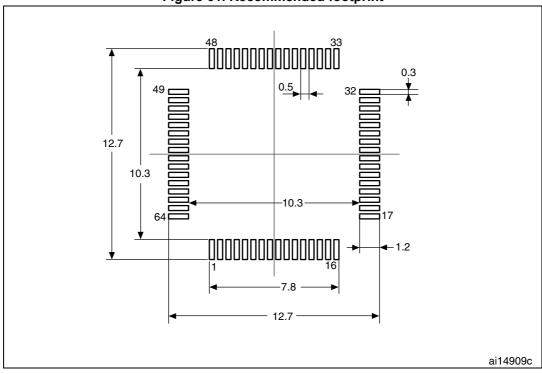


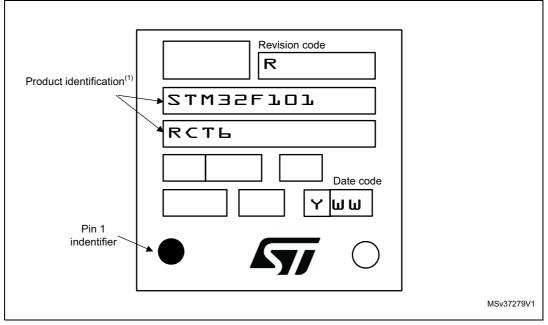
Figure 55. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package footprint


1. Dimensions are expressed in millimeters.

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
е	-	0.500	-	-	0.0197	-
θ	0°	3.5°	7°	0°	3.5°	7°
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
CCC	-	-	0.080	-	-	0.0031

Table 63. LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.


Figure 61. Recommended footprint

1. Dimensions are in millimeters.

Device marking for LQFP64

The following figure gives an example of topside marking and pin 1 position identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

