E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	36MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	80
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f101vct6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1 Device overview

The STM32F101xx high-density access line family offers devices in 3 different package types: from 64 pins to 144 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.

Figure 1 shows the general block diagram of the device family.

				cou	1115					
Perip	herals	STI	M32F10 1	IRx	STM32F101Vx			STM32F101Zx		
Flash memo	ry in Kbytes	256	384	512	256	384	512	256 384 512		
SRAM in Kb	ytes	32	4	8	32	4	8	32	4	8
FSMC			No			Yes ⁽¹⁾			Yes	
Timers	General- purpose					4				
	Basic					2				
	SPI					3				
Comm	I ² C	2								
	USART	5								
GPIOs	51 80 112			112						
12-bit ADC		Yes			Yes			Yes		
Number of c	hannels		16			16			16	
12-bit DAC						1				
Number of c	hannels	2								
CPU freque	36 MHz									
Operating voltage			2.0 to 3.6 V							
Operating te	mperatures	Ambient temperature: -40 to +85 °C (see <i>Table 10</i>) Junction temperature: -40 to +105 °C (see <i>Table 10</i>)								
Package			LQFP64		I	_QFP100)	l	_QFP144	4

Table 2. STM32F1	01xC, STM32F101xD and STM32F101xE features and periphe	eral
	counts	

 For the LQFP100 package, only FSMC Bank1 and Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package.

Figure 2. Clock tree

1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 36 MHz.

2. To have an ADC conversion time of 1 $\mu s,$ APB2 must be at 14 MHz or 28 MHz.

SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0.
- Programmable clock source

2.3.18 I²C bus

Up to two I²C bus interfaces can operate in multi-master and slave modes. They support standard and fast modes.

They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded. They can be served by DMA and they support SMBus 2.0/PMBus.

2.3.19 Universal synchronous/asynchronous receiver transmitters (USARTs)

The STM32F101xC, STM32F101xD and STM32F101xE access line embeds three universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver transmitters (UART4 and UART5).

These five interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The five interfaces are able to communicate at speeds of up to 2.25 Mbit/s.

USART1, USART2 and USART3 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller except for UART5.

2.3.20 Serial peripheral interface (SPI)

Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.

All SPIs can be served by the DMA controller.

2.3.21 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current-capable.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

	FSMC						
Pins	CF	CF/IDE	NOR/PSRAM/ SRAM	NOR/PSRAM Mux	NAND 16 bit	LQFP100 ⁽¹⁾	
PD9	D14	D14	D14	DA14	D14	Yes	
PD10	D15	D15	D15	DA15	D15	Yes	
PD11	-	-	A16	A16	CLE	Yes	
PD12	-	-	A17	A17	ALE	Yes	
PD13	-	-	A18	A18		Yes	
PD14	D0	D0	D0	DA0	D0	Yes	
PD15	D1	D1	D1	DA1	D1	Yes	
PG2	-	-	A12	-	-	-	
PG3	-	-	A13	-	-	-	
PG4	-	-	A14	-	-	-	
PG5	-	-	A15	-	-	-	
PG6	-	-	-	-	INT2	-	
PG7	-	-	-	-	INT3	-	
PD0	D2	D2	D2	DA2	D2	Yes	
PD1	D3	D3	D3	DA3	D3	Yes	
PD3	-	-	CLK	CLK	-	Yes	
PD4	NOE	NOE	NOE	NOE	NOE	Yes	
PD5	NWE	NWE	NWE	NWE	NWE	Yes	
PD6	NWAIT	NWAIT	NWAIT	NWAIT	NWAIT	Yes	
PD7	-	-	NE1	NE1	NCE2	Yes	
PG9	-	-	NE2	NE2	NCE3	-	
PG10	NCE4_1	NCE4_1	NE3	NE3	-	-	
PG11	NCE4_2	NCE4_2	-	-	-	-	
PG12	-	-	NE4	NE4	-	-	
PG13	-	-	A24	A24	-	-	
PG14	-	-	A25	A25	-	-	
PB7	-	-	NADV	NADV	-	Yes	
PE0	-	-	NBL0	NBL0	-	Yes	
PE1	-	-	NBL1	NBL1	-	Yes	

Table 6. FSMC pin definition (continued)

1. Ports F and G are not available in devices delivered in 100-pin packages.

5 Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS} .

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

5.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 3.3$ V (for the 2 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\Sigma$).

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 7*.

Symbol	Parameter	Conditions	£	Max ⁽¹⁾	Unit	
Symbol	Faranieler	Conditions	HCLK	T _A = 85 °C	onit	
I _{DD}	Supply current in Sleep mode		36 MHz	24		
		External clock ⁽²⁾ all peripherals enabled	24 MHz	17	mA	
			16 MHz	12.5		
			8 MHz	8		
			36 MHz	6		
		External clock ⁽²⁾ , all peripherals disabled	24 MHz	5		
			16 MHz	4.5		
			8 MHz	4		

Table 16. Maximum current consumption in Sleep mode, code running from Flash or RAM

1. Guaranteed by characterization results, tested in production at V_{DD} max, f_{HCLK} max with peripherals enabled.

2. External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

				Max			
Symbol	Parameter	Conditions	V _{DD} / V _{BAT} = 2.0 V	V _{DD} / V _{BAT} = 2.4 V	V_{DD}/V_{BA} = 3.3 V	T _A = 85 °C	Unit
Supply current		Regulator in Run mode, Low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	-	34.5	35	379	
in Stop mode	Regulator in Low-power mode, Low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	-	24.5	25	365		
'DD	Supply current in Standby mode	Low-speed internal RC oscillator and independent watchdog ON	-	3	3.8	-	μA
		Low-speed internal RC oscillator ON, independent watchdog OFF	-	2.8	3.6	-	
		Low-speed internal RC oscillator and independent watchdog OFF, low-speed oscillator and RTC OFF	-	1.9	2.1	5 ⁽²⁾	
I _{DD_VBAT}	Backup domain supply current	Low-speed oscillator and RTC ON	1.05	1.1	1.4	2 ⁽²⁾	

Table 17. Typical and maximum current consumptions in Stop and Standby modes

1. Typical values are measured at T_A = 25 °C.

2. Guaranteed by characterization results, not tested in production.

Perip	μA/MHz	
	DMA1	20.42
	DMA2	19.03
AHB (up to36 MHz)	FSMC	52.36
	CRC	2.36
	BusMatrix ⁽²⁾	9.72
	APB1-Bridge	7.78
	TIM2	33.06
	TIM3	31.94
	TIM4	31.67
	TIM5	31.94
	TIM6	8.06
	TIM7	8.06
	SPI2/I2S2 ⁽³⁾	8.33
	SPI3/I2S3 ⁽³⁾	8.33
	USART2	12.22
APB1 (up to 18 MHz)	USART3	12.22
	UART4	12.22
	UART5	12.22
	I2C1	10.28
	I2C2	10.00
	USB	18.06
	DAC ⁽⁴⁾	8.06
	WWDG	3.89
	PWR	1.11
	ВКР	1.11
	IWDG	5.28

 Table 20. Peripheral current consumption⁽¹⁾

Periphe	Peripherals					
	APB2-Bridge	4.17				
	GPIOA	8.47				
	GPIOB	8.47				
	GPIOC	6.53				
	GPIOD	8.47				
	GPIOE	6.53				
APB2 (up to 36 MHz)	GPIOF	6.53				
	GPIOG	6.11				
	SPI1	4.72				
	USART1	12.50				
	TIM1	22.92				
	TIM8	22.92				
	ADC1 ⁽⁵⁾⁽⁶⁾	17.32				

Table 20. Peripheral current consumpti	ion	[,] (continued)
--	-----	--------------------------

1. f_{HCLK} = 36 MHz, f_{APB1} = $f_{HCLK/2}$, f_{APB2} = f_{HCLK} , default prescaler value for each peripheral.

2. The BusMatrix is automatically active when at least one master peripheral is ON.

3. When the I2S is enabled, a current consumption of 0.02 mA must be added.

- 4. When DAC_OUT1 or DAC_OUT2 is enabled, a current consumption of 0.36 mA must be added.
- Specific conditions for ADC: f_{HCLK} = 28 MHz, f_{APB1} = f_{HCLK/2}, f_{APB2} = f_{HCLK}, f_{ADCCLK} = f_{APB2}/2. When ADON bit in the ADC_CR2 register is set to 1, the current consumption is equal to 0.54 mA.
- 6. When the ADC is enabled, a current consumption of 0.08 mA must be added.

5.3.6 External clock source characteristics

High-speed external user clock generated from an external source

The characteristics given in *Table 21* result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 10*.

	- -					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency ⁽¹⁾		1	8	25	MHz
V _{HSEH}	OSC_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}	v
t _{w(HSE)} t _{w(HSE)}	OSC_IN high or low time ⁽¹⁾		5	-	-	ne
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	-	20	

Table 21. High-speed external user clock characteristics

- Note: For C_{L1} and C_{L2} , it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . Load capacitance C_L has the following formula: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$ where C_{stray} is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.
- **Caution:** To avoid exceeding the maximum value of C_{L1} and C_{L2} (15 pF) it is strongly recommended to use a resonator with a load capacitance $C_L \le 7$ pF. Never use a resonator with a load capacitance of 12.5 pF.

Example: if you choose a resonator with a load capacitance of $C_L = 6 \text{ pF}$, and $C_{stray} = 2 \text{ pF}$, then $C_{L1} = C_{L2} = 8 \text{ pF}$.

5.3.7 Internal clock source characteristics

The parameters given in *Table 25* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{HSI}	Frequency	-		-	8	-	MHz
DuCy _(HSI)	Duty cycle	-		45	-	55	%
ACC _{HSI}		User-trimmed with the RCC_CR register ⁽²⁾		-	-	1 ⁽³⁾	%
	Accuracy of the HSI oscillator	Factory- calibrated ⁽⁴⁾	$T_A = -40$ to 105 °C	-2	-	2.5	%
			$T_A = -10$ to 85 °C	-1.5	-	2.2	%
			$T_A = 0$ to 70 °C	-1.3	-	2	%
			T _A = 25 °C	-1.1	-	1.8	%
t _{su(HSI)} ⁽⁴⁾	HSI oscillator startup time	-		1	-	2	μs
I _{DD(HSI)} ⁽⁴⁾	HSI oscillator power consumption	-		-	80	100	μA

Table 25. HSI oscillator characteristics⁽¹⁾

1. V_{DD} = 3.3 V, T_A = -40 to 85 °C unless otherwise specified.

57

Symbol	Parameter	Conditions	Value	Unit
Symbol	Falameter	Conditions	Min ⁽¹⁾	Onit
N _{END}	Endurance	$T_A = -40$ °C to 85 °C	10	kcycles
+	Data rotantian	T _A = 85 °C, 1 kcycle ⁽²⁾	30	Voare
^I RET		T _A = 55 °C, 10 kcycle ⁽²⁾	20	Tears

Table 30. Flash memory endurance and data retention

1. Guaranteed by characterization results, not tested in production.

2. Cycling performed over the whole temperature range.

5.3.10 FSMC characteristics

Asynchronous waveforms and timings

Figure 21 through *Figure 24* represent asynchronous waveforms and *Table 31* through *Table 34* provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

- AddressSetupTime = 0
- AddressHoldTime = 1
- DataSetupTime = 1

Symbol	Parameter	Min	Max	Unit
t _{h(A_NOE)}	Address hold time after FSMC_NOE high	t _{HCLK}	-	ns
t _{h(BL_NOE)}	FSMC_BL hold time after FSMC_NOE high	0	-	ns
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	0	ns
t _{su(Data_NE)}	Data to FSMC_NEx high setup time	2t _{HCLK} + 24	-	ns
t _{su(Data_NOE)}	Data to FSMC_NOE high setup time	2t _{HCLK} + 25	-	ns
t _{h(Data_NE)}	Data hold time after FSMC_NEx high	0	-	ns
t _{h(Data_NOE)}	Data hold time after FSMC_NOE high	0	-	ns

Table 33. Asynchronous multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾ (continued)

1. C_L = 15 pF.

2. Guaranteed by characterization results, not tested in production.

Symbol	Parameter	Min	Max	Unit
t _{d(D-NWE)}	FSMC_D[15:0] valid before FSMC_NWE high	13t _{HCLK}	-	ns
t _{w(NIOWR)}	FSMC_NIOWR low width	8t _{HCLK} + 3	-	ns
t _{v(NIOWR-D)}	FSMC_NIOWR low to FSMC_D[15:0] valid	-	5t _{HCLK} +1	ns
t _{h(NIOWR-D)}	FSMC_NIOWR high to FSMC_D[15:0] invalid	11t _{HCLK}	-	ns
t _{d(NCE4_1-NIOWR)}	FSMC_NCE4_1 low to FSMC_NIOWR valid	-	5t _{HCLK} +3ns	ns
t _{h(NCEx-NIOWR)} t _{h(NCE4_1-NIOWR)}	FSMC_NCEx high to FSMC_NIOWR invalid FSMC_NCE4_1 high to FSMC_NIOWR invalid	5t _{HCLK} – 5	-	ns
t _{d(NIORD-NCEx)} t _{d(NIORD-NCE4_1)}	FSMC_NCEx low to FSMC_NIORD valid FSMC_NCE4_1 low to FSMC_NIORD valid	-	5t _{HCLK} + 2.5	ns
t _{h(NCEx-NIORD)} t _{h(NCE4_} 1-NIORD)	FSMC_NCEx high to FSMC_NIORD invalid FSMC_NCE4_1 high to FSMC_NIORD invalid	5t _{HCLK} – 5	-	ns
t _{su(D-NIORD)}	FSMC_D[15:0] valid before FSMC_NIORD high	4.5	-	ns
t _{d(NIORD-D)}	FSMC_D[15:0] valid after FSMC_NIORD high	9	-	ns
t _{w(NIORD)}	FSMC_NIORD low width	8t _{HCLK} + 2	-	ns

Table 39. Switching characteristics for PC Card/CF read and write cycles⁽¹⁾⁽²⁾ (continued)

1. C_L = 15 pF.

2. Guaranteed by characterization results, not tested in production.

NAND controller waveforms and timings

Figure 35 through *Figure 38* represent synchronous waveforms and *Table 40* provides the corresponding timings. The results shown in this table are obtained with the following FSMC configuration:

- COM.FSMC_SetupTime = 0x01;
- COM.FSMC_WaitSetupTime = 0x03;
- COM.FSMC_HoldSetupTime = 0x02;
- COM.FSMC HiZSetupTime = 0x01;
- ATT.FSMC_SetupTime = 0x01;
- ATT.FSMC_WaitSetupTime = 0x03;
- ATT.FSMC_HoldSetupTime = 0x02;
- ATT.FSMC_HiZSetupTime = 0x01;
- Bank = FSMC_Bank_NAND;
- MemoryDataWidth = FSMC_MemoryDataWidth_16b;
- ECC = FSMC_ECC_Enable;
- ECCPageSize = FSMC_ECCPageSize_512Bytes;
- TCLRSetupTime = 0;
- TARSetupTime = 0;

Output voltage levels

Unless otherwise specified, the parameters given in *Table 47* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 10*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output Low level voltage for an I/O pin when 8 pins are sunk at the same time	CMOS port ⁽²⁾ ,	-	0.4	V
V _{OH} ⁽³⁾	Output High level voltage for an I/O pin when 8 pins are sourced at the same time	$1_{O} - 40$ mA, 2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4	-	V
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at the same time	TTL port ⁽²⁾	-	0.4	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at the same time	$2.7 V < V_{DD} < 3.6 V$	2.4	-	v
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at the same time	I _{IO} = +20 mA ⁽⁴⁾	-	1.3	М
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at the same time	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3	-	v
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at the same time	I _{IO} = +6 mA ⁽⁴⁾	-	0.4	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at the same time	2 V < V _{DD} < 2.7 V	V _{DD} -0.4	-	V

Table 47.	Output	voltage	characteristics
-----------	--------	---------	-----------------

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 8* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 8 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

4. Guaranteed by characterization results, not tested in production.

5.3.16 TIM timer characteristics

The parameters given in Table 50 are guaranteed by design.

Refer to Section 5.3.13: I/O current injection characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Max	Unit
t maa	Timor resolution time	-	1	-	t _{TIMxCLK}
res(TIM)		f _{TIMxCLK} = 36 MHz	27.8	-	ns
f=v=	Timer external clock	-	0	f _{TIMxCLK} /2	MHz
'EXT	frequency on CH1 to CH4	f _{TIMxCLK} = 36 MHz	0	18	MHz
Res_TIM	Timer resolution	-	-	16	bit
t _{COUNTER}	16-bit counter clock period	-	1	65536	t _{TIMxCLK}
	selected	f _{TIMxCLK} = 36 MHz	0.0278	1820	μs
t _{MAX_COUNT}	Maximum possible count	-	-	65536 × 65536	t _{TIMxCLK}
		f _{TIMxCLK} = 36 MHz	-	119.2	s

Table 50. TIMx⁽¹⁾ characteristics

1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers.

5.3.17 Communications interfaces

I²C interface characteristics

The STM32F101xC, STM32F101xD and STM32F101xE access line I²C interface meets the requirements of the standard I²C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 51*. Refer also to *Section 5.3.13: I/O current injection characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

Figure 46. SPI timing diagram - slave mode and CPHA=0

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}$

Figure 52. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

1. V_{REF+} and V_{REF-} inputs are available only on 100-pin packages.

5.3.19 DAC electrical specifications

Table	59.	DAC	characteristics
	•••		

Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit	Comments
V _{DDA}	Analog supply voltage	2.4	-	3.6	V	
V _{REF+}	Reference supply voltage	2.4	-	3.6	V	V _{REF+} must always be below V _{DDA}
V _{SSA}	Ground	0	-	0	V	
R _{LOAD} ⁽²⁾	Resistive load with buffer ON	5	-	-	kΩ	
R ₀ ⁽²⁾	Impedance output with buffer OFF	-	-	15	kΩ	When the buffer is OFF, the minimum resistive load between DAC_OUT and V _{SS} to have a 1% accuracy is 1.5 MΩ
C _{LOAD} ⁽²⁾	Capacitive load	-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).
DAC_OUT min ⁽²⁾	Lower DAC_OUT voltage with buffer ON	0.2	-	-	V	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xF1C) at VPEE+ =
DAC_OUT max ⁽²⁾	Higher DAC_OUT voltage with buffer ON	-	-	V _{DDA} – 0.2	V	3.6 V and ($0x155$) and ($0xEAB$) at V _{REF+} = 2.4 V.
DAC_OUT min ⁽²⁾	Lower DAC_OUT voltage with buffer OFF	-	0.5	-	mV	It gives the maximum output
DAC_OUT max ⁽²⁾	Higher DAC_OUT voltage with buffer OFF	-		V _{REF+} – 1LSB	V	excursion of the DAC.

Figure 53. 12-bit buffered /non-buffered DAC

 The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

5.3.20 Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	4.0	4.3	4.6	mV/°C
V ₂₅ ⁽¹⁾	Voltage at 25°C	1.34	1.43	1.52	V
t _{START} ⁽²⁾	Startup time	4	-	10	μs
T _{S_temp} ⁽³⁾⁽²⁾	ADC sampling time when reading the temperature	-	-	17.1	μs

	Table	60.	TS	characteristics
--	-------	-----	----	-----------------

1. Guaranteed by characterization, not tested in production.

2. Guaranteed by design, not tested in production.

3. Shortest sampling time can be determined in the application by multiple iterations.

6.3 LQFP64 information

Figure 60. LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package outline

1. Drawing is not to scale.

Table 63. LQFP64 – 10 x 10 mm	, 64 pin low-	profile quad flat	package r	nechanical data
-------------------------------	---------------	-------------------	-----------	-----------------

Symbol		millimeters		inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Мах	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	-	12.000	-	-	0.4724	-	
D1	-	10.000	-	-	0.3937	-	
D3	-	7.500	-	-	0.2953	-	
E	-	12.000	-	-	0.4724	-	
E1	-	10.000	-	-	0.3937	-	
E3	-	7.500	-	-	0.2953	-	

6.4 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 10: General operating conditions on page 40*.

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

$$T_J max = T_A max + (P_D max \times \Theta_{JA})$$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $P_{I/O}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \left(\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}\right) + \Sigma((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient LQFP144 - 20 x 20 mm / 0.5 mm pitch	30	
Θ_{JA}	Thermal resistance junction-ambient LQFP100 - 14 x 14 mm / 0.5 mm pitch	46	°C/W
	Thermal resistance junction-ambient LQFP64 - 10 x 10 mm / 0.5 mm pitch	45	

Table 64. Package thermal characteristics

6.4.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air), available from www.jedec.org.

Date	Revision	Changes
30-Mar-2009	5	I/O information clarified on cover page, Number of ADC peripherals corrected in <i>Table 2:</i> STM32F101xC, STM32F101xD and STM32F101xE features and peripheral counts.
		In Table 5: STM32F101xC/STM32F101xD/STM32F101xE pin definitions:
		 – I/O level of pins PF11, PF12, PF13, PF14, PF15, G0, G1 and G15 updated
		 PB4, PB13, PB14, PB15, PB3/TRACESWO moved from Default column to Remap column.
		PG14 pin description modified in <i>Table 6: FSMC pin definition</i> , <i>Figure 6: Memory map on page 35</i> modified.
		Note modified in <i>Table 14: Maximum current consumption in Run</i> mode, code with data processing running from Flash and Table 16: Maximum current consumption in Sleep mode, code running from Flash or RAM.
		<i>Figure 14</i> , <i>Figure 15</i> and <i>Figure 16</i> show typical curves (titles changed).
		Table 21: High-speed external user clock characteristics and Table 22:Low-speed user external clock characteristics modified.
		ACC _{HSI} max values modified in <i>Table 25: HSI oscillator characteristics</i> FSMC configuration modified for <i>Asynchronous waveforms and</i> <i>timings</i> . Notes modified below <i>Figure 21: Asynchronous non-</i> <i>multiplexed SRAM/PSRAM/NOR read waveforms</i> and <i>Figure 22:</i> <i>Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms</i> . t _{w(NADV)} values modified in <i>Table 31: Asynchronous non-multiplexed</i> <i>SRAM/PSRAM/NOR read timings</i> and <i>Table 34: Asynchronous</i> <i>multiplexed NOR/PSRAM write timings</i> . t _{h(Data_NWE)} modified in <i>Table 32: Asynchronous non-multiplexed SRAM/PSRAM/NOR write</i> <i>timings</i> . In <i>Table 36: Synchronous multiplexed PSRAM write timings</i> and
		Table 38: Synchronous non-multiplexed PSRAM write timings:
		$- t_{d(CLKL-Data)}$ min value removed and max value added
		 t_{h(CLKL-DV)} / t_{h(CLKL-ADV)} removed Figure 25: Synchronous multiplexed NOR/PSRAM read timings. Figure 26: Synchronous multiplexed PSRAM write timings and Figure 28: Synchronous non-multiplexed PSRAM write timings modified, Small text changes.

 Table 66.
 Document revision history (continued)

